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It is argued that an external magnetic field applied to an isotropic zigzag spin chain with an arbitrary spin S
and antiferromagnetic nearest-neighbor and next-nearest-neighbor exchange couplings J; and J, induces a
phase with spontaneously broken parity, characterized by long-range ordering of vector chirality. To show that,

we use a bosonization approach for S=3 and S=1, valid in the limit of a weak zigzag interaction J;/J, <1, as

well as an effective large-S theory applicable in the vicinity of the saturation field. Relevance to real materials
and the possibility of experimental observation of the chiral phase are discussed.
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I. INTRODUCTION

In recent years, phases with broken vector chirality in
frustrated quantum spin chains have attracted considerable
interest.!~® Such phases are characterized by nonzero long-
range correlations of the vector product of two adjacent spins

’_én = <Sn X Sn+l>’

so that in a chirally ordered phase, spins tend to rotate in a
certain preferred plane (e.g., chosen by anisotropic interac-
tions) predominantly clockwise or counterclockwise. The
vector chirality has to be distinguished from the so-called
scalar chirality K«S,_;(S, XS,.,;), which is often discussed
in the context of isotropic spin chains.’

Classically, states with a broken chirality emerge only to-
gether with a helical long-range order and simply distinguish
left and right spirals. In one-dimensional (1D) systems, how-
ever, existence of a true helical order is in most cases pro-
hibited by the Mermin-Wagner theorem,® since strong quan-
tum fluctuations prevent spontaneous breaking of the
continuous rotation symmetry in the plane of the helix. In
contrast to the helical spin order, the chiral order breaks only
a discrete symmetry between left and right and, thus, can
survive even in one dimension.>!% So, one can view the chi-
ral order as a remnant of the classical helical order in a 1D
spin system. At zero temperature, the long-range helical or-
der will be reestablished at an arbitrarily small three-
dimensional (3D) coupling. With increasing temperature,
however, the helical order is suppressed faster than the chiral
one, so that there is a finite temperature window where the
helical order is already destroyed but the chiral order still
persists.” Such a chiral ordering transition at finite tempera-
ture has possibly been observed experimentally!! in the
quasi-1D anisotropic organic magnet Gd(hfac);NITiPr.

Recently, chirally ordered phases were numerically found
in frustrated spin chains with easy-plane anisotropy.>® The
aim of the present paper is to show that a chiral phase
emerges in isotropic frustrated spin chains as well, if they are
subject to a strong external magnetic field. We focus on the
model of a zigzag chain defined by the Hamiltonian
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H=J,28; Sis1 +J2 2 S;+ Sjin—h X S5, (1)
J J J

where § ; are spin-$ operators at the jth site and J; ,>0. It is
easy to analyze the classical counterpart of the above model,
where spins are represented by vectors, (S;,S%)
> (S sin ¢,e*% S cos ¢,). The applied field selects a pre-
ferred plane, reducing the symmetry of the Hamiltonian from
SU(2) to U(1). Depending on the frustration strength

a=J2/J1,

the in-plane ground-state configuration is given by 6,
=(m+N\)n, where

0, a<l1/4
A= (2)
arccos(1/4a), a>1/4.

The spins are canted toward the field, cos ¢,=h/h,, with
hy=45{J, cos*>(\/2) + J, sin® \} (3)

being the saturation field. For h>h,, the ground state is
unique and corresponds to fully polarized spins. The classi-
cal ground state for 7<<h, is a canted antiferromagnet for «
below the Lifshits point i while for a>i one has two de-
generate helical ground states, as reflected by the * signs
above, which correspond to the left and right chirality «
=+8%(1-h%/h?)sin \. For a>i in the presence of a field,
the initial SU(2) symmetry is thus reduced to U(1) X Z,. A
schematic view of the classical phase diagram is shown in
Fig. 1.

In the guantum case, according to the Mermin-Wagner
theorem,® the U(1) symmetry cannot be broken, but it is
allowed to break the discrete Z, chiral symmetry. Such a
scenario is indeed realized in frustrated anisotropic spin
chains with easy-plane anisotropy, as predicted by Nersesyan
et al.? and later confirmed numerically.>®!? For a chain with
easy-plane anisotropy the classical picture of the symmetry
reduction from SU(2) to U(1) X Z, is the same as in the case
of applied magnetic field.

