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Theory of the temperature dependence of the easy axis of magnetization in hep Gd
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The magnetic anisotropy energy (MAE) of hcp Gd was calculated from first principles using the full-
potential linear muffin-tin orbital method. It was found that the principal contributions to the MAE are the
dipole-dipole interaction between the localized 4f spins and the spin-orbit interaction of the valence band
states. The dipole contribution has the form %Kf(l —cos 26), where 6 is the angle between the magnetization
direction and the ¢ axis. The contribution of the spin-orbit interaction is shown to arise from the polarization
of the conduction band that becomes exchange split due to exchange interaction with the localized 4f electrons.
We argue that this leads to significant contributions from higher order anisotropy constants. An imposed
reduced 4/ moment leads to a repopulation of the electronic states at the Fermi level and a reduced exchange
splitting of the valence states, which we demonstrate leads to a modification of the MAE. This modification is
in qualitative agreement with the observed temperature dependence of the MAE. In addition, the dependence

of the MAE on the c¢/a ratio has been studied.
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I. INTRODUCTION

The magnetocrystalline anisotropy energy (MAE),
E4(0, @), is the change in total energy of a ferromagnet when
the magnetic moment is rotated through angles 6 and ¢ from
the crystallographic ¢ and a axes, respectively. The ¢ depen-
dent basal-plane anisotropy is orders of magnitude smaller
than the axial anisotropy in hcp Gd and will be neglected
here. The MAE of interest is then entirely axial and will be
denoted by E4(6). In hep Gd, according to Ref. 1, the mea-
sured value of E,(90°) is 35 ueV at 4.2 K, with the easy
axis of magnetization lying at an angle of 20° from the ¢ axis
at low temperature. This is in qualitative agreement with
earlier works.”® The preferred orientation of the magnetiza-
tion is rather surprising since the 4f shell is half filled in Gd,
leading to a pure spin moment of 7ug and to a 4f shell
charge distribution that is expected to be spherical. The sphe-
ricity of the 4f shell is indirectly confirmed by the fact that
the MAE of Gd is two orders of magnitude smaller than that
of the other 4f metals, where the principal contribution to the
MAE comes from the interaction between the crystalline
electric field (CEF) and the electric multipole moments of
the 4f charge cloud.” If Gd is considered to be in a pure S
state the electric multipole moments are zero and there is no
CEF contribution to the MAE. Of course, a small deviation
from an § state could still be compatible with the order of
magnitude of the MAE, but a theoretical calculation® showed
that the MAE calculated assuming an S state for Gd is con-
sistent with experimental studies. Single ion contributions
originating from the nonsphericity of the 4f shell of Gd in-
duced by spin-orbit coupling must therefore be of negligible
magnitude. In a previous Letter,® and in the remainder of this
paper, we give additional arguments that deviations from an
S state are not necessary in order to explain the observed
MAE of hcp Gd. In our proposed model the origin of the
MAE of Gd at low temperature is the sum of the magnetic
anisotropy energy due to the spin-orbit splitting of the band
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electrons and the dipole-dipole interaction between the large
localized 4f spin moments.

The remainder of this paper is organized as follows. In
Sec. II we report our most accurate calculations of E,(6).
Then, in Sec. III, we review the measurements of the tem-
perature dependence and sketch our strategy for trying to
tackle this problem using zero-temperature calculations. The
calculated dependence of the MAE upon a reduced 4f mo-
ment, designed to simulate the reduction of the magnetic
moment with temperature, is discussed in Sec. III A. In Sec.
III B, we describe the effect on the MAE of summing the
eigenvalues with a Fermi-Dirac distribution function to
simulate the temperature dependent occupancy of the elec-
tronic states in the vicinity of the Fermi surface. Finally, the
dependence of the MAE upon the c/a ratio is discussed in
Sec. IIT C.

