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The Berezinskii-Kosterlitz-Thouless �BKT� phase transition in two-dimensional planar rotator and XY mod-
els on a square lattice, diluted by randomly placed vacancies, is studied here using hybrid Monte Carlo
simulations that combine single spin flip, cluster, and over-relaxation techniques. The transition temperature Tc

is determined as a function of vacancy density �vac by finite-size scaling of the helicity modulus and the
in-plane magnetic susceptibility. The results for Tc are consistent with those from the much less precise
fourth-order cumulant of Binder. Tc is found to decrease monotonically with increasing �vac, and falls to zero
close to the square lattice percolation limit, �vac�0.41. The result is physically reasonable: the quasi-long-
range orientational order of the low-temperature phase cannot be maintained in the absence of sufficient spin
interactions across the lattice.
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I. INTRODUCTION: SPIN-DILUTED PLANAR SPIN
MODELS

It is well known that vortices are fundamental ingredients
in the Berezinskii-Kosterlitz-Thouless �BKT� phase transi-
tion.1–3 The simplest models exhibiting this transition are the
pure planar rotator model �PRM� and XY model. Pioneering
Monte Carlo works4–7 estimated fairly well the dimension-
less critical temperature �c�kBTc /JS2 �for exchange J, spin
S, and Boltzmann constant kB�, at which the transition takes
place, leading to current precise estimates �c�PRM�
�0.8921 �Refs. 8 and 9� and �c�XY��0.699.10–12

Recently, the study of topological excitations such as vor-
tices and solitons in two-dimensional magnetic lattices con-
taining defects has received a lot of attention.13–22 Such in-
teractions must have interesting consequences for the static
and dynamical properties of easy-plane magnets. Analytical
and numerical calculations have shown that vortices are at-
tracted and pinned by nonmagnetic impurities.16,17,19,23 In
fact, the vortex energy is lowered when pinned at a vacancy,
resulting in greater preference of single vortex18 and
vortex-pair24 formation on vacancies. Of course, this leads to
an overall increase of the system disorder. All of these fac-
tors conspire to reduce the BKT transition temperature with
increasing vacancy density, as has already been seen in cal-
culations from Refs. 12, 25, and 26 for planar spin models on
a two-dimensional square lattice �see also analytical results
using the self-consistent harmonic approximation of Ref.
27�. The important question here is the following: at what
vacancy density is the transition temperature reduced to zero,
so that the system is always in the high-T disordered phase?
This would mean a situation in which there is no low-
temperature phase of quasi-long-range orientational order,
characterized by spin-spin correlations decaying as a power

law with distance, and a finite absolute magnetization ���iS� i��
in the thermodynamic limit.

Calculations of the helicity modulus for the planar rotator
model by Leonel et al.25 indicated that a critical vacancy
density �vac=�c�0.3 causes the critical temperature Tc to
drop to zero. It means that the critical temperature would
vanish at pc=1−�c�0.7, which is above the site percolation
threshold, ppt=1−�pt=0.59, for a planar square lattice. Lozo-
vick and Pomirchi,28 also using the jump in the helicity
modulus, have found that the BKT phase transition occurs
above the percolation threshold in a dilute system of Joseph-
son junctions �using bond dilution�. On the other hand,
Berche et al.26 calculated the decay of the spin-spin correla-
tion function and its related exponent, �, and considered the
transition temperature to be located by ��Tc�=1/4. Those
results suggested that the critical density is closer to 0.41 �the
number associated with the percolation limit for the square
lattice�. The Monte Carlo calculations for this problem natu-
rally are particularly difficult, especially because the interest-
ing region occurs at very low temperature. Furthermore, the
statistical errors due to the random choice of positions for the
vacancies further increases the numerical noise in the
calculations—this effect itself becomes particularly trouble-
some especially when �vac surpasses 0.3 �30%�. As such, it
seems important to make more reliable estimates for the
critical vacancy density based on improved MC calculations
here.

The calculations mentioned above concern the planar ro-
tator model �two-component spins lying in the xy plane�. In a
specialized model with repulsive vacancies, Wysin calcu-
lated the reduction of Tc in an easy-plane Heisenberg model,
with three-component spins with anisotropic couplings of
their components.12 The vacancies were not allowed to be on
nearest or next nearest neighbor lattice sites, which made it
possible to calculate the vorticity density in the model. How-
ever, that calculation did not concern itself with the determi-
nation of the critical vacancy density, because the constraint
of repulsive vacancies limits the possible vacancy density to
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be less than 18%, well below the critical value. Therefore,
for comparison with the planar rotator, we also consider here
the vacancy effects in the �three-component� XY model, with
randomly placed nonrepulsive vacancies.