A natural question arises: Can an external magnetic field
act similarly to the xy anisotropy,'® favoring the chiral order
in isotropic spin chains? At the first glance it seems that a
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FIG. 1. A schematic phase diagram of the model (1) in the
classical limit.

positive answer to this question is trivial. However, the con-
nection between an isotropic antiferromagnetic chain in an
external field and a chain with an easy-plane anisotropy is
not so straightforward. For example, an integer-S antiferro-
magnetic chain undergoes a transition of the Berezinski-
Kosterlitz-Thouless type from the Haldane phase to a gapless
phase under the influence of an easy-plane anisotropy;'* in
an isotropic integer-S chain, an applied magnetic field can
close the Haldane gap, also causing a transition to a gapless
phase, but this latter transition belongs to the commensurate-
incommensurate universality class.!> For a frustrated S=%
chain in a magnetic field, recent numerical studies'®!” pro-
pose a scenario which is different from that for an aniso-
tropic chain, namely the scenario of a fwo-component Lut-
tinger liquid, which does not involve any breaking of the Z,
symmetry. The goal of the present study is to argue that the
correct high-field physics of isotropic frustrated chains is in-
deed determined by the spontaneous breaking of the chiral
symmetry. The paper is organized as follows: In Sec. II, we
consider the model (1) for S =% in the limit of strong frustra-
tion @> 1 (the limit of two weakly coupled chains) and show
the existence of the chirally ordered phase by means of
bosonization and a mean-field decoupling in the spirit of Ref.
2. We also show that magnetization cusps similar to those
observed in Refs. 16 and 17 naturally arise in our approach,
and thus, the presense of cusps alone does not necessarily
imply the scenario of the transition from a two-component to
one-component Luttinger liquid. In Sec. III, the problem for
an isotropic S=1 chain in an applied field is mapped onto
that for a S=% chain with easy-plane anisotropy, for which
the existence of the chiral phase 1is established
numerically;*®!? in Sec. IV, we consider the general large-S
case and show that the phase immediately below the satura-
tion field is chirally ordered. Finally, Sec. V contains discus-
sion and suggestions for possible experiments.

II. FIELD-INDUCED CHIRALITY IN S=% CHAIN

We start with the “extreme quantum” spin-% case which
admits a field-theoretical description based on the bosoniza-
tion approach. Consider the limit of strong frustration a> 1
and strong magnetic fields 4~ J,. The system may be viewed
as two S =% chains weakly coupled by the zigzag interaction

. . 1 . . . . .
Ji. A single spin-; chain in a uniform magnetic field is
known to be critical, its low-energy physics being effectively
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described by the standard Gaussian theory'® known also as
the Tomonaga-Luttinger liquid

H= % f dx{ %(ax¢)2 + K(axo)z}. (4)

Here ¢ is a compactified scalar bosonic field and @ is its
dual, J,¢=vd.6, with the commutation relations
[d(x), 0(y)]=i®(y—x), where ®(x) is the Heaviside function
and the regularization [ ¢(x), 6(x)]=i/2 is assumed. Integra-
bility of the S=% chain model makes it possible to relate
explicitly the coupling constants of the theory, the spin wave
velocity v, and the Luttinger liquid (LL) parameter K to the
microscopic parameters J,, h. The exact functional depen-
dences v(h) and K(h) are known (see Ref. 19 and references
therein) from the numerical solution of the Bethe ansatz in-
tegral equations.?’ Particularly, K increases with the mag-
netic field from K(h:O):% to K=1 for h approaching the
saturation value 2.J,.

In the infrared limit, the following representation of the
lattice spin operators holds:'

SZ——l ﬁ¢+—a sin{2kpx + 47w} + m
w= 0 X+ 4oy +m,
v T

S = (= 1)"e" "¢ + b sin(2kpx + V47 h)}. (5)

Here m(h) is the ground-state magnetization per spin which
determines the Fermi wave vector kF=(%—m)7T and is known

exactly from the Bethe ansatz results.’® Nonuniversal con-
stants a, b, and ¢ for general & have been extracted numeri-
cally from the density matrix renormalization group
(DMRG) calculations.?!

We treat the J; interchain coupling term perturbatively,
representing two decoupled chains in terms of Gaussian
models of the form (4). It is convenient to pass to the sym-
metric and antisymmetric combinations of the fields describ-
ing the individual chains,

b= (b1 + d)N\2K,  0.=(6,+ 6)VKI2.

The effective Hamiltonian describing low-energy properties
of the model (1) takes the following form:
Heff = Hg + Ha + Hint?

