
Universality-class dependence of energy distributions in spin glasses

Helmut G. Katzgraber,1 Mathias Körner,1 Frauke Liers,2 Michael Jünger,2 and A. K. Hartmann3

1Theoretische Physik, ETH Hönggerberg, CH-8093 Zürich, Switzerland
2Universität zu Köln, Institut für Informatik, Pohligstrasse 1, 50969, Köln, Germany

3Institut für Theoretische Physik, Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
�Received 9 June 2005; revised manuscript received 26 July 2005; published 16 September 2005�

We study the probability distribution function of the ground-state energies of the disordered one-dimensional
Ising spin chain with power-law interactions using a combination of parallel tempering Monte Carlo and
branch, cut, and price algorithms. By tuning the exponent of the power-law interactions we are able to scan
several universality classes. Our results suggest that mean-field models have a non-Gaussian limiting distribu-
tion of the ground-state energies, whereas non-mean-field models have a Gaussian limiting distribution. We
compare the results of the disordered one-dimensional Ising chain to results for a disordered two-leg ladder, for
which large system sizes can be studied, and find a qualitative agreement between the disordered one-
dimensional Ising chain in the short-range universality class and the disordered two-leg ladder. We show that
the mean and the standard deviation of the ground-state energy distributions scale with a power of the system
size. In the mean-field universality class the skewness does not follow a power-law behavior and converges to
a nonzero constant value. The data for the Sherrington-Kirkpatrick model seem to be acceptably well fitted by
a modified Gumbel distribution. Finally, we discuss the distribution of the internal energy of the Sherrington-
Kirkpatrick model at finite temperatures and show that it behaves similar to the ground-state energy of the
system if the temperature is smaller than the critical temperature.
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I. INTRODUCTION

Averages of physical quantities and their fluctuations play
an important role in statistical physics; however the knowl-
edge of the “average” behavior of a quantity often does not
provide sufficient information to fully characterize a system,
especially if the probability distribution of the quantity in
question is non-Gaussian, e.g., when it has a nonvanishing
skewness. Hallmark examples of such distributions are
power-law or exponential distributions, which in nature oc-
cur in relation to earthquakes,1 magnetic fluctuations,2 stock
markets,3 directed polymers in a random medium,4,5 coau-
thorships in publications, the Internet, and other complex
networks.6 Many of these systems are characterized by the
absence of a characteristic length scale such that rare events
involving large parts of the system become important and
strongly influence the average of various quantities.

Recently, there has been a renewed interest in the ground-
state energy distribution P�E� and its limiting form P��E� of
the mean-field Sherrington-Kirkpatrick �SK� spin-glass
model7–10 and of short-range spin glasses in two and three
dimensions.11 While studies of the mean-field model have
found a non-Gaussian limiting distribution,7,8 the study of
small system sizes of two- and three-dimensional short-range
spin glasses11 have found a Gaussian limiting distribution in
the thermodynamic limit. This is supported by the fact that
systems with short-range interactions can be subdivided into
smaller subsystems, coupled weakly enough to contribute al-
most independently to the total energy and leading to a
Gaussian distribution via the central-limit theorem;11 how-
ever it is important to note that the weak coupling between
the ground-state energies of subsystems below or at an or-
dering temperature is not self-evident.

Our goal is to consolidate the different limiting cases of
short-range and long-range interactions in spin glasses12 by
studying a disordered one-dimensional Ising spin chain with
power-law interactions.13–17 The model has the advantage
over conventional models in that by tuning the power-law
exponent, several universality classes ranging from mean-
field type behavior to a short-range spin glass can be probed
for a large range of system sizes. We show that the presence
or absence of mean-field behavior18 is reflected in the limit-
ing distribution of the ground-state energies. We also study a
two-leg short-range spin ladder, where an exact transfer-
matrix algorithm can be applied, in order to compute the
ground-state energy distribution for large system sizes and to
obtain a comparison for the results of the disordered Ising
chain with power-law interactions in the short-range phase.
Using a large range of system sizes, our results clearly show
that mean-field spin-glass models have a non-Gaussian lim-
iting distribution with a finite skewness in the thermody-
namic limit, whereas the limiting distributions for nonmean-
field models are Gaussian �also referred to as “Normal”�. In
addition, we also find that the distribution of the internal
energy of mean-field models is non-Gaussian if the tempera-
ture is lower than the critical temperature.

We do not attempt to make a prediction regarding the
exact functional form of the limiting distribution for an arbi-
trary spin-glass model. Bouchaud et al.11 have shown for
small system sizes that typical short-range spin-glass models
have a Normal limiting distribution. This is not the case for
the mean-field model, thus posing the question of whether
the limiting distribution falls into one of the standard three
universality classes for the minimum of uncorrelated
variables:19 Gumbel, Fischer-Tippet-Frèchet, and Weibull
distributions. The results of Bouchaud et al.11 cannot deter-
mine with certainty which limiting distribution fits the data
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best.20 Our results suggest that a modified Gumbel
distribution2,7,21 fits the data for the SK model best, although
a detailed probing of the tails of the energy distributions
would be required to make a definite statement if corrections
to the modified Gumbel distribution are required. For finite
values of the power-law exponent we add a quadratic correc-
tion to the modified Gumbel distribution and show that for
finite system sizes the data are well described by this func-
tion. In addition, the quadratic correction �Gaussian� domi-
nates for increasing system size in the nonmean-field univer-
sality class, thus showing that in the thermodynamic limit a
Normal distribution is recovered.

General scaling arguments are presented in Sec. II. In Sec.
III we present results on a one-dimensional two-leg ladder
with short-range interactions in order to illustrate the ex-
pected results for a short-range model for very large system
sizes. Results on the one-dimensional Ising spin chain with
power-law interactions at zero and finite temperatures are
presented in Sec. IV. We conclude in Sec. V. The numerical
methods used to compute the ground-state energies22,23 are
described in the Appendices.

