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We propose a time-quantifiable Monte Carlo �MC� method to simulate the thermally induced magnetization
reversal for an isolated single domain particle system. The MC method involves the determination of density
of states and the use of Master equation for time evolution. We derive an analytical factor to convert MC steps
into real time intervals. Unlike a previous time-quantified MC method, our method is readily scalable to
arbitrarily long time scales, and can be repeated for different temperatures with minimal computational effort.
Based on the conversion factor, we are able to make a direct comparison between the results obtained from MC
and Langevin dynamics methods and find excellent agreement between them. An analytical formula for the
magnetization reversal time is also derived, which agrees very well with both numerical Langevin and time-
quantified MC results, over a large temperature range and for parallel and oblique easy axis orientations.
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I. INTRODUCTION

Several simulation methods based on the Monte Carlo
�MC� approach have been used to study the thermally in-
duced magnetization reversal of magnetic particles. These
include the kinetic MC method,1 which assumes that the sys-
tem resides only in the energy minima states, and that the
transition rate over the energy barrier �E separating the two
minima obeys the Arrhenius-Neel’s law. The characteristic
time constant in this method, however, is available for a few
simple cases only.2 Other MC techniques such as the stan-
dard Metropolis algorithm,3 absorbing Markov Chains
algorithm,4 and projection MC method5 are also helpful in
describing equilibrium properties and relaxation processes
over long time scales for complex systems. However, a ma-
jor disadvantage of these MC simulation techniques is that
time is calibrated in terms of Monte Carlo steps �MCS�. Un-
fortunately, the conversion of MCS into real �physical� time
units is not a trivial problem.

Nowak et al.6 first proposed an analytical time quantifica-
tion of the Metropolis Monte Carlo method applied to iso-
lated single domain magnetic particles. The accuracy of the
time quantification is confirmed by a comparison with nu-
merical Langevin dynamics �LD� results. The LD approach
is an alternative stochastic approach for modeling thermally
induced magnetization reversal. This method involves the
numerical integration of the stochastic Landau-Lifshitz-
Gilbert �LLG� dynamical equation of motion. The LLG
equation governs the time evolution of the particle magneti-
zation M and incorporates the precession, damping, and ther-
mal fluctuations of M. As proposed by Brown,7 the effect of
thermal fluctuations is incorporated as a randomly orientated
white noise field contribution to the total effective field. Un-
like the MC method, the LD method is calibrated in real

physical time. Previous experimental research8,9 has proved
that the LD method has a firm physical basis in simulating
actual magnetization dynamics. However, it is usually suit-
able for modeling short time-scale dynamics because the
maximum time step size �t is only of the order of several ps.
The upper limit of �t is constrained by the reciprocal of the
gyromagnetic constant �0, which is typical of the order
107 Hz/Oe in common magnetic materials �e.g., Ref. 10�. It
is thus technically infeasible to perform a LD integration
much beyond a time scale of a few ns.

In Ref. 6, Nowak et al. achieved the time quantification
relationship of the Metropolis Monte Carlo method by deriv-
ing the analytical relation between the MC step size and the
mean squared deviation of the magnetic moment orientation.
Chubykalo et al.11 investigated the constraints on the validity
of Nowak’s conversion scheme, especially with regards to
athermal �energy conserving� precessional motion. Further
research works have also yielded proof of the validity of
Nowak’s time quantification relationship in a coupled nano-
magnetic particle array system.12

In this paper, we present another time quantifiable Monte
Carlo method in simulating the magnetization reversal pro-
cess. Our model applies the Wang-Landau random walk
Monte-Carlo �RWMC� algorithm13 to determine the density
of states g�E ,M� as a function of energy and magnetization.
The Wang-Landau algorithm was chosen because of its
greater efficiency compared to other numerical methods of
calculating the density of states, e.g., multicanonical
methods,14,15 flat histogram method,16,17 and broad histogram
method.18 From g�E ,M�, a tridiagonal transition matrix is
obtained by applying Glauber transition rate, and the result-
ing Master equation solved explicitly. This method was first
applied by Lee et al. for an array of Ising spins.19 In this
paper, we extend it to the Heisenberg model �three-
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dimensional �3D� continuous spin orientation� for a single
isolated particle. The main result of our work is the time
quantification of this MC method, which is achieved by ap-
proximating the discrete Master equation into the corre-
sponding �continuous� Fokker Planck �FP� equation in the
limit of large bin number. This FP equation forms a critical
bridge to the Langevin dynamics method, for which the FP
diffusion term �related to thermal fluctuations� is well-
known. Comparing the diffusive FP terms for both MC and
LD methods, we obtain an analytical conversion factor for
MCS into real time steps. The conversion factor is validated
by performing numerical MC and LD simulations. We
achieve very good convergence between the LD and time-
quantified MC data over a wide range of temperatures. As an
independent check, the converged LD and time-quantified
MC results for the parallel easy-axis case also show good
agreement with Brown’s asymptotic prediction20 at low tem-
perature.