II. LOW-TEMPERATURE MAGNETOCRYSTALLINE
ANISOTROPY

In Ref. 8 we proposed that the two main contributions to
the MAE of hcp Gd are the dipole-dipole interaction between
the large 4f spins and the magnetic anisotropy due to the
conduction electrons. The dipole-dipole interaction between
the large localized spins makes a significant contribution of
the form ES=21K%(1-cos 26),%'° with K{ calculated by lat-
tice sums!! to be equal to 7.5 ueV. The conduction electron
magnetic anisotropy is due to the spin-orbit interaction of the
itinerant electrons, which is known to be small in the 3d
transition metals.'>'* The spin-orbit parameter is about
0.05 eV for the 3d states in Fe, leading to a spin-orbit split-
ting of about 0.13 eV. A considerably larger MAE is found
in magnetic actinide compounds, in which the main contri-
bution arises from the spin-orbit interaction of the 5f states.
The 5f spin-orbit parameter for U is about 0.2 eV, leading to
a spin-orbit splitting of the 5f states of about 0.7 eV.'>!6 The
rare earth metals are in an intermediate situation. The spin-
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FIG. 1. Calculated MAE of hcp Gd as a function of the angle
from the ¢ axis. The full line is the experimental data from Ref. 1.
The symbols are the total MAE, i.e., the dipole contribution plus the
conduction band contribution, obtained using the MTM (squares)
and the GBM (circles, from Ref. 8) for the calculation of the scalar-
relativistic potential. The MAE was in both cases calculated with
the force theorem using the MTM. The dotted lines are fits of Eq.
(1) to the calculated results, and the dashed line is the dipole con-
tribution alone.

orbit parameter for the 5d states in the rare-earth metals is
about 0.1 eV, leading to a spin-orbit splitting of about
0.4 eV. The 5d states are more than 10 eV broad and would
not by themselves be magnetic. However, the exchange in-
teraction with the 4f states polarizes them and the conduc-
tion electron magnetic moment reaches a maximum value for
Gd of 0.63up/atom.”

We note here that there has been a lively debate concern-
ing whether the Gd 4f states should be treated as localized
core states or should be allowed to hybridize as band
states.'23 We have given arguments for treating the 4f
states as localized core states in Ref. 8 and this is the ap-
proximation we have used throughout this work.

Our model for the origin of the MAE is as follows. An
applied magnetic field interacts with and orients both 4f and
conduction electron magnetic moments. The exchange field
of the 4f spin is much larger than any applied field and it will
force the conduction electron moment to be parallel to the 4f
moment. Although the MAE is mainly due to the spin-orbit
interaction of the conduction electrons, an applied field
couples to the 4f spin, and therefore the MAE appears to be
intrinsic to the localized 4f states if they are described by a
spin Hamiltonian. With this model it is possible to obtain an
easy axis of magnetization lying in a direction that is not
parallel to a crystal symmetry axis without requiring any
deviation from a 4f shell § state.

The results obtained from the above described model are
summarized in Fig. 1. The sum of the calculated band elec-
tron anisotropy and the dipole-dipole interaction are plotted
together with the experimental data. The latter is derived
from the regular part of the magnetic torque as defined in Eq.
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(4) of Ref. 1. The irregular part of the magnetic torque shifts
the minimum in E4(6) to 20° away from the ¢ axis. The
calculations were made for the low temperature lattice con-
stants, a=3.62 A and c/a=1.6.2

All calculations presented here were made with a fully
relativistic implementation of the full-potential linear muffin-
tin orbital method (FP-LMTO).?> The conduction band basis
set included a double basis set of S5s, Sp, 6s, 6p, and 5d
states. For the evaluation of the band electron anisotropy we
have made use of fully self-consistent calculations as well as
the force theorem.2® For the latter we first calculated, self-
consistently, a scalar-relativistic potential, i.e., without the
spin-orbit interaction, within the local spin density approxi-
mation (LSDA).?” Then we calculated the eigenvalues with
the spin-orbit interaction for a given spin quantization axis
using the self-consistent potential. The MAE was then ap-
proximated as the difference of the eigenvalue sums for a
given angle and that for 6=0°. For the MAE calculations
presented in Fig. 1 the angles of the quantization axis were
0°, 15°, 30°, 45°, 60°, 75°, and 90° off the ¢ axis. Then the
parameters A and B in the expansion of the MAE,

E (0)=A(cos260-1)+B(cos46-1), (1)

were obtained from a fit to the calculated E4(6). For the
calculations presented in subsequent sections, E,(#) was cal-
culated for the angles 30° and 90° only, and the expansion
coefficients A and B were evaluated from