II. STATISTICAL DESCRIPTION OF DATA

In general, we expect the ground-state energy of a disor-
dered system to be a random variable with mean �E�, stan-
dard deviation �E, and skewness �E.24 In this work we study
the size dependence of the aforementioned observables. In
particular, we make the ansatz that the mean ground-state
energy of a �one-dimensional� random system scales as

�E�/L = e� + aL−�, �1�

where L represents the system size �and number of spins�
and � describes the leading finite-size corrections for the
energy per spin. We keep the extra factor of L in Eq. �1�, as
well as in the following definitions in order to be able to
compare to the exponent estimates of Ref. 7. The standard
deviation of the ground-state energy of a general disordered
system can be expected to be determined by an exponent �
via

�E/L = bL−�. �2�

The skewness of a distribution of M values �Ei� is given by

�E =
1

M
�
i=1

M �Ei − �E�
�E

	3

, �3�

where �E� and �E are given by

�E� =
1

M
�
i=1

M

Ei �4�

and

�E
2 =

1

M − 1�
i=1

M

�Ei − �E��2, �5�

respectively. Note that the skewness is a dimensionless quan-
tity. Following previous results by Ref. 11 we expect the
skewness to decay as

�E = c1 + c2L−� �6�

with ��0. As we shall see later, c1=0 for the short-range
limit of the model. We also want to test whether the scaled
probability distribution functions P�	� with 	= �E− �E�� /�E

converge to a limiting form P��	� for L→�. If this is the
case, then data for the ground-state energies should be scal-
able via

P�E� =
1

�E
P�
E − �E�

�E
� , �7�

where �E� and �E are given by Eqs. �4� and �5�, respectively.

III. TWO-LEG SPIN-GLASS LADDER

To compare results for the one-dimensional Ising spin
chain with power-law interactions with a simple benchmark
model for which large system sizes can be studied, we con-
sider a disordered �short-range� Ising model on a two-leg
ladder �see Fig. 1�. The couplings Jij between nearest-
neighbor spins are chosen from a Normal distribution with
zero mean and unit standard deviation. A system of length L
is described by the Hamiltonian

H = �
l=1

L

J�l,a�,�l,b�S�l,a�S�l,b� + �
l=1

L−1

�
i=a,b

J�l,i�,�l+1,i�S�l,i�S�l+1,i�.

�8�

The first summation in Eq. �8� runs over all rungs l, while the
second summation runs over all exchanges between the
rungs, and S�l , i�= ±1 is the value of the �Ising� spin on the
ith leg of the lth rung of the ladder. The ground-state energy
of the system can be efficiently calculated with a transfer-
matrix algorithm.25,26 The transfer-matrix algorithm com-
putes the ground-state energy of a system of size L in O�L�
time so that large systems can be studied. The disorder aver-

FIG. 1. Illustration of a step in the transfer-matrix calculation.
Starting with a system of size L �panel I� whose ground-state energy
is known as a function of the spins �open circles�, we add another
rung and calculate the change in energy 
E given by the dashed line
�see panel II and Eq. �10�. The ground-state energy of the system
as a function of the spins in the L+1-th rung is then calculated by
taking the minimum of Eg+
E over all configurations of the Lth
rung �see panel III and Eq. �9�.
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age has to be performed explicitly by repeating the algorithm
for a number of disorder realizations.

A. Numerical method: Transfer matrices

We can explain the transfer matrix algorithm by starting
with a ladder of length L and assuming that the ground-state
energy Eg�L , �S�L,i��� of the ladder is known as a function of
the spin configuration �S�L,i�� of the Lth rung. We add the
spins of the L+1-th rung to the system as illustrated in Fig. 1
and use the relation

Eg�L + 1,�S�L+1,i��� = min
�S�L,i��

�Eg�L,�S�L,i���

+ 
E��S�L,i��,�S�L+1,i��� �9�

to integrate out the spins of the Lth rung and to obtain Eg as
a function of the spins of the L+1-th rung. Here


E��S�L,i��,�S�L+1,i��� = �
i=a,b

J�L,i�,�L+1,i�S�L,i�S�L+1,i�

+ J�L+1,a�,�L+1,b�S�L+1,a�S�L+1,b�

�10�

is the exchange energy of the spins added on the L+1-th
rung with themselves and with the spins of the Lth rung.
Starting with two spins, we iterate this procedure until the
system has the desired size Lmax. The final ground-state en-
ergy is then obtained by minimizing over the spins of the last
rung

Eg�Lmax� = min
�S�Lmax,i��

�Eg�Lmax,�S�Lmax,i��� . �11�

We repeat the calculation until a desired number of disorder
realizations is obtained.

B. Results

In Fig. 2 we scale the data for the energy of the ladder
system according to Eq. �7� for system sizes up to L=104.
For each system size we compute 106 samples. The data
scale well, although deviations are present in the tails. In
particular, for small L the distribution is clearly skewed. For
the short-ranged ladder system we obtain a clear power-law
decay of the skewness according to Eq. �6� with ��0.5 �and
c1=0�, as can be seen in Fig. 3. This suggests that in the
thermodynamic limit the ground-state energies are Gaussian
distributed. For completeness, we quote the results for the
size dependence of the mean and standard deviation. We ob-
tain for the mean energy

�E�/L = − 2.125 82�8� − 0.801�8�L−0.996�4� �12�

and thus ��1. For the fluctuations

�E = 0.976�5�L0.497�8�. �13�

Our results therefore show that ��−1/2 as in the case of the
one-dimensional Ising chain �see below�, and �E� /L−e�

�1/L.