Compared to the time-quantified Metropolis Monte Carlo
method of Nowak et al., our time-quantified MC method has
two main advantages. First, the density of states g�E ,M� is
independent of temperature T, which means that for a given
system, its equilibrium state Peq can be analytically derived
for any T once g�E ,M� is known. Second, the state of the
system can be obtained at any time t once Peq and the eigen-
functions of the rate matrix are known. Hence the relaxation
process can be modeled for arbitrarily long time duration and
at any arbitrary T, without any increase in computational
effort. By contrast, in the Metropolis scheme, the computa-
tional time increases linearly with t, and the time-consuming
stochastic MC modeling has to be repeated to model the
switching behavior at different T.

Our final result concerns the derivation of the switching
time �, expressed as a function of g�E ,M�. This derivation is
performed within the MC framework and coupled with the
time quantification, it allows us to obtain an analytical esti-
mate of the reversal time in real physical time units without
the need for any numerical simulation, once g�E ,M� is ob-
tained from the RWMC algorithm. This result is applicable
to any easy-axis orientation and at any arbitrary temperature.
Unlike simpler approximations based on the second-largest
eigenvalue �1 of the rate matrix, our refined expression takes
into account the contribution of all eigenfunctions and shows
a much closer agreement to the numerical simulation results.

II. MODEL AND METHODS

The system under consideration is an isolated Brownian
single domain particle. The free energy of the particle in the
Heisenberg model consists of anisotropy and Zeeman energy,
i.e.,

Etot = − KuV�S · kn�2 − �sB · S , �1�

where Ku is the anisotropy constant, V is the particle volume,
S=M /Ms is the normalized magnetic moment vector, and kn
the unit vector along the easy axis direction. In Eq. �1�, the z
axis is chosen to correspond to the external field’s direction.
The magnetization switching time � of the particle is defined
as the elapsed time for the magnetization Mz along the field

direction to reach 0 from its initial negative saturation �Mz

=−Ms� value.

A. Langevin dynamics

The Langevin dynamics of the magnetization S is de-
scribed in the form of a reduced LLG equation:

dS

d�
= − S � �hef f + h�t�� − � · S � �S � �hef f + h�t��� .

�2�

The normalized dimensionless variables are defined as hef f
= �Hef f /Hk� and �=�0Hkt / �1+�2� where Hk= �2Ku /�0Ms�.
The effective field is obtained from Eq. �1�, i.e., Hef f =
−��Etot /�M�=−Ms

−1��Etot /�S�. In the above, �0 represents
the gyromagnetic ratio and � the damping constant. h�t� is
the additional field acting on S due to thermal effects, and is
represented by a white noise term with the following statis-
tical properties:7

�h�t�� = 0,

�hi�0� · hj���� =
� · kBT

�1 + �2�KuV
�ij���� , �3�

where i , j denote Cartesian components x ,y ,z. In this work,
the numerical integration of the LLG equation �Eq. �2�� is
done via the Heun scheme, using the Stratonovich interpre-
tation, with the reduced time interval set at ��=0.01, which
is sufficiently small to ensure stability.