After describing the model Hamiltonians, we give an
overview of the different methods used to estimate the tran-
sition temperature. This is followed by some specific com-
ments on the Monte Carlo schemes applied to this problem.
The data obtained for the planar rotator and XY models are
presented, followed ultimately by our conclusions.

II. MODEL HAMILTONIANS

The spin models under consideration can be described by
the Hamiltonian

H = − J�
�i,j�

�i� j�Si
xSj

x + Si
ySj

y� , �1�

where �i , j� indicates nearest neighbor sites of an L�L
square lattice, and J is the ferromagnetic exchange coupling

between spins S� i and S� j. The spins S� i have two components
for the planar rotator model and three components for the XY
model; in the latter case, however, only the xy components
are coupled. The occupation variables � take the values 1 or
0 depending on whether the associated site is occupied by a
spin or vacant. A fraction �vac of the sites are chosen ran-
domly to be vacant. It is important to realize, however, that
the Monte Carlo calculations here must make adequate aver-
ages over different choices of the vacancy positions, for a
chosen density. Generally, theoretical results will be pre-
sented as functions of the temperature scaled by exchange
energy,

� �
kBT

JS2 . �2�

The planar rotator model has effectively a single degree of
freedom per site—the angle of the spin within the xy plane.
The main distinction of the XY model is the presence of the
extra Sz components, which act as degrees of freedom, but do
not appear in the Hamiltonian. The XY model therefore in-
volves two degrees of freedom per spin. This increases the
entropy effects at a given temperature and results in a lower
Tc compared to the planar rotator. The MC algorithm for the
XY model must involve the possibility to change all three
spin components for the XY model, while preserving the spin
length.

A. Physical properties leading to Tc

The lack of significant sharp peaks in the thermodynamic
quantities versus temperature T for these models, especially
in finite L�L lattice systems, means that precisely locating
Tc is difficult. Therefore, it is useful to apply several different
approaches, all essentially based on the scaling of the ther-
modynamics with the system size or edge length L.

As the Monte Carlo algorithm proceeds �described in Sec.
II B�, the total system instantaneous in-plane magnetization

M� = �Mx ,My� is observed:

M� = �
i

�iS� i. �3�

Additionally, statistical fluctuations give the susceptibility
components for temperature T,

��� = ��M�
2� − �M��2�/�NT� . �4�

The number of spins in the system is N= �1−�vac�L2. The
average of �xx and �yy defines the in-plane susceptibility,

� =
1

2
��xx + �yy� . �5�

1. Using Binder’s fourth order cumulant

A rough estimate of Tc can be obtained from the size
dependence of Binder’s fourth order cumulant29,30 UL, de-
fined by

UL = 1 −
��Mx

2 + My
2�2�

2�Mx
2 + My

2�2 . �6�

For any L, the asymptotic values are UL�T�Tc�=0.5, UL�T
	Tc�=0. At the critical temperature, UL is approximately
independent of the system size, hence Tc can be estimated
from the crossing point of curves of UL�T� for various L. An
example of such crossing behavior is given in Fig. 1, for the
PRM at �vac=0.04. In practical application, due to the statis-
tical uncertainties, there is usually no clear crossing point,
especially at higher vacancy concentrations. Instead, Tc is
very close to the point where different curves of UL�T� begin
to separate from the low-T asymptotic value. Although very
reliable, this approach is not very accurate, and requires MC
calculations for many temperatures near Tc. Thus it is impor-
tant to consider other methods for determining Tc, and only
refer to the Binder cumulant results as a reliable but some-
what difficult and imprecise reference point.