The scaling of the skewness to zero with a power law and
the results for very large system sizes already suggest that for
short-ranged systems the limiting distribution of the ground-
state energy is Normal. This result differs from recent
results7 for the mean-field Sherrington-Kirkpatrick model,27

where the limiting distribution P� seems to have a finite
skewness and thus cannot be properly described by a Gauss-
ian. Hence, it is desirable to study a system that allows to
interpolate between both cases to verify whether the change
of the distribution coincides with a general change of the

FIG. 2. �Color online� Scaling of the ground-state energy ac-
cording to Eq. �7� for the ladder system. The data scale well, al-
though deviations in the tails suggest that the skewness of the func-
tion is changing with system size L.

FIG. 3. �Color online� Skewness of the energy distributions as a
function of system size L for the ladder system. The skewness can
be well fitted to a power-law decay with an exponent ��1/2. This
suggests that in the thermodynamic limit the limiting distribution is
Gaussian �zero skewness�.
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universality class. This is indeed the case for the one-
dimensional long-range Ising spin glass, which is studied in
the following section.

IV. 1D ISING CHAIN

The Hamiltonian for the one-dimensional long-range
Ising spin glass with power-law interactions is given by

H = − �
i,j

JijSiSj , �14�

where Si= ±1 represent Ising spins evenly distributed on a
ring of length L in order to ensure periodic boundary condi-
tions. The sum is over all spins on the chain and the cou-
plings Jij are given by16

Jij = c���
	ij

rij
� , �15�

where the 	ij are chosen according to a Gaussian distribution
with zero mean and standard deviation unity

P�	ij� =
1

�2�
exp�− 	ij

2 /2� �16�

and rij�L /��sin����i− j�� /L represents the geometric dis-
tance between the spins on the ring.28 The power-law expo-
nent � determines the range of the interactions and thus the
universality class of the model, as described in the next sec-
tion. The constant c��� in Eq. �15� is chosen to give a mean-
field �MF� transition temperature Tc

MF=1, where

�Tc
MF�2 = �

j�i,i fixed
�Jij

2 av = c���2 �
j�i,i fixed

1

rij
2� . �17�

Here �¯av denotes an average over disorder. In this work
we compute unscaled energies for the one-dimensional Ising
chain. Thus we find the optimal configuration of spins �Si�
that minimizes the Hamiltonian in Eq. �14� for a given set of
interactions �Jij�, i.e.,

E = min
�Si�

H��Jij�,�Si�� . �18�

The �commonly used� energy per degree of freedom e is then
given by e=E /L.

A. Phase diagram

The d-dimensional long-range Ising spin glass with
power-law interactions has a very rich phase diagram in the
d-� plane. This is summarized in Fig. 4, which is based on
work performed by Bray et al.13 and by Fisher and Huse14

who present a detailed analysis of the role of long-range
interactions within the droplet model. Spin-glass behavior is
controlled by the long-range part of the interaction if � is
sufficiently small, and by the short-range part if � is suffi-
ciently large. More precisely, one has long-range behavior if
the stiffness exponent29 of the long-range �LR� universality
class �LR is greater than that of the short-range �SR� univer-
sality class �SR and vice versa. In addition, there is an exact
result for �LR, namely,13,14

�LR = d − � , �19�

so long-range behavior occurs if

�  �c�d� = d − �SR�d� . �20�

Equation �19� indicates that critical exponents depend con-
tinuously on � in the long-range region, even though they are
independent of � in the region controlled by the short-range
part of the interaction. Thus we expect to be able to tune the
different universality classes by changing the exponent �.
The condition for a finite-temperature transition is ��0,
where � refers here to the greater of �SR and �LR. For the
short-range model, there is a finite-temperature transition
�i.e., �SR�0� for d larger than the lower critical dimension
dl, which is found numerically to lie between 2 and 3.30–36

For d=1, as in the present study, we obtain a finite transition
temperature for �1. For �d /2, the model would not
have a thermodynamic limit �Tc would diverge� if the inter-
actions were not scaled as shown in Eq. �17�. The scaling
leads to a power-law dependence on L with a negative expo-
nent, i.e., c���→0 for L→�. �=0 corresponds to the SK
model and leads to c�0��1/L.

FIG. 4. �Color online� Sketch of the phase diagram in the d-�
plane for the spin-glass state of the disordered long-range Ising
model with power-law interactions following Ref. 14. The light
shaded region �LR+� is where there is both a finite Tc and the
spin-glass state is controlled by the long-range part of the interac-
tion. The thick solid line separates the region of short-range behav-
ior �SR� from that of long-range behavior and is denoted by �c�d�.
The thick dashed line separates regions where Tc=0 �e.g., LR0�
from regions where Tc�0, i.e., it corresponds to a zero stiffness
exponent. The dark shaded region �MF, �d /2� is where there is
no thermodynamic limit unless the infinite-range interactions are
scaled appropriately by the system size. The calculations are per-
formed for d=1 �marked by a horizontal dashed red line�, for which
�c�d�=2 within a droplet picture approximation. These values of �
are marked. Note that we refer to the infinite-range region in the
phase diagram as “mean-field region” in order to be consistent with
previous studies, even though the mean-field region extends to d
= �2/3��. �Figure adapted from Ref. 16.�
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B. Numerical methods

Ground-state energies for the one-dimensional Ising chain
are computed using the parallel tempering Monte Carlo
method37–39 when the power-law exponent � is small, and
the branch, cut, and price �BCP� algorithm40–42 when � is
large. As reported in Ref. 17, the time to compute a ground-
state instance using the parallel tempering Monte Carlo
method scales in practice with a power of the system size for
��1.25, whereas for large values of � the time to compute
a ground state scales �exp�aL�, with a a constant. In this
case we use the BCP algorithm which performs best for
short-range interactions, thus ideally complementing the par-
allel tempering method. Details about the algorithms used
and simulation parameters can be found in the Appendices.