B. Monte Carlo method

Monte Carlo methods have been used to study the dynam-
ics of magnetic reversal of a system with metastable
states.19,21 Ideally, one has to solve the microscopic Master
equation, i.e.,

dP�	,t�
dt

= 	
	�

w�	
	��P�	�,t� − w�	�
	�P�	,t� , �4�

where 	 denotes the microscopic state of the system, and
w�	 
	�� is the transition rate from 	� to 	, and P�	 , t� is the
probability distribution of state 	 at time t. Detailed balance
is obeyed for the microscopic case. However, in practice it is
not feasible to solve the microscopic Master equation. In-
stead, we approximate the dynamics by expressing the Mas-
ter equation in terms of a macroscopic quantity, which in our
case, is the total magnetization M. The macroscopic approxi-
mation is

dP�M,t�
dt

= 	
M�

w�M
M��P�M�,t� − w�M�
M�P�M,t� , �5�

where M and M� are magnetization states and w�M 
M�� is
the transition rate from macroscopic state M� to state M. The
validity of the above approximation has been discussed
previously.19,22 We have made identical approximations in
the transition rates in the above equation as the “mean field
dynamic No. 2” �MFD2� model of Ref. 22.
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Due to the physical grounds that magnetization transitions
are continuous in the limit of small time step, a reasonable
approximation is to restrict the transitions to occur between
adjacent states only. Thus Eq. �5� serves as a description of a
diffusion process. Lee et al. first developed this Master equa-
tion method combined with a random walk MC algorithm to
solve the magnetization reversal process of interacting Ising
spin arrays and discussed circumstances for its validity.19

Here, the method is extended to model the Heisenberg sys-
tem by binning the magnetization orientation into a finite
number N of discrete values. With the restriction of transi-
tions between adjacent states only, Eq. �5� can be written in a
matrix form as

dP� �t�
dt

= A · P� �t� �6�

where the transition matrix A is an n�n matrix and given by

An�n =�
− w1 u1

w1 − w2 − u1 u2

w2 ¯

¯ un−1

wn−1 − un−1

� . �7�

In the above matrix, wi=w�Mi+1 
Mi� and ui=w�Mi 
Mi+1�.
Various simulation methods to approximate w�M 
M�� have
been discussed previously, including mean field dynamics23

and transition matrix Monte Carlo24 methods. In our simula-
tion, we assume the Glauber transition rate, i.e.,

w�M
M�� = 1/�1 + Peq�M��/Peq�M�� , �8�

where Peq�M� is the equilibrium �stationary� probability dis-
tribution function of state M. Peq�M� is estimated based on
the density of states g�E ,M� obtained using the Wang-
Landau random walk algorithm.13,19

Z = 	
E,M

g�E,M�exp�− 
E� ,

Peq�M� = 	
E

g�E,M�exp�− 
E�/Z . �9�

Note that for the case of an isolated single domain particle
system with easy axis parallel to the applied field, the �ana-
lytical� density of states function is known, i.e., g�E ,m�=k
�normalized constant�. However, we have used the Wang-
Landau random walk algorithm together with the Master
equation solution as a complete MC method, which is appli-
cable to the more general case of oblique easy axis direc-
tions, and scalable to Heisenberg spin array systems. The
explicit solution of Eq. �6� can be expressed as an eigenvalue
expansion.19,25

P� �t� = P� eq + 	
i=1

N−1

�iv� i exp��it� , �10�

where P� eq is the equilibrium probability distribution function
in vector form, and �i and v� i are nonzero eigenvalues and

corresponding eigenvectors of the transition matrix A. The
factors �i are determined based on the initial conditions.
Thus, once �i and v� i are known, Eq. �10� will yield the mag-
netization probability distribution at any arbitrary time t.

The solution of the full set of �i and v� i can only be ob-
tained numerically. However, one can derive some analytical
results based on the property of the transition matrix A as
expressed in Eq. �7�. The eigenvalues of A are all negative
with one exception, which is a zero eigenvalue correspond-
ing to the stationary probability distribution, i.e., �0=0 and

v�0= P� eq. Due to the exponential time dependence in Eq. �10�,
it is the second largest eigenvalue �1 �i.e., largest apart from
�0� which controls the reversal process. Thus the relaxation
time �MC can reasonably be approximated as �MC= 
�1

−1
.
The largest nonzero eigenvalue 
�1
 of A is determined

numerically for different bin number N and plotted in Fig. 1.
A very close dependence of �1�N−2 is obtained over the
range of bin size considered. This dependence can be reason-
ably understood by treating the thermally induced magneti-
zation dynamics as a diffusion process where the diffusion
length scales as L��dif