Hy = —[(9,6.)* + (9,¢.)°],

YRS

Hin =g cos kg cos(kp+ V8TK_¢p_) — 50,0, sin(N27/K_6_).
(6)

Here the Fermi velocity veJ,, while the couplings g,
o« J; <v. The renormalized LL parameter is given by

K_=K(m{1 +J,K()/[7v(h)]}. ()

Note that to the first order in J,/J, the correction to K_ for
the zigzag type of interchain coupling is twice larger com-
pared to that for the ladder type of coupling.

Only the relevant terms are shown in Eq. (6), including
the “twist operator” with nonzero conformal spin® (the sec-
ond term in H;,) which is responsible for the existence of
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chiral phase in chains with easy-plane anisotropy.>> All the
other terms, omitted in (6), are made either irrelevant or in-
commensurate by the external magnetic field. The intersector
part of (6) contains a term which can be identified as an
infrared limit of the product of in-chain and interchain
chiralities: one can show that

. |27 .
9,0, sin K_a_ % (Kaimy pivt + K5 2i42) K0 0iv1s (8)

where «; ;= (5;XS;)*. Among the irrelevant terms omitted in
(6) there is one which is nevertheless important for the dis-

cussion of magnetization cusps below, namely
N
Him = Hint + g3‘9x¢+ SlIl(\"87TK_¢_) > (9)

where g3 <J;.

The Hamiltonian (6) gives the minimal effective field
theory describing the low-energy dynamics of a strongly
frustrated (a>1) spin—% zigzag chain for a nonzero magne-
tization m. For small m, the LL parameter K_:l, and the
intersector g, term has a higher scaling dimension than the
strongly relevant g; term in the antisymmetric sector. In this
case, the system is in a phase with relevant coupling in an-
tisymmetric sector, as is discussed in Ref. 22 (this phase was
later dubbed “even-odd (EO) phase” in Ref. 16). In contrast
to that, at h=0 all terms generated by the zigzag coupling are
only marginal.

When the magnetic field / increases, the chirality product
operator (8) can become more relevant than the g, term con-
trolling the field ¢_; the latter term becomes less relevant
with the increase of h as well as with the increase of the
zigzag antiferromagnetic coupling J;. To study this situation,
one can apply a mean-field decoupling procedure to the in-
tersector (twist) term in the spirit of Ref. 2. Strictly speaking,
mean-field arguments are potentially dangerous in one di-
mension; however, since the mean-field-based predictions of
Nersesyan et al.> were later confirmed numerically,’ one may
hope that this procedure is able to capture the essential phys-
ics of the system. At the mean-field level, the interaction H;,,
takes the form

Hyr= g cos kg cos(kp+ \87K_¢_)

) 27 ) 2
- £,9.0,\ sin K—_G_ — g,(d.0,)sin K—_H_.

(10)

Remarkably, the mean-field Hamiltonian reveals a compe-
tition between the basic and dual field terms of the form
sin(y¢_) and sin(86_) with yS=41r; under this latter “self-
duality” condition, one can show that the competition of
sin(y¢_) and sin(86_) leads to the Ising quantum phase
transition.>»** To find the critical magnetic field ,,, which
corresponds to this transition, we equate the masses pro-
duced by the two competing operators

1/(2—dy) 1/(2—dy)
(f’l) ~ (g—2<axe+>) : (11)
U 1))

where
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dl = 2K_, d2 = 1/(2K_)

are the scaling dimensions of the corresponding operators.
The averages in (10) can now be found from the mean-field
equations (self-consistency conditions)

(3,0,) ~ B(sin \2mIK_6.),
U

dyl(2~dy)
(sin V27/K_6_) ~ (%((Zﬁ;)) , (12)
which yields
(3:6,) ~ (g/v)""1=%2). (13)

Substituting (13) back into (11) and taking into account that
both g, and g, are of the order of J;, one can obtain the
transition condition by equating the exponents of g, and g,
on the right-hand and on the left-hand sides. In this way, one
obtains the simple equation 4K>—-2K_—1=0 for the renor-
malized LL parameter K_ at the transition, which together
with (7) leads to the following equation for the critical field
h

cre

_JIK(hcr)} (14)

_4q
K(h.) = 2{1 -

where g=(\5+1)/2 is the celebrated “golden mean,”
2K _(he)=q.