C. Results

For each system size we compute 105 ground-state real-
izations for system sizes up to L=192 �see Table I for de-
tails�. In Fig. 5 we show a representative set of the unscaled
data for �=0.75 in the LR+-phase for several system sizes.
Data for other values of � show a similar qualitative behav-
ior. The data in Fig. 5 can be scaled according to Eq.�7�, the
result is displayed in Fig. 6. The data are clearly skewed and
the tails indicate that the skewness depends on the system
size. In Fig. 7 we show scaled data for the ground-state en-
ergy distributions for �=0 �SK limit, MF phase�. The data
also show a clear asymmetry, but the spread in the tails is
noticeably smaller than for larger values of � �see Figs. 6
and 8� suggesting a smaller dependence of the skewness of
the distribution on the system size.

In order to better quantify the aforementioned behavior, in
Fig. 9 we present data for the skewness as a function of
system size for several values of the power-law exponent �.

The data show that for ��0.5 the skewness of the ground-
state energy distributions decays with a power law ��E�
�L−�, with ��0.5 in the SR phase, whereas for ��0.5 �MF
phase� the skewness is well fitted by Eq. �6� with c1�0 thus
tending to a constant in the thermodynamic limit. This means
that the mean-field models present a singular behavior in
which the ground-state energy fluctuations are non-Gaussian
in the thermodynamic limit. This is not the case for the
nonmean-field universality class where a limiting Gaussian
behavior is obtained for L→�. Note that ��0.5 for ��1

TABLE I. Parameters of the parallel tempering Monte Carlo
simulations. The table shows the total number of Monte Carlo steps
teq used for each value of � and L. We use between 10 and 17
temperatures, depending on the system size, to ensure that the ac-
ceptance ratios of the parallel tempering moves are larger than
�0.30. The lowest temperature used is 0.05, the highest 1.70. For
the internal energy distributions �Sec. IV E� we compute thermally
averaged values of the internal energy for a given disorder realiza-
tion after equilibrating for teq Monte Carlo steps. The averages are
done over another period of teq Monte Carlo steps. For �=2.50 and
L=96 the calculations have been done using the BCP algorithm
�Appendix B�.

� 8,12,16 24,32 48,64 96,128 192

0.00 2�103 4�103 8�103 4�104 12�104

0.10 2�103 4�103 8�103 4�104 12�104

0.35 2�103 4�103 8�103 4�104 12�104

0.50 2�103 4�103 8�103 4�104 12�104

0.75 2�103 4�103 8�103 4�104 12�104

1.00 2�103 4�103 8�103 8�104 6�105

1.25 2�103 4�103 6�104 6�105

2.50 2�103 4�103 2�105

FIG. 5. �Color online� Unscaled energy distributions for several
system sizes for the one-dimensional Ising chain with �=0.75 �LR+

phase�.

FIG. 6. �Color online� Scaled ground-state energy distributions
for several system sizes for the one-dimensional Ising chain with
�=0.75 �LR+ phase�. The dashed vertical line is a guide to the eye
to illustrate the skewness of the distribution. The spread of the data
in the tails suggests that the skewness changes with system size.
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for which Tc=0, in agreement with the results for the ladder
system studied in Sec. III.

We also study the size-dependence of the mean energy as
a function of �. For the mean-field Sherrington-Kirkpatrick
model27 ��=0� it is known that ��2/3.7,8,11,43 Our results
agree well with this prediction, i.e., �=0.64�1� �the quality
of fit probability24 is Q=0.51; the fit is performed for L

�64�. Unfortunately, there are no predictions for the differ-
ent exponents for ��0, thus we will focus on comparing the
present results to data for the SK model. In Fig. 10 we show
data for all values of � studied. For increasing � ,� increases
rapidly and then saturates at ��2 in the SR phase. This can
be understood by studying the model for �→�. In this limit

FIG. 7. �Color online� Scaled ground-state energy distributions
for several system sizes for the one-dimensional Ising chain with
�=0 �MF phase, SK model�. The dashed vertical line is a guide to
the eye to illustrate the skewness of the distribution. The data show
little spread in the tails suggesting a weaker dependence on L than
for larger values of �.

FIG. 8. �Color online� Scaled ground-state energy distributions
for several system sizes for the one-dimensional Ising chain with
�=2.50 �SR phase�. The dashed vertical line is a guide to the eye to
illustrate the skewness of the distribution. The data show a moder-
ate dependence on the system size.

FIG. 9. �Color online� Skewness �E as a function of system size
L for several values of �. For �0.5 �MF phase� the data scale as
�E�c1+c2L−� with c1�0 �Eq. �6� thus tending to a constant in the
thermodynamic limit. For ��0.5 the skewness decays with a
power-law behavior, i.e., c1=0 �fits done for L�64�. Note that for
��1, for which Tc=0, ��0.5 in agreement with the results for the
ladder system presented in Sec. III.

FIG. 10. �Color online� Mean ��E�−E� /L as a function of sys-
tem size L for several values of �. The data are expected to decay as
a power of the system size with an exponent �. Note that for the SK
limit ��2/3 at T=0 in agreement with other predictions �Refs. 7,
8, 11, and 43� �see Fig. 11 for ���� and that for �=2.5 we obtain
�=2.29�17�.
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there is no frustration, except that with a 50% probability
there will be a broken bond due to the periodic boundary
conditions. Since the weakest bond will be broken, for a
continuous distribution the energy scales as �1/L. Since the
total energy scales with system size, we expect the finite-size
correction to the average energy per spin to be �1/L2, i.e.,
�=2. This behavior can be seen in Fig. 11 where we show
the behavior of � �see Eq. �1� in detail for the different
universality classes.