FIG. 1. �Color online� Application of the fourth order cumulant
�6� for estimating Tc, for the PRM at 4% vacancy concentration.
The data were obtained using the Monte Carlo approach described
in Sec. II B. The inset expands the view near the estimated critical
temperature 	kBTc /JS2�0.815�10�
.
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2. Using estimates of susceptibility exponent, �

A second approach for estimating Tc is the finite size scal-
ing �FSS� of the in-plane susceptibility, as used in a pure
XXZ model by Cuccoli et al.10 and in the same model with
repulsive vacancies by Wysin.12 In the absence of vacancies,
it is a precise method, because the statistical errors in � can
be reduced by extended MC averaging much more effec-
tively than those of the helicity modulus or Binder’s cumu-
lant. We assume that near and below Tc, a power law scaling
of the susceptibility holds, even in the presence of vacancies,

� 
 L2−�, �7�

where � is the exponent for the in-plane spin correlations
below Tc �see Ref. 10�. By using this equation with calcula-
tions at several lattice sizes, the exponent � can be fitted as a
function of temperature. An indication of how � scales with
system size is given in Fig. 2, again for the PRM at 4%
vacancy concentration. One can note clearly how the expo-
nent �2−�� 	slope of log-log plot for ��L�
 decreases as the
temperature increases, especially rapidly as T passes the tran-
sition temperature.

For the pure PR and XY models �no vacancies�, the tran-
sition is located at the temperature where ��T�=1/4. Then,
under that assumption that the vacancies do not change the
basic symmetries in the transition, but only increase the ef-
fective entropy present, we can expect that the transition can
be located in the same way under the presence of vacancies,
solving

��Tc� =
1

4
. �8�

In the absence of any particular theory for the model with
vacancies, this can be expected to be a reasonable definition
for Tc. Analysis of power-law fits of the spin-spin correla-
tions in the diluted PRM26 and in the pure XY model10 also
demonstrated that Tc occurs very close to the temperature
from Eq. �8�. Its validity is further verified here by the com-
parison with the results for Tc due to the helicity modulus,
and due to Binder’s cumulant, the latter of which is reliable

for any kind of model, with or without vacancies. Figure 3
shows its application for the PRM at 4% vacancy concentra-
tion, leading to kBTc /JS2�0.815, consistent with the esti-
mate from Binder’s cumulant �Fig. 1�.

On the other hand, for the pure PRM �no vacancies�, this
fitting of �, using systems as large as L=160, leads to the
estimate �c=0.907�4�, slightly higher than that from more
sophisticated approaches8,9 that minimize boundary effects
	�c=0.89213�10�
. Furthermore, expression �7� does not take
into account the logarithmic terms,31,32 which have been used
for better estimates of Tc. Thus, we should keep in mind that
our estimates of Tc via scaling of � for the diluted models
also may involve small errors. To evaluate the magnitude of
these errors, we also consider the finite size scaling of the
helicity modulus.

3. Using the helicity modulus, �

Another approach to determine Tc is based on the calcu-
lation of the helicity modulus per spin, ��T�. It is a measure
of the resistance to an infinitesimal spin twist � across the
system along one coordinate, defined in terms of the dimen-
sionless free energy, f =F / �JS2�,

� =
1

N

�2f

��2 . �9�

Any general model Hamiltonian leads to the expression

N� = � �2H

��2� − �� �H

��
�2� − � �H

��
�2� , �10�

where = �kBT�−1 is the inverse temperature. For either the
planar rotator or XY model, the required operators to be av-
eraged �in limit �→0� can be expressed using the Cartesian
spin components,

Gs �
�H

��
= �

�i,j�
�i� j�êi,j · x̂��Si

xSj
y − Si

ySj
x� , �11a�

FIG. 2. Log-log plot of susceptibility versus system edge L, for
the PRM at 4% vacancy concentration. The curves correspond to
different values of the dimensionless temperature �=kBT /JS2. Lines
are guides to the eye; errors are smaller than the symbols. Least
squares fits were used to determine the slopes, �2−��, producing
��T� as seen in Fig. 3.

FIG. 3. Application of the correlation exponent � for estimating
Tc, for the PRM at 4% vacancy concentration, derived from using
systems of sizes L=16, 32, 64, and 96. The inset shows how the
critical temperature was estimated as kBTc /JS2�0.815.
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Gc �
�2H

��2 =
1

2 �
�i,j�

�i� j�Si
xSj

x + Si
ySj

y� , �11b�

where êi,j is a unit vector pointing from site j to site i. The
sum determining Gs only includes pairs of lattice sites dis-
placed by ±x̂. Furthermore, one expects the mean of Gs to be
quite small, while its fluctuations do contribute to the helicity
formula �10�. The sum for Gc is seen to be proportional to
the original Hamiltonian.