At h=h,, a second-order phase transition belonging to the
Ising universality class takes place. On the h <h,, side of this
transition, one has the EO phase which enjoys all micro-
scopic symmetries of the Hamiltonian and, to our knowl-
edge, is not characterized by any conventional order param-
eter. The other side of this transition (at 4~ > h,,) corresponds
to the chiral phase with spontaneously broken parity. Indeed,
using the spin operator representation (5), it is easy to see
that the leading term of the z component of the vector chiral-
ity is in a simple way connected to the antisymmetric dual
field 6_

. 2
Kén g Ei{ST,nSE,iHI - SI,"S;JH'I} H Sin< \/;0_) ’

where the indices 1 and 2 label two weakly coupled chains.
The transition at h=h,, is accompanied by the emergence of
a nonzero value of (sin(N27/K_6_)), and thus, it is a transi-
tion into the chiral phase. The scalar chirality also gets long-
range ordered in the chiral phase, due to the explicitly broken
time-reversal symmetry by external magnetic field (or, more
simply, due to the presense of a finite magnetization). The
average scalar chirality « is trivially obtained as a product of
the vector chirality «° and the average magnetization m.

The fact that K(h) is a monotonically increasing
function'>? implies that the critical field decreases with in-
creasing the antiferromagnetic zigzag coupling J;

(dh,/aJ,) <O for J, > 0. (15)

Numerically solving Eq. (14), one obtains that the maximal
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FIG. 2. Schematic view of the high-field part of the phase dia-
gram of a § =% frustrated chain. TL1 and EO are nonchiral gapless
phases described by one-component Tomonaga-Luttinger liquids.
The transition line between EO and chiral phases belongs to the
Ising univerality class. The transition between TL1 and chiral phase
(marked with a dashed line), as well as the intermediate field region
(marked gray) are not captured within the present approach.

value of h,., achieved at J;,—0, is approximately #h,,
=1.7J,, and the spin wave velocity in this limit is still of the
order of the bandwidth, v(h,)=0.6J,, which justifies the
applicability of bosonization formalism close to 4. Within
this approach, there is no indication that the chiral phase
would be destabilized by a further increase of the magnetic
field, so one may conclude that it extends from 4., up to the
saturation field A;.

Recently, influence of strong magnetic fields on a spin-%
zigzag chain was studied numerically by means of the
DMRG technique.!”'® The authors of Refs. 16 and 17 in
analogy with the tight-binding #-#' model of free spinless
fermions (with nearest-neighbor and next-nearest-neighbor
hopping) identify the phase below the saturation field for
large a=J,/J, in terms of the two-component Luttinger lig-
uid phase. Our findings suggest an alternative scenario, ac-
cording to which this phase (the high-field phase denoted
TL2 in Fig. 1 of Ref. 16) is still described by a one-
component Luttinger liquid, albeit with a spontaneously bro-
ken left-right symmetry. The conjectured high-field phase
diagram is shown in Fig. 2.

It should be remarked that phase boundaries were deter-
mined in Ref. 16 by means of analyzing the magnetization
curves; the point of transition into the TL2 phase was iden-
tified with the point where a magnetization cusp'®'” oc-
curred. The authors of Ref. 17 explained the origin of this
cusp, again in the analogy with the #-t' model, as the point
where two Fermi seas (Luttinger liquids) coalesce into one.
We would like to note that a similar magnetization cusp
emerges in our description as well, although our approach
excludes the existence of a two-component Luttinger liquid.
Indeed, the presence of the irrelevant term shown in Eq. (9)
implies that in the EO phase, where (sin(\87K_¢_)) ac-
quires a finite value, the Hamiltonian receives an additional
contribution of the form const X d,¢,. This, in turn, leads to
renormalization of the equilibrium value (d,.¢,)—(d,d,)
+const X (sin(v87K_¢b_)), so that the magnetization gets
renormalized on the EO phase side (h<<h,,) as

m(h) —> m(h) + const X (h,, — h)*-/?=2K2)

Thus, existence of a magnetization cusp does not necessarily
imply a transition from the one-component to two-
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FIG. 3. The conjectured view of the phase diagram for a S=1
zigzag chain. DH denotes the “double Haldane” phase separated
from the Haldane phase by a first-order transition (Ref. 30). The
TL1-chiral transition (dashed line) as well as the intermediate field
region (marked gray) are not captured in our approach.

component Luttinger liquid. Comparing our results with the
DMRG phase diagram,'® we suggest that the TL2 phase in
Fig. 1 of Ref. 16 should be identified as a chirally ordered
phase. For high fields, in the limit J; <J, the stability region
of this phase expands with increasing J,, in agreement with
our result (15).