The behavior of the energy fluctuations is shown in Fig.
12 as a function of system size L for several values of �. In
the SK limit there are contradicting predictions regarding the
power-law exponent � of the energy fluctuations �E. While
Crisanti et al.44 find �=5/6, Bouchaud et al.11 and As-
pelmeier et al.45 find �=3/4. In this work we obtain �
=0.775�2� �Q=0.58; fits done for L�64�, which is also in
agreement with the work by Palassini.7 In Fig. 13 we show
the � dependence of �. It is noteworthy that � decreases from
the mean-field value �3/4 to 1/2 in the short-range univer-
sality class. This is to be expected as for �→� the central
limit theorem predicts that �=1/2.11 Note that the results
found agree with the prediction of the short-range ladder
system in Sec. III B.

D. Limiting distribution

In order to further strengthen the conjecture that ground-
state energy distributions remain skewed in the thermody-
namic limit for the mean-field phase, in this section we study
the area deviation of the normalized energy distributions in
comparison to a Normal distribution N�	�. We define the area
difference 
 via


 = �
	

�P�	� − N�	��d	 , �21�

where P�	� are the actual rescaled data �Eq. �7�. In Fig. 14
we show the area difference as a function of system size L
for several values of �. The data for �0.5 can be well

FIG. 11. �Color online� Exponent of the mean energy ��� as a
function of �, according to Eq. �1�. � increases from the SK value
��2/3� for increasing �. The exponents are only estimated for the
four largest system sizes studied for a given value of �. See Table I
for details. In this and following figures, the boundaries between the
different universality classes are denoted by vertical dashed lines.

FIG. 12. �Color online� Standard deviation �E as a function of
system size L for several values of �. The data for �E /L are ex-
pected to decay as a power of the system size with an exponent �.
Note that for the SK limit ��3/4, in agreement with other predic-
tions �Ref. 7, 11, and 45� �See Fig. 13 for ����.

FIG. 13. �Color online� Exponent for the energy fluctuations �
as a function of � �see Eq. �2�. For �→0 ��3/4 in agreement
with Refs. 45, 11, and 7. For �→�, �→1/2, as predicted by the
central limit theorem, and in agreement with the results on the
ladder system presented in Sec. III B.
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fitted by a functional form �f +g /Lh, i.e., the area difference
tends to a nonzero constant in the thermodynamic limit. This
is not the case for ��0.5 where the area difference decays
with a power law of the system size, thus showing that the
difference between the data and a Gaussian limiting distribu-
tion decreases for increasing L.

Palassini7 has fitted the data for the scaled probability
distribution functions of the SK model, Eq. �7�, to a modified
Gumbel distribution2,19,21 gm�	�, and finds good agreement
between the data and the fit, especially when studying the
cumulative distributions Q�	�=�	P�x�dx. In addition, Pa-
lassini shows that the best fit seems to be obtained for m
=6, although to date it is unclear why the aforementioned
value of m fits the data best. Because outside the MF univer-
sality class the limiting distribution function seems to con-
verge to a Normal distribution, we modify the standard
modified Gumbel distribution by taking into account a Nor-
mal contribution,46 i.e.,

gm� �	� = N�y�gm�y� , �22�

where

y =
	 − �

�
�23�

and

gm�	� = w1exp�my − mey �24�

is the modified Gumbel distribution and

N�	� = w2exp�m2y2 �25�

is a Normal distribution. Here � is the most-probable value,
� a standard deviation, and wi represents an overall normal-
ization factor. For simplicity, we can fix m=6 and study the
behavior of the coefficient m2 as a function of system size for
different values of �. Note that for m2=0 gm� �gm�x�, up to a
global scaling factor. A multiplicative ansatz �instead of, for
example, an additive ansatz of the form aN�	�+bgm�	� can
be motivated by keeping in mind that for short-range inter-
actions, the system can be divided into subsystems which
contribute almost independently to the total energy. In Fig.
15 we show data for m2 versus L for a few representative
values of �. Our results show that for �=0 �SK model� m2
converges to a value close to zero for L→�. For 0�
�0.5 the limiting distribution is non-Gaussian, yet m2 is
small, but finite. For ��0.5 the Gaussian contribution via
m2 dominates in the thermodynamic limit �at least for a finite
fitting region�, as can be seen in Fig. 15. This shows that the
energy distributions in the SK model can be well described
in the thermodynamic limit by a modified Gumbel distribu-
tion. In order to test the existence of small Gaussian correc-
tions to the modified Gumbel distribution for the SK model,
large-scale simulations probing the tails of the distribution
function in detail would be required which are beyond the
scope of this work. For all other values of �0.5 there are

FIG. 14. �Color online� Difference in area between the actual
data for the energy probability distributions of the one-dimensional
Ising chain to a Gaussian limiting distribution as a function of sys-
tem size L for several values of � �see Eq. �21�. In the MF phase
��0.5� the area difference tends to a constant for increasing sys-
tem size, whereas for ��0.5 the area difference decays with a
power of the system size. Note the close resemblance to the behav-
ior found for the skewness of the distribution, Fig. 9.

FIG. 15. �Color online� Coefficient m2 to the quadratic correc-
tion term in the modified Gumbel distribution, Eq. �22�, as a func-
tion of system size for several values of the power-law exponent �.
The data show that m2 converges to a value close to zero for the SK
model in the thermodynamic limit thus suggesting that the energy
distributions of the SK model are possibly well described by a
modified Gumbel distribution function in agreement with results
from Ref. 7. For all ��0, m2 tends to a finite negative value in the
thermodynamic limit. For large values of � , m2 dominates thus
showing that in the SR universality class the limiting probability
distribution is well described by a Gaussian. The dashed lines are
guides to the eye.
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clearly Gaussian corrections to the Gumbel distribution,
whereas for ��0.5 the data in the thermodynamic limit are
well described by a Normal limiting distribution. This could
be due to the fact that there are no length scales associated
with the mean-field model. Thus any length-scale associated
effects will scale with system size. This is not the case in the
short-range models where a length scale will not necessarily
scale with system size, therefore yielding a Normal distribu-
tion in the thermodynamic limit.