1/2 ��dif being the diffusion time�.
The exact solution of �1, however, involves a long ana-

lytical expression for the root of an Nth order polynomial
equation. Furthermore, an approximation based only on �1
will rapidly lose its accuracy at high temperature, i.e., when
the contributions of eigenvalues other than �1 become sig-
nificant. A more useful analytical estimate which we term as
the effective eigenvalue �ef f can be derived based on a first
order approximation �the full derivation is attached in Ap-
pendixes A and B�. This estimate takes into account the con-
tribution of all eigenvalues, and is given by

�MC = 
 1

�ef f

 = 	

i=1

n−1 ��	
j=1

i

pj�� 	
k=i+1

n

pk�� 1

pi
+

1

pi+1
��

�11�

where pj = Peq�Mj� /	iPeq�Mi� is the normalized equilibrium
probability distribution of state j. We will show later that

FIG. 1. �Color online� 
�1
 as a function of bin number N. The
solid line is a linear fit, which yields a �1�N−2 dependence.
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�MC=�ef f
−1 achieves a much closer agreement with the numeri-

cal switching time obtained from LD results, compared to
the simpler �MC= 
�1

−1
 estimate, due to the inclusion of the
contribution from other eigenvalues, e.g., �2 ,�3, etc. The ac-
curacy of �MC= 
�ef f

−1 
 exceeds that of 
�1
−1
 especially when

the condition 
�1
� 
� j
 for j=2, . . . ,N−1 is no longer valid.

III. TIME QUANTIFICATION OF MCS

From a statistical point of view, both LD and MC meth-
ods are methods which describe a diffusion process. In the
limit of a short time step �t, the Langevin dynamics of a
Brownian particle can approximately be described by a mas-
ter equation.26 During a small time step �t in LD integration,
the magnetization x of a macroscopic Brownian particle can
only change by a small amount. It is thus reasonable to as-
sume that the magnetization transition rate is appreciable
only when the change in magnetization 
= 
�x
 is sufficiently
small.19,26 In this way, the Master equation for the LD
method can be obtained which is equivalent to the Master
equation �6� of the MC method, in the limit of large bin
number in the latter �analogous to the condition for small 
 in
the LD method�.

The equivalence of the two methods enables us to obtain
the time quantification of the MC method. To determine the
time conversion factor from MCS in the MC method to real
time in the LD method, the bridging equation is the Fokker
Planck equation �time differential equation describing the
probability distribution of a system� which can describe both
MC and LD methods, as we shall show below. The general
form of the Fokker Planck equation is given by

�W

�t
= −

�

�x
�A · W� +

1

2

�2

�x2 �B · W� , �12�

where x� �−1,1� is the normalized magnetization in the field
direction �z axis� and W�� ,� , t� is the probability distribution
function, and is reducible to W�x , t� for the case of uniaxial
anisotropy. A and B are the so-called drift and diffusion co-
efficients, respectively, and their values are defined by26,27

A = lim
�t→0

1

�t
��x�, B = lim

�t→0

1

�t
��x2� . �13�

In the Langevin dynamics scheme as discussed by Brown,7

the thermal agitation term in the LLG equation acts as a
diffusion term. This term corresponds to coefficient B in the
equivalent Fokker Planck equation, and tends to spread out
the probability distribution of the spin vector orientation. For
an isolated single domain particle undergoing a thermally
induced magnetization reversal process, the coefficient B re-
flects the thermal influence on the magnetization reversal. It
can be calculated from the Langevin dynamics scheme in the
limit of high damping, and is given by6,7

BLLG =
2kBT��0

�1 + �2��s
. �14�

In the MC scheme, when magnetization bin size 
 is suffi-
ciently small, we can convert the master equation into a con-

tinuous differential equation. Considering the ith magnetiza-
tion state of Eqs. �6� and �7�, we thus have

dpi

dt
= wi−1pi−1 − wipi + uipi+1 − ui−1pi

= �exp�− 
 · �/�x� − 1�wipi + �exp�
 · �/�x� − 1�ui−1pi

= 	
n=1

�

�− �/�x�nDi
�n�pi, �15�

where the coefficients in the last equality are given by

Di
�n� = �
n/n!��wi + �− 1�nui−1� . �16�

Omitting the higher order �n�2� expansion in Eq. �15�, we
can thus rewrite Eq. �6� into the following:

dp�

dt
=

d

dx
AMC · p� +

1

2

d2

dx2BMC · p� �17�

where AMC and BMC are diagonal matrices with

Aii = �− wi + ui−1�
 ,

Bii = �wi + ui−1�
2. �18�

Equation �17� is the Fokker Planck equation associated with
the MC method and written in matrix form. Equation �10�
serves as the matrix solution of this Fokker Planck equation.
From Eq. �18� and the Glauber transition rate �Eq. �8��, and
after Taylor expansion of pi+1 and pi−1 about xi �such that the
odd term vanishes�, we obtain