1
A=——-E\90°),
JEA(90°)

2 1
B=-EA30°)+ E5(90°). )

For the calculations presented in Fig. 1 this latter procedure
yields A=-17.67 ueV and B=3.55 ueV, which should be
compared to A=—-17.36 eV and B=4.00 ueV obtained
from a fit of Eq. (1). The small difference between these two
sets of anisotropy constants is not unexpected for such tiny
quantities. We want to show here that substantial values for
higher-order anisotropy constants can be present in an S-state
system, which is valid for both sets of A and B. Indeed, the
difference itself is an indirect proof that higher order aniso-
tropy constants are of importance. It is not feasible to calcu-
late the MAE of Gd to the last ueV of accuracy, therefore,
for computational efficiency, in the remainder of this paper,
we have evaluated the coefficients A and B from Eq. (2).
The easy axis of magnetization is obtained by minimizing
the MAE in Eq. (1) with respect to the angle 6, which yields

1 A
0=~ arccos(— —), (3)
2 4B

in terms of the expansion coefficients A and B. Thus, a cri-
terion for the occurrence of an easy axis of magnetization not
pointing along the ¢ axis is

4B>-A=0, (4)

or, in terms of the calculated values for E,(30°) and
E4(90°),
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16EA(30°) < EA(90°) and EA(90°) = 0. (5)

For the present calculations the modified tetrahedron
method®® (MTM) was used throughout the whole procedure
for calculating the MAE, i.e., both for the calculation of the
self-consistent scalar potential as well as for the force
theorem?® calculations. This is in contrast to Ref. 8 where the
Gaussian broadening method?® (GBM) was used to calculate
the self-consistent potential and the MAE was evaluated
from the force theorem using the MTM. We will refer to
these two calculations as the MTM and the GBM results,
respectively. Note that the MTM was used for the force theo-
rem step in both cases.

The overall behavior of E,(6) is very well reproduced by
the MTM calculations. However, the presently calculated
MAE of hcp Gd, plotted in Fig. 1, shows no minimum in
E4(6) at an angle of 20°, in contrast to what was previously
reported® and redrawn also in Fig. 1. Furthermore, the value
for E4(90°) calculated by operating the force theorem step
on a GBM potential is about 40% smaller than the one ob-
tained when also the scalar potential is calculated with the
MTM. The observed dependence of the calculated MAE to
the details of the BZ sampling of the scalar-relativistic cal-
culation is rather surprising, but is consistent with the picture
described in Ref. 1 of a strong dependence of the MAE of
Gd upon the detailed structure of the Fermi surface. The
charge and the magnetization densities that are obtained from
the GBM differ slightly from those that are calculated with
the MTM. The GBM results in a conduction band polariza-
tion of 0.743 ug, which is smaller than that obtained from the
MTM, 0.765ug. This tiny change of the the 54 moment is
enough to restore an easy axis off the c¢ axis, as will be
discussed in Sec. III A, where it will be shown that the cal-
culated easy axis is extremely dependent on the value of the
valence band moment. An energy minimum away from the ¢
axis is also restored if a reduced moment of 6.95uy is used
for the 4f shell. Note that this cannot be interpreted as a
deviation from an § state, since the 4f shell is always con-
sidered as spherical in our calculations, only its moment is
changed. The main effect of the reduced 4f moment is to
change the polarization of the valence electrons, which are
responsible for the occurrence of a minimum in E4(6), re-
sulting in an easy axis direction that is not parallel to the ¢
axis. The other effect is a small reduction of the dipole an-
isotropy, which scales quadratically with the reduced mo-
ment. In fact, in our model for the evaluation of the MAE for
any value of the 4f moment all contributions to the MAE
from the interaction between the 4f charge cloud and the
CEF are excluded since we assume a Russel-Saunders cou-
pling for the 4f shell of Gd.

Since the MAE is sensitively dependent on the correct
sampling of the BZ, a test of the convergence of the valence
band contribution to E, which we refer to as E,"*, with
respect to the number of k points is appropriate. In Fig. 2 the
results for E,*%30°) and E,"*?(90°), calculated with the
force theorem for different samplings of the BZ, are shown.
The self-consistent potential used for these calculations, and
all other calculations presented here, was calculated with
2 X 10* points in the full BZ.