E. Finite temperatures

We want to test if the fact that the ground-state energy
distribution of the SK model is skewed in the thermody-
namic limit is a unique property of the ground state, or if
similar effects can be observed at finite temperatures. Be-
cause the parallel tempering Monte Carlo method used to
compute the ground-state energies of the one-dimensional
Ising chain at small values of � requires the system to be
simulated at several temperatures ranging to values well
above the spin-glass transition �for the SK model Tc=1�, we
have also studied the behavior of the internal energy distri-
butions in the mean-field limit as a function of temperature.
The internal energy U for a given disorder realization �Jij� is
given by

U = �H��Jij�,�Si��� , �26�

where the Hamiltonian H is given by Eq. �14�. Here �¯�
represents a thermal average over teq Monte Carlo steps that
we perform after having equilibrated the system for a time teq
�see Table I for details�.

Figure 16 shows data for the skewness of the internal
energy distributions as a function of system size for several
temperatures ranging from the ground state to well above the
critical temperature. The results show that the skewness of
the distributions tend to a constant value in the thermody-
namic limit for T�Tc �curved fitting functions in a log-log
plot, Fig. 16�, thus showing that skewed energy distributions
seem to persist for any temperature below the critical tem-
perature. For temperatures above the critical temperature, the
skewness shows again a power-law behavior thus suggesting
that for T�Tc the limiting distribution is Normal, as one
would expect. Therefore, the limiting probability distribution
is skewed in the thermodynamic limit for all temperatures
below the critical point.

The inset of Fig. 16 shows the skewness of the probability
distribution function of the internal energy of the SK model
for L=192 as a function of temperature. The data show a
peak around Tc=1. We expect the functional form of the
ground-state energy distribution to remain approximatively
the same for L→� when TTc, whereas for T�Tc we ex-
pect for the skewness �E→0 in the thermodynamic limit. It
would be interesting to understand the origins of this behav-
ior of the mean-field model analytically.

For nonzero values of � we find finite-temperate results in
agreement with the data presented in Sec. IV C: The distri-
butions become Normal in the thermodynamic limit.

V. SUMMARY AND CONCLUSIONS

We have studied in detail the probability distribution
function of the ground-state energy of the one-dimensional
Ising spin chain with random power-law interactions for sev-
eral values of the power-law exponent �. Using sophisticated
parallel-tempering methods �fast for small values of �� and a
branch, cut, and price algorithm �fast for large values of ��,
relatively large system sizes have been studied over the full
range of the parameter �.

For the SK limit, when �=0, our results agree with pre-
vious numerical work by Palassini.7 We find by studying
different moments of the distribution, that the SK model has
a skewed probability distribution function in the thermody-
namic limit that is well fitted by a modified Gumbel distri-
bution, possibly with small Gaussian corrections. This be-
havior is not only valid for the ground-state energy, but also
for energies below the critical temperature.

By varying the power-law exponent � we scan several
universality classes and show that for the nonmean-field re-
gime when ��0.5 the probability distribution functions con-
verge to a Normal distribution in the thermodynamic limit, in
agreement with a short-range spin-glass ladder. Thus a
skewed ground-state energy probability distribution function
is a characteristic property of the mean-field spin-glass
model and the change of the distribution’s characteristic co-
incides with the transition line between the MF and LR uni-
versality classes. This behavior again poses the question, of

FIG. 16. �Color online� Skewness of the internal energy prob-
ability distribution functions of the SK model as a function of sys-
tem size for different temperatures. The data show a curvature for
T�Tc in a log-log scale thus suggesting that the skewness con-
verges to a constant value in the thermodynamic limit. For T�Tc

=1 the skewness decays with a power of the system size �Normal
limiting probability distribution function�. The inset shows the
skewness of the internal energy distribution of the SK model for
L=192 �largest system size studied� as a function of temperature.
The data show that for finite system sizes the skewness seems to
peak at the transition �Tc=1, shaded area�.
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whether the mean-field description of low-temperature prop-
erties of spin glasses is adequate for nonmean-field models,
as has been observed previously by studying other measur-
able quantities,47–51 although other studies52 have found dif-
ferent results.

Thus far it is unclear to us why the limiting distribution
for the SK case is well described by a modified Gumbel
distribution with parameter m�1, i.e., an extreme-value dis-
tribution for selecting the mth smallest value out of a large
number of M uncorrelated values.19 If all 2N energy levels of
a system with N spin were uncorrelated, then the ground
state would be simply the minimum of all 2N uncorrelated
values and a standard Gumbel distribution �m=1� would be
the limiting distribution. Clearly the energy values of a spin
glass are not fully uncorrelated, but recently it has been
observed53 that the energy levels of the Edwards-Anderson
model behave at least locally �i.e., in small intervals� like a
random-energy model. This might be the underlying reason
why a Gumbel distribution seems to describe the data best,
as well as for the occurrence of a nonvanishing skewness in
the MF case for �0.5.

In general, we see that by studying the distributions of
measurable quantities such as for the ground-state energy, we
have another approach to discriminate mean-field-type be-
havior from simpler structures of the phase space. Therefore
this approach supplements other numerical means of study-
ing the organization of phase space, such as calculating the
distributions of overlaps,54 clustering configurations,55 or the
calculation of correlation-matrix eigenvalues.56 Hence, it
should be fruitful to study the distributions of ground-state
energies in detail also for other models. This is especially
interesting when a disorder-driven phase transition occurs,
such as for parametrized random bond models, random-field
systems, or optimization algorithms on random graphs. So
far the body of the ground-state energy distributions has been
tested in detail. More information about the tails of the dis-
tributions could be accessed using rare-event techniques46

also for the standard spin-glass models in finite and infinite
dimensions.
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APPENDIX A: PARALLEL TEMPERING GROUND-STATE
SEARCH

In this section we describe the different numerical tools to
compute ground-state instances of the one-dimensional Ising

chain fast. As introduced in Refs. 16 and 39 we use parallel
tempering Monte Carlo37,38 to calculate ground states. In
Ref. 16, it has already been mentioned that parallel temper-
ing Monte Carlo performs poorly for large values of �. In
particular, for ��2.5 we find that in practice the time to find
a ground state scales exponentially17 in the system size. In
order to overcome this limitation we use the branch, cut, and
price algorithm described below.