III. S=1 FRUSTRATED CHAIN IN A HIGH FIELD

One can obtain a bosonized description of a single (un-
frustrated) spin-1 chain in a magnetic field exceeding the
Haldane gap A by accessing the Luttinger liquid parameters
K and v either directly from numerical DMRG studies®®?’ or,
in a more exotic way, from the exact solution of the inte-
grable O(3) nonlinear o model (NLSM), which itself is be-
lieved to provide a proper effective field-theoretical
description.?® Then, for fields above the gap, one can use the
same bosonized expressions (5) for spin operators, and a
zigzag S=1 chain in the regime of strong frustration J; <J,
and high fields h>A=0.4J, can be studied along the same
lines as was done above for the spin-% case.

Treating the zigzag interaction as a perturbation coupling
two LLs yields the same effective field theory (6). However,
in contrast to the S =% case, the LL parameter of a S=1 chain
turns out to be increasing from the free fermion value K=1
at h=A with the further increase of the field, so that gener-
ally for 2> A one has K> 1,6-28 which resembles a 1D Bose
gas.?® This fact leads to a considerable simplification: since
K> 1, the term proportional to g, in (6) is irrelevant, and the
only important term is the product of chiralities (8).

In this way, one gets an effective field theory for the iso-
tropic frustrated spin-1 chain in a strong magnetic field
which is essentially the same as the one obtained by Ners-
esyan et al.? for the XY-anisotropic spin-% zigzag chain. For
the latter model, the mean-field scenario predicting the emer-
gence of a chiral phase was confirmed by extensive numeri-
cal work.>®12

Thus, in contrast to the S =% case, in a strongly frustrated
spin-1 chain, the EO phase is absent, and the chiral phase
probably extends all the way down to the first critical field
h=A (see Fig. 3). The crucial property K(h)= 1, derived by
Konik and Fendley,?® is an intrinsic feature of the O(3)
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NLSM and, in fact, does not depend on the spin value, so
one can expect the same scenario to apply to any integer-S
zigzag chain.

IV. LARGE-S FRUSTRATED CHAIN IN THE VICINITY OF
THE SATURATION FIELD

In the vicinity of the saturation field &, the emergence of
chirality can be analyzed for an arbitrary spin value S and for
a general frustration strength J,/J;. In the coherent-state path
integral representation, the effective Lagrangian is given by
L=-hSZ,(1-cos ¢,)d,6,—(H). One can introduce the vari-

ables
z,=(=1)"sin(¢,/2)e'n, (16)

then the dynamical part of the Lagrangian can be rewritten as
iﬁSEn(z:z'n—z':zn), where the dot denotes differentiation with
respect to time. It is also easy to show that the scalar spin

product S,-S,,,4 in terms of the new variables, takes the form

Sy Sea= (1= 202,10 = 2|z0d) + 2(= 1)z 200+ c.C.)

XL = [2,PVT = [0 (17)

Near the saturation field, one can expect that the deviations
from the fully polarized state are small, |z,| <1, so one can
expand the square roots in (17), keeping terms up to the
quartic ones.

For h>h,, the fully polarized state is an exact ground
state of the Hamiltonian. One-magnon excited states are ex-
act eigenstates as well, and the dispersion of a single magnon
has the form

e(k)y=h+J, cos k+J, cos(2k),

with two minima at k=7+\ at J,>J,/4, where \ is the
classical helix pitch given by (2). When 4 is decreased below
h,, magnons with momenta around 7\ start to “condense”
into the ground state. This leads us to the following ansatz
for passing to the continuum:

in= lr/lR,nei)m + wL,ne_i)\n' (18)
Treating ¢, as smooth fields and keeping only nonoscillat-
ing terms, one obtains
(H)= f dx{28(h = ho) ([l + |9*) + 28 (el + [9.*)?
+4S[hy — 45T, (1 + J3/75)sin® Nl | )
+ 8,87 sin® N(|d,” + |05 /*)} (19)

where we have set the lattice constant to 1. It is convenient to
rescale the bosonic fields