Bii = �wi + ui−1�
2 = 
2 + O�
4� . �19�

Thus we can write the FP diffusion coefficient for the MC
method as

BMC = lim
��→0

1

��
��x2� = �Bii� = 
2. �20�

In the above, we have chosen �� to represent the MC time
step, to differentiate from the real time step �t of the LD
method. Thus we have expressed both the LD equation and
the master equation of the MC method in the Fokker-Planck
form. We can now make a direct comparison of the diffusion
coefficient B of these two Fokker-Planck equations �i.e., Eqs.
�14� and �20��, and derive the relationship between MCS and
the real time unit, i.e.,

��x2� =
2kBT��0

�1 + �2��s
�t = 
2�� = � 2

N
�2

�� . �21�

Equation �21� is the main result of time quantification of the
RWMC method. Equation �21� enables us to model in real
time units the thermally induced magnetization dynamics of
an isolated single domain magnetic particle by using explicit
matrix solutions �e.g., Eq. �10��.

IV. RESULTS AND DISCUSSION

To test the validity of Eq. �21�, we investigate the magne-
tization reversal of an isolated single domain particle by both
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LD and MC methods. In the LD case, this process is mod-
eled by direct time-step integration of the LD equation �Eq.
�2��, while for the MC method, the simulation is performed
based on Eq. �10� and the application of the conversion fac-
tor of Eq. �21�. The results are plotted in Fig. 2 and it is clear
that the LLG results and the numerical RWMC results agree
very well, after the application of the conversion factor. We
also plot the analytical approximations of the switching time
based on the second largest eigenvalue �1 and the “effective”
eigenvalue �eff, as well as the asymptotic analytical result by
Brown et al.20,28,29 At low temperatures these analytical re-
sults are in very good agreement with both numerical LD
and RWMC methods. At high temperature �	�2�, however,
a small divergence of �10% to 15% occurs between the LD
results and the analytical RWMC results. In this high tem-
perature region,�ef f

−1 yields a much better convergence com-
pared to the simpler approximation �1

−1. As a further test of
the relative accuracy of �1

−1 and �ef f
−1 approximations, we

compare their predictions to the actual numerical LD result
for the oblique easy axis case ��=� /4�. In this case, it be-

comes even more apparent that the �ef f
−1 approximation is

more robust and capable of good accuracy for a larger range
of temperatures and easy-axis orientations.

As a statistical description of magnetization reversal,
RWMC method is not able to describe the precessional dy-
namics during a reversal process. This is because preces-
sional motion is an athermal process, which is essentially
driven by the effective magnetic field and not by thermal
fluctuations. Chubykalo et al. investigated the conditions un-
der which the influence of precession becomes significant
and leads to the breakdown in the MC approximation.11 We
confirm this finding in the time quantification RWMC
method by investigating the dependence of the switching
time on the damping parameter �. As seen in Fig. 3, in the
symmetric case �uniaxial single domain particle�, the preces-
sional motion does not affect the accuracy of the MC
method, while in the nonsymmetric oblique case, the RWMC
method gives the accurate result only at high damping con-
dition, where precessional motion is suppressed.

V. CONCLUSION

We have applied the RWMC simulation method to model
the thermally induced magnetization dynamics of a Brown-
ian single domain particle model. By considering the alter-
native LD method, and directly comparing the corresponding
Fokker-Planck equations of both methods, we derive an ana-
lytical conversion factor between the MCS unit into real
physical time. This time quantification is verified by the
close agreement between the time-quantified MC results and
LD numerical data. We also derive an analytical expression
of the switching time �based on an “effective” eigenvalue�,
which goes beyond the usual approximation based on the
second largest eigenvalue �1. We compare the predictions of
both analytical approximations to the numerical LD and
RWMC results and found that the effective eigenvalue ap-
proximation shows more robustness especially in the high
temperature and oblique easy axis cases, for which the sim-
pler �1 approximation breaks down. Finally, we provide a

FIG. 2. Switching time vs temperature for �a� �=0, applied field
h=−0.1. Damping constant �=4. �b� �=� /4, applied field h=
−0.22. Damping constant �=2.