In the parallel tempering Monte Carlo method one simu-
lates several identical replicas of the system at different tem-
peratures, and, in addition to the usual local moves, one per-
forms global moves in which the temperatures of two
replicas with adjacent temperatures are exchanged. In this
way, the temperature of a given replica wanders up and down
in a random manner, thus providing a more efficient sam-
pling of the energy landscape. For further details regarding
the parallel tempering approach, see Refs. 37 and 38. The
parameters of the simulation are shown in Table I. If we take
the lowest temperature Tmin to be 0.05 �Tmin�Tc�, then the
minimum-energy state found at this temperature is with very
high probability the ground state. To test whether the true
ground state has been reached, four criteria have to be met:
�i� The same minimum-energy state has to be reached from
two independent replicas at Tmin for all samples, and �ii� this
state has to be reached during teq sweeps in both copies. �iii�
We simulate for further teq sweeps to ensure that the energies
found do not change, and �iv� the system has to obey the
equilibration test for the one-dimensional Ising chain, intro-
duced in Ref. 16. In this test the link overlap ql has to equate
the link overlap calculated from the internal energy ql�U� via
the relation

ql = 1 −
2T��Uav/L�

�Tc
MF�2 , �A1�

where Tc
MF is given by Eq. �17�, U is given by Eq. �26�, and

ql =
2

N
�
i,j

�Jij
2 av

�Tc
MF�2 ��SiSj�2av. �A2�

Once both sides of Eq. �A1� agree, the system is in equilib-
rium �see Fig. 17�. Note that this is the case for the param-
eters listed in Table I. If any of the aforementioned criteria
are not met �usually one instance in 105�, the calculated
ground-state instance is rejected.

APPENDIX B: BRANCH, CUT, AND PRICE ALGORITHM

In this section we briefly explain how exact ground states
of one-dimensional Ising spin-glass instances can be com-
puted fast for large values of �. To this end, we extend the
branch-and-cut approach to a branch, cut, and price �BCP�
method originating in combinatorial optimization. Since this
approach has not yet been applied for spin glasses, we give
more details in the following section and discuss the perfor-
mance in a subsequent section. Again, for the fundamentals
of the applied algorithm, i.e., the standard branch-and-cut
approach, we refer the reader to Refs. 40 and 41.
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Algorithm

The problem of determining a ground state of an Ising
spin-glass instance is equivalent to determining a maximum
cut in the interaction graph associated with the system.40 In
the maximum cut problem we are given a graph G= �V ,E�
with nodes V and edges E. The nodes correspond to the spin
sites, the edges to the bonds. Weights cij �R are given for all
edges ij�E. Let W�V be a subset of nodes. The cut ��W� is
defined as the set of edges having exactly one endpoint in W.
The weight of a cut ��W� is the sum of the weights of the
edges in the cut, and the maximum cut problem is to find a
cut ��W� of G with maximum weight among all possible
node sets W. Determining a ground state of a spin-glass in-
stance amounts to calculating a maximum cut in the interac-
tion graph of the system, with edge weights chosen as cij
=−Jij for ij�E.

The maximum cut problem is NP hard which makes it
unlikely that there exists a solution algorithm running in a
number of steps bounded by a polynomial in the size of the
input. In practice, maximum cuts of reasonably sized in-
stances can be determined exactly by using the branch-and-
cut method from combinatorial optimization that has expo-
nential worst-case running time. For an instance, we always
maintain an upper and a lower bound for the optimum solu-
tion value of the maximum cut. Iteratively we improve upper
and lower bounds until they are tight enough for proving
optimality of a known solution. In the upper bound compu-
tations, a sequence of linear programs is solved. Solving a
linear problem amounts to optimizing a linear objective
function subject to a set of linear constraints. Details are
explained in Refs. 40 and 41.

For an instance of the one-dimensional Ising chain with
L=100 spins and �=3.0, the default version of the branch-
and-cut algorithm needs roughly 3 h CPU time on average
on a 1400 MHz Athlon processor. By extending the branch-
and-cut algorithm to a branch, cut, and price algorithm we
achieve a better performance. Details about pricing algo-
rithms can be found in Ref. 42.

FIG. 18. �Color online� Scatter plot for the CPU time tCPU in
seconds versus the number of lps nlps for 1000 randomly chosen
samples with L=64. The data for �=2.0 �black dots� are strongly
correlated. The dashed line is a guide to the eye. In contrast, data
for �=3.0 �red crosses� show strong sample-to-sample variations.

FIG. 19. �Color online� Mean CPU time tCPU in seconds for
determining a ground state versus � for different L in a linear-log
scale. For increasing � and for all system sizes L the time to find a
ground-state configuration decreases thus showing that the algo-
rithm becomes more efficient when the interactions are more short-
ranged ��→��.

FIG. 17. �Color online� Equilibration plot for the one-
dimensional Ising chain: Average link overlap as a function of
Monte Carlo steps teq calculated directly �Eq. �A2�, and via the
internal energy �Eq. �A1� averaged over the last half of the sweeps
for L=96, T=0.05, and �=0.75. The data are equilibrated for teq

�104 MCS, in the simulations 4�104 MCS have been used. Data
for 2500 disorder realizations.
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The underlying idea of a pricing algorithm is as follows.
There exists a variable for each edge ij�E, and we use the
terms edge and variable interchangeably. In the pure branch-
and-cut algorithm we always work on the complete set of
variables. However, in the extended algorithm we start doing
branch-and-cut, but only work on a small fraction of all vari-
ables. We add necessary variables �and delete unnecessary
ones� dynamically during the optimization process. This is
done in the so-called pricing routine.