The values for E,"*¢(30°) in Fig. 2 were multiplied by a
factor of 16, to illustrate how sensitive the occurrence of an
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FIG. 2. Convergence of the valence electron MAE with respect
to the number of & points in the full BZ. The closed symbols are the
results obtained with the force theorem and the open circles present
the results from self-consistent calculations. The values for
E,P(30°) are scaled by a factor 16 to reflect the criterion for the
occurrence of an easy axis off the ¢ axis, Eq. (5).

easy axis of magnetization away from the ¢ axis is on the BZ
sampling. Whereas the values for E,2"¥(90°) can be consid-
ered converged with respect to the number of k points, this is
not quite the case for E,**¥(30°), even with the largest set
used, containing 1.3 X 10 points. The fact that E,**¢(30°)
is converging slower and is also about 16 times smaller than
E Ab“"d(90°) leads to a situation where the occurrence of an
easy axis not parallel to the ¢ axis is dependent on the used k
point set, as can be seen in Fig. 2. For all results reported
below, and those shown in Fig. 1, the k point set of Fig. 2
corresponding to 5.5X 10°k points was used for the force
theorem calculations.

To test the applicability of the force theorem in the
present case we also performed a self-consistent calculation
of E,(90°). The obtained value is 20% larger than that ob-
tained from the force theorem, an agreement that can be
considered to be sufficient, given the small values of the
MAE. Let us point out once more that, in this work, we want
to investigate whether or not in an S-state model of Gd the
anisotropy constant B of Eq. (1) is non-negligible as com-
pared to A. This fact remains true even if A is increased by
20% as the self-consistent calculation would suggest.

III. TEMPERATURE DEPENDENCE OF THE EASY AXIS
OF MAGNETIZATION

The measured temperature dependence of the easy axis of
magnetization of hcep Gd is redrawn in Fig. 3 and is seen to
be highly unusual. Although not entirely consistent, all mea-
surements show that, starting from an angle of about 30°
away from the c axis at low temperature, the easy axis moves
towards the basal plane with increasing temperature, and
then back towards the ¢ axis before the Curie temperature is
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FIG. 3. Measured temperature dependence of the easy axis of
magnetization of hep Gd. The full line is the data from Ref. 2, while
the crosses show the data from Refs. 6 and 30.

reached. Smith er al.,*> with magnetic torque measurements,

and Cable and Wollan,® with neutron diffraction measure-
ments, report a maximum angle off the ¢ axis of about 60° at
a temperature close to 190 K, while Graham?? claimed that
the easy axis lies in the basal plane between 170 K and
233 K. All these authors found that the easy axis at low
temperature is at about 30° and that, above 240 K*° or
250 K,>3 respectively, the easy axis is the ¢ axis. Note that
the most recent measurements' give a value of 20° for the
low temperature easy axis of magnetization.

Our first attempt to gain some insight into the mechanism
responsible for the unusual temperature dependence of the
easy axis was to examine the temperature dependence of the
MAE expanded in terms of the anisotropy constants K,

EA(6,¢) =K, sin® 0+ K, sin* 6+ (K5 + K, cos 6¢)sin® 6,
(6)

with the low-temperature measured values of K, scaled by
the magnetization power laws derived from spin wave
theory.!? This attempt failed already at very low temperature.
We suggest that the main reason for the discrepancy is that
spin wave theory alone does not apply to this case. As was
discussed in Ref. 8, the fine structure of the electronic energy
levels close to the Fermi surface is important for determining
the low temperature behavior, and it is reasonable to assume
that this is also the case at higher temperatures. This cannot
be captured by spin wave theory which attributes the de-
crease of the MAE with temperature to thermal population of
spin wave states.