FIG. 3. Switching time vs damping constant � for KuV /kBT
=4.5. A field h=−0.15 applied under an angle of 0 �top� and � /4 to
the easy axis �bottom�.
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second validation of the time quantification by examining the
influence of the damping constant parameter � on the switch-
ing time. We obtain a convergence of both time quantified
RWMC with LD results at all � for the symmetric case.
However, a divergence occurs at low � in the oblique case
�due to the breakdown of the RWMC method in modeling
precessional modes�, which is in agreement with previous
works.

APPENDIX A

The transition matrix of a birth-death process has the form
of

An�n =�
− w1 u1

w1 − w2 − u1 u2

w2 ¯

¯ un−1

wn−1 − un−1

� .

We would like to derive an analytical estimate of the second
largest eigenvalue. �All eigenvalues are negative except for
the largest �0=0.�

1. Properties of determinant

Let the polynomial Jn�x�= 
xI−A
, namely

Jn�x� = �
x + w1 u1

w1 x + w2 + u1 u2

w2 ¯

¯ un−1

wn−1 x + un−1

� .

We define another polynomial Kn�x�:

Kn�x� = �
x + w1 u1

w1 x + w2 + u1 u2

w2 ¯

¯ un−1

wn−1 x + un−1 + wn

� .

The only difference between Jn�x� and Kn�x� is the extra wn

term for the bottom right corner element of the determinant.
Thus Jn�x� and Kn�x� have the relationship as

Kn = Jn + wnKn−1. �A1�

On the other hand, the definition of determinant yields an-
other relationship Jn�x� and Kn�x� as

Jn = �x + un−1�Kn−1 − wn−1un−1Kn−2. �A2�

From Eqs. �A1� and �A2�, we have

Jn = �x + un−1�Kn−1 − wn−1un−1Kn−2

= �x + un−1�Kn−1 − un−1�Kn−1 − Jn−1� ,

Jn = xKn−1 + un−1Jn−1. �A3�

Substituting Eq. �A1� into Eq. �A3�, we obtain

Jn = x�Jn−1 + wn−1Kn−2� + un−1Jn−1 = �x + un−1�Jn−1

+ wn−1�xKn−2� = �x + un−1�Jn−1 + wn−1�Jn−1 − un−2Jn−2� ,

where we have made use of Eq. �A3� in the last step of the
above derivation. So we obtain the following difference
equation:

Jn = �x + un−1 + wn−1�Jn−1 − wn−1un−2Jn−2, �A4�

with the initial conditions

J0 = 0,

J1 = x .

Jn�x� is an nth order polynomial and it is straightforward to
see that x0=0 is a root of Jn�x� �Note that J0, J1 being pro-
portional to x�. In particular, with the assumption of Glaub-
er’s rate, i.e., wi+ui=1, Jn�x� can be simplified to be

Jn�x� = x�	
i=1

n−1

Ai�1 + x�i� .

2. The first order approximation of second largest
eigenvalue

Here we define another polynomial function fn�x�:

fn�x� = Jn�x�/x . �A5�

We would like to derive the approximation xef f of the largest
nonvanishing root x1 of fn�x� using first-order approximation
which is given by

xef f = − fn�0�/fn��0� . �A6�

From Vieta’s theorem we know that xef f = �x1
−1+x2

−1+ ¯

+xn−1
−1 �−1 which includes the contribution from all roots of

Eq. �A5�. This first-order approximation will yield good ac-
curacy under the condition of 
x1
� 
xi
 �i�1�. �See Fig. 4�

We will now calculate fn�0� and fn��0�, respectively. To
calculate fn�0�, we consider Eqs. �A4� and �A5�, from which
we have

FIG. 4. Plot of the accuracy as �ef f /�1 vs 	
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fn�x� = �x + un−1 + wn−1�fn−1�x� − wn−1un−2fn−2�x� �A7�

and the initial conditions

f0�x� = 0,

f1�x� = 1.