For the one-dimensional Ising chain, we make the as-
sumption that for big enough values of the parameter � the
“long-range couplings” between two spins “far apart” from
each other in the chain do not strongly affect the ground state
and can be neglected temporarily. Thus, we start working on
a graph G= �V ,E� consisting of all nodes but only of a frac-
tion of all edges. In our tests it performed best when the
input graph consisted of the k% edges with highest weights,
measured in absolute value, where the parameter k is suit-
ably chosen in order to minimize the total running time. �For
example, for �=3.0 k=20 is a good choice, for smaller � the
value of k is increased.� At well-defined steps in the algo-
rithm the pricing routine checks whether there exists a �yet
neglected� variable that has to be included in the variable set
for maintaining correctness. If no variable is added, and up-
per and lower bounds are tight enough, we can prove opti-
mality, and stop. For our model, we can further improve the
quality of the upper bound within the BCP algorithm by
separating not only the cycle inequalities40 but also separat-
ing heuristically the so-called parachute inequalities57 result-
ing in an improved bound and an additional speedup.

When the BCP algorithm is used, solving systems for �
=3.0 takes on average 426±55 seconds for L=100 on the
same 1400 MHz Athlon processor that needed three hours on
average for solving the same systems by branch-and-cut. In

Ref. 16 it is reported that parallel tempering is less efficient
in finding the ground state for bigger values of �, because
parallel tempering needs longer to relax an inconvenient con-
figuration. With the exact algorithm, in contrast, we expect
pricing to be only effective for bigger �. In this case we
expect a speedup by using sparse graph techniques as ex-
plained above. For small � instead, the system is of the long-
range type, and in the worst-case all neglected edges would
have to be added in the pricing routine.

In the following section we experimentally determine the
running time dependence of the BCP algorithm and its de-
pendence on the parameter � and on the system size.

Performance of the algorithm

In this section we study the performance of the BCP al-
gorithm for the one-dimensional Ising chain model. We com-
pute ground states of samples for different system sizes L
and values of the parameter �. The studied ranges are �
� �1.0,1.5,2.0,2.5,3.0�, and L�96. We compute between
1000 and 6000 samples per size and � value for small- and
medium-sized instances and at least 100 samples for the larg-
est instances. All runs are performed on a Linux cluster of
identical AMD Athlon 1800+ machines. Instances of size L
�48 and ��2.0 are solved within seconds; for �=3.0, com-
puting a ground state of L=280 spins takes on average
5161±275 s. The hardest instances, L=96, �=1.5 needs up
to a day computing time on one processor.

As argued before in Ref. 58, there is no easy and “ideal”
performance measure for a branch-and-cut algorithm. This
remains true for its extension to the BCP algorithm. As a
measure of the performance of the latter, we could use the
needed CPU time which however is machine dependent, or
the number of solved linear programs �lps�, see Refs. 59 and
58. For ��2 we find that the number of lps n1ps is strongly
and almost linearly correlated with the CPU time tCPU, see
Fig. 18. The same is true for the pure branch-and-cut algo-
rithm. However, for ��2.0 the CPU time for solving a lp
considerably varies between different samples of the same
size, as can be seen for L=64 and �=3.0 in the scatter plot,
Fig. 18.

A reason for this behavior is the following: In order to
keep the program flexible, in each iteration we both add new
constraints to the current linear program and remove con-
straints that once have been added but have turned out to be
unimportant. �Re-�optimizing a lp is very fast if only a small
number of constraints changes from one iteration to the next
but takes considerably longer if a substantial change occurs.
In the pricing extension, we start working on a subset of the
variables and might add further variables as explained above.
Possibly a “bad” subset of variables is chosen, in the sense
that many of the added constraints become unimportant later
and are removed again. Then the lps change considerably
and their solution takes long. This is more probable for big
�, as we start working on a small subset of the variables. For
smaller values of � instead, we start working on a bigger
fraction of all variables and find a stronger correlation be-
tween number of lps and CPU time.60 Given the broad varia-
tion in the CPU time per lp for some values of �, we use the

FIG. 20. �Color online� Mean CPU time for determining a
ground state versus the system size L for different values of � in a
linear-log scale. Note that the CPU time increases slower than ex-
ponential for all values of � studied. For ��2.5 the CPU time
increases with a power of the system size.

KATZGRABER et al. PHYSICAL REVIEW B 72, 094421 �2005�

094421-12



mean of the CPU time as a performance measure. We notice
that the figures remain qualitatively comparable when the
mean of the linear programs is taken instead of the CPU
time. We have checked that the mean of both the CPU time
and the number of linear programs is defined for our sam-
pling as the distribution shows a pronounced tail. Performing
a detailed statistical analysis we show that the data are thin-
tail distributed19 with a well-defined mean.

In Fig. 19 we show the average CPU time for solving an
instance as a function of �, for different system sizes L.
Ground states are computed fast for big values of the param-
eter �, whereas it takes considerably longer for smaller �
�1.5. This effect becomes more apparent with increasing
system size L.

We also study the CPU time as a function of the total
number of edges, i.e., the total number of variables, for dif-
ferent values of �. The increase in the CPU time with the
number of variables is consistent with a polynomial depen-
dency, even for the smallest studied value of �. When fitting
a function of the form f�m��amb, with m being the number
of variables �bonds�, we obtain a=0.009±0.007, b
=1.3±0.1 for �=2.0. A similar behavior can be found when
studying the CPU time as a function of system size L, see
Fig. 20.

A qualitatively similar behavior can be found in the data
when plotted as a function of lps instead of CPU time �not
shown�.
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