Temperature has many effects on the MAE. The most
obvious one is to reduce the magnetization;3] another is to
change the structure and is manifested mainly in a change of
the c/a ratio.”* Both of these effects may be simulated in
first-principles calculations since both the magnitude of the
localized 4f magnetic moment and the c/a ratio are an input
to the self-consistent calculations (the conduction electron
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moment is calculated self-consistently for any given 4f mag-
netic moment). A change of the eigenvalues and a redistribu-
tion of the populated levels close to the Fermi energy must
also occur. In order to try to capture the change in the elec-
tronic structure with increasing temperature the simplest fea-
sible approach is to use a Fermi-Dirac distribution function
to calculate the occupancy of the electronic states close to the
Fermi surface. Any change of the levels themselves with
temperature is neglected in this approach. In the following
we address the effect of a reduced magnetization, the repopu-
lation of the electronic states at the Fermi surface, and the
c/a ratio separately.

A. Reduced magnetization

We have evaluated the total MAE, i.e., the sum of the
dipole contribution and that from the conduction electrons,
with a constrained 4f moment My of 6.95, 6.8, 6.6, 6.4, 6, 5,
4, 3,2, and 1.5ug, yielding conduction band polarizations of
0.762, 0.754, 0.744, 0.734, 0.715, 0.664, 0.600, 0.475, 0.337,
and 0.260ug, respectively. The results for the expansion co-
efficients A and B, defined in Eq. (1), and the easy axis of
magnetization, calculated from Eq. (3), are plotted in Fig. 4.
Also, we present the data for 6,, (lower part of Fig. 4) again
in Fig. 6 as a function of temperature. The latter was ob-
tained by comparing the calculated magnetic moment to the
measured magnetization as a function of temperature.®' This
is a very rough estimation, since the local moments are not
trivially coupled to the measured magnetization, especially at
the higher temperatures.

We find that the easy axis, which lies along the ¢ axis for
the full moment case, moves towards the basal plane with
decreasing 4f moment. Already for a conduction band mo-
ment of 0.762up (m4y=6.95up) we obtain an easy axis angle
of 17°. When the moment is further reduced to 0.754ug
(my4;=6.8up) the angle increases to 35°. The maximum angle
off the ¢ axis reaches about 50° for a conduction band mo-
ment of 0.744 ug, corresponding to a constrained 4f moment
of 6.6ug. The calculated easy axis flips back to the ¢ axis
when the conduction band moment is further reduced to
0.734up (my4r=6.4up) and remains on this axis for all lower
values of the magnetization. This behavior is in qualitative
agreement with the observed temperature dependence of the
easy axis plotted in Fig. 3. However, experimentally*~® it
was found that the easy axis reaches its maximum value at a
temperature of around 180 K, while in our simple calcula-
tions this happens already at 80 K. Also, the flipping back to
the ¢ axis occurs experimentally at a temperature close to the
Curie temperature of Gd, while our simple model predicts
this to occur at a temperature of 100 K. Nevertheless, the
qualitative agreement between the calculated and measured
temperature dependence of the easy axis is satisfactory given
that our calculations are necessarily approximate. In particu-
lar one has to note that collective excitations such as spin
waves are beyond the reach of this simple analysis. The be-
havior of the easy axis is readily explained by inspection of
the behavior of A and B shown in the upper part of Fig. 4.
The only regions in which the criterion stated in Eq. (4) is
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FIG. 4. Expansion coefficients A and B for E,(6) (upper) and
easy axis of magnetization 6,, (lower) as a function of the reduced
moment for the 4f shell. The results obtained with the MTM are
marked by filled symbols, whereas the results calculated with the
Fermi-Dirac (FD) distribution (cf. Sec. III B) are marked by open
symbols. Note that B is enlarged by a factor of 10.

fulfilled are in the vicinity of the full moment of 7 up or close
to the reduced 4f moment of 1.5ug. In this latter case,
though, our approach is of questionable validity and its pre-
diction cannot be trusted. The strong dependence of the easy
axis of magnetization on the reduced 4f moment illustrates
once more how important the correct description of the elec-
tronic structure is for the calculation of the MAE. Since the
calculated conduction band moment of 0.76up is slightly
larger than the experimentally observed moment, an entirely
correct description of the MAE cannot be expected. Finally,
it is worth noting that the overall size of the MAE,
EA(90°)=-2A, does not simply become smaller as the 4f
moment is reduced, as can be seen from Fig. 4.

We also analyzed the change of the MAE by perturbation
theory!+3? for the values of the reduced 4f moment between
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FIG. 5. E}™(90°) plotted against the inverse of A,
=myplyssq+msalsysq as described in the text (1/A,=1.5 eV~! for
the 4f full moment and 1.75 eV~ for my=6). Closed circles are
calculated values while the line is a linear regression of the former.