When x=0, Eq. �A7� results in

fn�0� = �un−1 + wn−1�fn−1�0� − wn−1un−2fn−2�0� ,

so that

fn�0� − un−1fn−1�0� = wn−1�fn−1�0� − un−2fn−2�0�� = �
i=1

n−1

wi.

�A8�

Let

gn = fn�0�/�
i=1

n−1

ui, �A9�

and let us define a series �pi� such that

p1 = 1,

pi = �
j=1

i−1
wj

uj
�1 � i � n� . �A10�

Equation �A8� thus reduces to

gn − gn−1 = pn,

so that

gn = 	
i=1

n

pi.

We can thus calculate fn�0�:

fn�0� = ��
i=1

n−1

ui�gn = �
i=1

n−1

ui�	
j=1

n

pj� . �A11�

We would like to mention that the series of �pi� defined
above also have a physical meaning, i.e., the relative prob-
ability distribution at equilibrium.30

The calculation of fn��0� is more involved and the full
derivation is given in Appendix B. The result of fn��0� is
given as

fn��0� = ��
i=1

n−1

ui�	
i=1

n−1 � 1

pi+1ui
�	

j=1

i

pj�� 	
k=i+1

n

pk�� .

�A12�

So that from Eq. �A6�, we obtain xef f:

xef f = − fn�0�/fn��0� = −
	i=1

n
pi

	i=1

n � 1

pi+1ui
�	 j=1

i
pj��	k=i+1

n
pk�� .

�A13�

If the Glauber rate is used for ui, we will then have

xef f = −
	i=1

n
pi

	i=1

n−1 �� 1

pi
+

1

pi+1
��	 j=1

i
pj��	k=i+1

n
pk�� .

�A14�

3. Accuracy of the approximation

To examine the accuracy of the approximation, we con-
sider a model probability distribution of

p�x� = C exp�	x2� .

The bin number is set to be N=64.

APPENDIX B

For a given function

fn�x� = �x + un−1 + wn−1�fn−1�x� − wn−1un−2fn−2�x� ,

f0�x� = 0,

f1�x� = 1; �B1�

and

fn�0� = �
i=1

n−1

ui�	
j=1

n

pj� , �B2�

we want to obtain fn��0�.
Since

fn��0� = fn−1�0� + �un−1 + wn−1�fn−1� �0� − wn−1un−2fn−2� �0� ,

�B3�

and using the same definition as Eq. �A9�,

gn = fn�0�/�
i=1

n−1

ui = 	
i=1

n

pi, gn� = fn��0�/�
i=1

n−1

ui,

Eq. �B3� can be reduced to

gn� − gn−1�

=
gn−1

un−1
+

wn−1

un−1
�gn−1� − gn−2� �

=
gn−1

un−1
+

pn

pn−1
�gn−1� − gn−2� � =

pn

pn

gn−1

un−1
+

pn

pn−1

gn−2

un−2

+ ¯ +
pn

p2

g1

u1
.
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In the above derivation, pn / pn−1=wn−1 /un−1 is used accord-
ing to Eq. �A10�. Let

kn = gn� − gn−1� ,

so that

gn� = kn + gn−1� = 	
i=1

n

ki.

For clarity, we expand the expression of kn, kn−1, and kn−2,
etc.

kn =
pn

pn

gn−1

un−1
+

pn

pn−1

gn−2

un−2
+

pn

pn−2

gn−3

un−3
+ ¯ +

pn

p2

g1

u1
,

kn−1 =
pn−1

pn−1

gn−2

un−2
+

pn−1

pn−2

gn−3

un−3
+ ¯ +

pn−1

p2

g1

u1
,

kn−2 =
pn−2

pn−2

gn−3

un−3
+ ¯ +

pn−2

p2

g1

u1
,

so that

gn� = 	
i=1

n

ki = 	
i=1

n−1 � 1

pi+1ui
gi� 	

k=i+1

n

pk�� .

Finally we obtain Eq. �A12�, i.e.,

fn��0� = ��
i=1

n−1

ui�gn� = ��
i=1

n−1

ui�	
i=1

n−1 � 1

pi+1ui
�	

j=1

i

pj�
�� 	

k=i+1

n

pk�� .
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