(ZS)I/ZIJIR,L — i,

and set the Planck constant to 1; then one finally arrives at
the Lagrangian of the form
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" 1
L= f dx E {ilr//a—az(r/f(r_ ﬂ|axlr/f<r|2 + M|lr//u'|2}

o=1,2

1
"2 f dclul( P + [ + wlnPlualy, (20)

recently discussed in the context of 1D, two-component Bose
condensates.>! The Lagrangian parameters are, in our case,
given by

w=hy—h, m'=8J,8sin’\,

u=hJtS, w=2{u-4J,(1+72/7D)sin> \}.  (21)

In the harmonic fluid approach,® the field operators and
densities can be expressed through scalar bosonic fields 9, ¢
as

o> = {py+ I l T} Y, 2T+ e0),
m

U=+ Dup I 2P0 D, Bt (22)
m

and for u>0 the Lagrangian (20) describes two LLs of the
form (4), with a density-density interaction. In contrast to
Ref. 31, in our case, the total particle numbers of the com-
ponents n; = [dx| ¢1,2|2 (which are separately conserved) are
not fixed, but are chosen by the system so as to minimize the
energy at u>>0. It is easy to show that for w>0 the system
is unstable against any perturbation making p; # p,: indeed,
e.g., for p; > p, the interaction term leads to renormalization
Pt Pt {00,/ m with {d,.¢;) > (d,¢,). In terms of the two-
component Bose condensates this corresponds to the “demix-
ing” instability.’! As a result, the chiral Z, symmetry breaks
spontaneously and one of the bands o gets fully depleted.
The effective theory is a single Luttinger liquid with the
parameter K>1 depending on the dimensionless coupling
constant

mu T hy 172
Y= = , (23)
po 28 sin N\4J,8(1 = hihy)

where py=(2um)"?/ is the equilibrium density for small
(i.e., in the vicinity of the saturation field). For & — h,, when
vy>1, the LL parameter tends to 1 and is given by K=1
+4/7v, and for y<<1 (which, despite the condition py<1, is
formally possible for large S) one has K= 7/ y.%

The chirality order parameter is directly related to the
density difference, «={|i;|>~|i|*)sin \. Neglecting the de-
pleted field and using a known expression for the density
correlator,”” one obtains the leading asymptotics of the
chirality correlation function

2
(KK(0) = S;{

(24)

hy—h 2Ksin*\
J,S x? ’

The longitudinal spin correlator (S%(x)S$%(0)) is also related to
the density and behaves similarly to (24). The leading part of
the transversal spin correlator can be expressed through

(" (x)(0)) and is given by
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1(2K)
(S+(O)S_(x)>225po<%> ™. (25)

V. DISCUSSION

In summary, we have shown that a sufficiently strong
magnetic field applied to a spin-S isotropic J,—J, zigzag
chain induces a phase with spontaneously broken Z, symme-
try, which is characterized by the long-range vector chirality
order and emerges immediately below the saturation field if
the frustration strength J,/J; exceeds the classical Lifshits
point value i. This chiral phase is gapless and its low-energy
physics is effectively described by a one-component Lut-
tinger liquid. Our results disagree with the two-component
Luttinger liquid scenario proposed in Refs. 16 and 17 and, in
fact, may necessitate reconsidering the phase diagrams of
other frustrated spin models, particularly of a biquadratic-
bilinear spin-1 chain in a magnetic field.>* To clarify this
issue, one could calculate numerically the chirality correlator
(k§r) in the limit n—oo above the cusp singularity. For
spin-% chain, such a correlator was calculated only for very
short distances® and indicated emergence of at least short-
range chirality correlations for £ directly below the satura-
tion field A;.

The chiral phase should be able to survive finite tempera-
ture effects since it involves breaking of the discrete Z, sym-
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metry. Less trivially, it has also a chance to survive the three-
dimensional interaction without tranforming into a usual
helical long-range order: As noted by Villain,® at finite tem-
peratures the chirality correlation length is much larger than
the spin correlation length, so with decreasing temperature
the chiral order should set in before the helical spin order
does.

Several materials are known which realize zigzag spin-%
chains (see Table 1 of Ref. 35). A promising candidate sub-
stance for detecting the field-induced chirality would be
(N,Hs)CuCls, since its small exchange constants J; =4 K
and J,=16 K make feasible the task of attaining magnetic
fields comparable to J,. Experimentally, the projection of
vector chirality « on the applied field direction could be de-
tected by comparing inelastic scattering intensities for oppo-
sitely polarized neutrons, as it was done for the triangular
lattice antiferromagnet CsMnBr3;* a similar route can be
employed with polarized light. We hope that our results will
stimulate further experimental work in this direction.
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