7ug and 6ug. For a uniaxial MAE the expression is of the
form

KolHolu)*

0~ €y

E™907) = X (7)

where o and u represent the occupied and unoccupied states,
respectively, H, is the spin-orbit matrix element, and €, and
€, are the eigenvalues of the scalar-relativistic Hamiltonian.
If one assumes that most of the states that are coupled by H,
are due to bands that are degenerate in the limit of a vanish-
ing valence band moment, one can approximate €,— €, by the
valence band exchange splitting A,. Since most of the va-
lence band moment is located on the 5d orbitals, one may
approximately write A,=mslsg s,+Maflsq 45 Where I, is the
exchange interaction between orbitals / and " and m,, and
ms, are the reduced 4f moment and the induced 5d moment,
respectively. From Eq. (7) it becomes clear that Eza“d(90°)
should be inversely proportional to A,. In Fig. 5, using val-
ues for /s, s, and Is, 4, from Ref. 33, it is shown that this is
indeed the case.

Note that the lowest-order nonvanishing anisotropy con-
stant, A in Eq. (1), is not enough to predict the interesting
behavior of Eza“d( 0), i.e., the occurrence of an easy axis of
magnetization off the c¢ axis. Extending the perturbation
theory to higher order involves higher powers of the ratio of
the matrix elements (o|H,|u) and the exchange interaction
A, corresponding to higher order anisotropy constants. This
ratio is a good expansion parameter for transition metals
where the exchange band splitting is considerably larger than
the spin-orbit splitting. In Gd these quantities are of compa-
rable size, and the expansion has a slower convergence.
Hence, higher order anisotropy constants make a significant
contribution to the MAE of hcp Gd.
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FIG. 6. Easy axis of magnetization as a function of the tempera-
ture (see text). The results obtained with the MTM are marked by
filled symbols, whereas the results calculated with the Fermi-Dirac
(FD) distribution (cf. Sec. III B) are marked by open symbols. Note
that the calculation denoted FD also includes a reduction of the 4f
moment with temperature (see text).

B. BZ sampling using a Fermi-Dirac distribution

If one assumes that the electronic structure of a solid is
not modified by a temperature change, the only effect that
temperature has on the eigenvalue sum, and hence the MAE,
is a change of the occupancy of the energy levels near the
Fermi surface. This redistribution is determined by the
Fermi-Dirac distribution function. In reality, especially at
high temperature, the change in the band structure can be
substantial as can be the effects of collective magnetic exci-
tations such as spin waves. The following analysis attempts
to isolate the effect of a finite temperature Fermi-Dirac dis-
tribution whereas other effects of temperature are neglected.

We used the measured magnetization as a function of tem-
perature of Ref. 31 in order to assign a temperature to each
reduced moment calculation presented in the previous sec-
tion. Then we recalculated the sum of the eigenvalues for
each value of the 4f moment using a Fermi-Dirac distribu-
tion for the corresponding temperature. The constants A and
B evaluated in this way and the easy axis of magnetization
0,, are shown in Figs. 4 and 6, together with the results
obtained from the MTM described in the previous section. It
can be seen that a Fermi-Dirac distribution with a finite tem-
perature changes A and B and the easy axis of magnetization
only marginally. Thus, the repopulation of the electronic
states at the Fermi surface has a negligible influence on the
temperature dependence of the easy axis of magnetization for
hep Gd.

C. Dependence of the MAE on c/a

We have in addition calculated the MAE of hcp Gd with
¢/a ratios of 1.57, 1.59, 1.61, v8/3, and 1.67, using a con-
stant volume equal to the experimental low temperature
one.?* The results for the expansion coefficients A and B
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FIG. 7. Expansion coefficients A and B for E,(6), as defined in
Eq. (1), as a function of the ¢/a ratio.

[cf. Eq. (1)] for the total MAE, i.e., the dipole contribution
plus that from the conduction electrons, are reported in Fig.
7. Tt can be seen that the MAE does not depend monotoni-
cally upon the c/a ratio. Note that the dipole-dipole contri-
bution alone depends linearly on the c/a ratio, favoring the ¢
or a axis depending on whether the ratio is less than or
greater than approximately y8/3, respectively. We empha-
size that the dipole-dipole contribution can only have either
the ¢ axis or the basal plane as an easy axis of magnetization.
The calculated easy axis does not deviate from the ¢ axis as
a function of the ¢/a ratio, as can be deduced from Fig. 7 and
Eq. (4).

Concerning the temperature dependence of the easy axis,
according to Darnell,>* the ¢/a of Gd undergoes a conspicu-
ous change in the temperature range between 200 K and
300 K. In this temperature range the lattice constant a is
found to follow a normal thermal expansion while ¢ shrinks
with about 0.25% from its initial value. Thus one expects a
change of c/a as large as 0.3-0.4 % in this temperature
range. This means that only the E,(6) curves for c/a equal to
1.6 and to 1.59 are relevant to our problem. These curves are
very similar to each other (cf. Fig. 7), and the difference
between them is almost entirely due to the difference in the
dipole contribution. The latter becomes smaller as the tem-
perature increases, so that the high temperature anisotropy
for c/a=1.59 will be very close to the one for 1.6. Therefore
we believe that the temperature induced change of the c/a
ratio is not a determining factor for the observed temperature
dependence of the easy axis. However, the possibility of
modifying the MAE of Gd by changing the c/a ratio might
be explored experimentally.

IV. CONCLUSIONS

The magnetic anisotropy energy of hcp Gd at low tem-
perature was calculated from first principles, obtaining good
agreement with the most recent experimental data. It was
shown that the dipole-dipole interaction between the large
spins of the localized 4f shell and the spin-orbit splitting of
the itinerant band electrons are the two major contributions
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to the observed MAE. No deviation from the § state for the
4f shell is necessary in order to account for the MAE or to
explain the measured easy axis of magnetization at low tem-
perature. The applicability of the force theorem to the present
case was tested with self-consistent calculations, and our re-
sults suggest that the force theorem is sufficiently accurate to
evaluate the MAE of hcp Gd.

In order to shed some light on the remarkable temperature
dependence of the easy axis of magnetization we also calcu-
lated E,(6) as a function of the magnetic moment by con-
straining the 4f spin moment. This was done in an attempt to
simulate the effect of the temperature induced reduction of
the magnetization, in particular the valence band moments.
We found that the nontrivial behavior of the easy axis upon
the 4f moment is similar to the experimental trend that is
observed with increasing temperature. The calculated easy
axis is on the c¢ axis for the full moment. Decreasing the
constrained moment, i.e., increasing the temperature, the
angle increases until the easy axis reaches a maximum value
of about 50°. Then the calculated easy axis starts to turn back
towards the ¢ axis, which is again the easy axis of magneti-
zation at a temperature estimated to be around 100 K, in
qualitative agreement with the experimental findings. The
influence of the c¢/a ratio on E4(6) was investigated, and it
was found that this structural parameter can be used to
modify the overall size and maybe also the angular behavior
of the MAE of Gd. We propose that this could be examined
experimentally.

Our analysis leads to the conclusion that the principal
reason for the unusual temperature dependence of the easy
axis is the dependence of the band electron contribution to
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the magnetic anisotropy energy upon the induced magnetic
moment and, therefore, temperature. Both the change in c¢/a
ratio and the redistribution of the population of levels close
to the Fermi surface, as a function of temperature, have less
of an effect upon the temperature dependence of the easy
axis. The strong dependence of the easy axis of magnetiza-
tion on the details of the BZ sampling and on the reduced 4f
moment illustrates how important the correct description of
the electronic structure, and hence the Fermi surface, is for
the calculation of the MAE.

Finally, let us note that the mechanism we hold respon-
sible for the MAE of Gd is present in the entire rare-earth
series. The only difference is that in the other rare-earth met-
als the contribution to the MAE originating from interactions
of the nonspherical part of the 4f shell with the CEF is two
orders of magnitude larger and therefore completely domi-
nates the magnetic anisotropy. Our calculations of the MAE
of Gd with a reduced 4f moment constitutes an estimate of
the valence band anisotropy contribution to the MAE in the
rare-earth series.
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