According to renormalization-group theory,3 the helicity
modulus in an infinite system jumps from the finite value
�2/��kBTc to zero at the critical temperature. Assuming this
applies also to the spin-diluted model, as argued in Ref. 25,
Tc can be estimated from the intersection of ��T� and the
straight line,

� =
2

�
kBT . �12�

The trend in the intersection point with increasing L can be
observed, as shown for the PRM at �vac=0.04 in Fig. 4. Even
at 38% vacancy concentration, Fig. 5, there is a clear indica-
tion of a transition in the PRM at finite temperature; this is
supported furthermore by the trends in the fourth cumulant,
Fig. 6. Generally speaking, the MC data for ��T� show a
steeper drop in the critical region as L increases. The larger
system size used, the lower will be the intersection point and
estimated Tc. Hence this method will always lead to an over-
estimate of Tc.

Better Tc estimates can be made by applying a FSS
analysis33 to �, which does not suffer from the deficiencies
of the above method of estimating �. For temperatures below
Tc, the scaling with system size L follows34

��

2kBT
= 1 + c0 coth	2c0 ln�L/L1�
 �T � Tc� , �13�

where c0 and L1 are fitting parameters. Fitting a data set to
this expression then determines Tc as the point where the

parameter c0 goes to zero. In actual application, the fits to
�13� become very poor once T passes Tc. Another very useful
scaling expression has been applied to classical and quantum
planar models33,35,36

��

2kBT
= A�T�1 +

1

2 ln�L/L0�� . �14�

A�T� and L0 are the fitting parameters. The expression is
exact34,37 at T=Tc, with A�Tc�=1. Thus, the point where the
fitted A�T� passes through unity also gives a clear estimate of
Tc.

Due to the exceptional computation time needed for many
vacancy densities, we applied FSS of � to the PRM only, at
some of the vacancy concentrations �Sec. III A�. Typically,
FSS analysis of � led to Tc estimates within a few percent of
those from using the scaling of �, while requiring consider-
ably longer MC runs to get similar precision. For the XY
model, then, we expect that the Tc estimates from FSS of �
are only slightly different from that expected by FSS of �.

FIG. 4. �Color online� Typical application of the helicity modu-
lus for estimating Tc, for the PRM at 4% vacancy concentration.
The dashed line is Eq. �12�. The inset shows how the crossing
points occur slightly above the critical temperature �kBTc /JS2

�0.815�. Error bars are smaller than the symbols.

FIG. 5. �Color online� The helicity modulus for the PRM at 38%
vacancy concentration for system sizes indicated. The dashed line is
Eq. �12�.

FIG. 6. �Color online� Binder’s fourth cumulant for the PRM at
38% vacancy concentration for system sizes indicated. kBTc /JS2

�0.05 as estimated from the point where the data for different
system sizes separate. The lines are guides to the eye.
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B. Monte Carlo scheme

Thermal averages for a given system size and temperature
were obtained using a hybrid MC approach, including Me-
tropolis single-spin moves and over-relaxation moves11 that
can modify all spin components, in combination with Wolff
single-cluster moves38,39 that modify only the xy compo-
nents. These are based on standard approaches for spin mod-
els, as developed in many references,40–44 and applied re-
cently to the easy-plane Heisenberg model with vacancies,
Ref. 12.

The over-relaxation and cluster moves are important at
low temperatures, where the xy spin components tend to
freeze and single spin moves become inefficient. The single
spin moves and over-relaxation moves were applied to occu-
pied sites selected randomly in the lattice; similarly, the ini-
tial sites for cluster generation were selected randomly on
any sites. A single “MC step” is the combination of one
over-relaxation pass, followed by one Metropolis pass, fol-
lowed by one cluster pass, each of which is defined as fol-
lows:

One over-relaxation step involves choosing N spins ran-
domly and reflecting each spin across the effective field due
to its neighbors, conserving spin length and total system en-
ergy.

In a Metropolis single-spin pass, trial changes were made
on N spins, randomly selected, by adding small increments in
random directions, and then renormalizing the spin to unit
length, accepting or rejecting each change according to the
Metropolis algorithm. The spin increments were adjusted in
length so that the acceptance rate of these moves fell be-
tween 10% and 40%. Of course, the final spin length is al-
ways put back to unity.

One cluster step involves forming enough Wolff clusters
until at least 1 /4 of all the sites have been touched. The
Wolff cluster algorithm �and computer subroutine� used here
is the same as that used for pure systems without vacancies.
A cluster is allowed to include even the vacant sites; the
simple implementation of this is to set the spins to zero
length at the vacant sites, then their “flipping” involves no
energy, and no other algorithm modifications are needed. A
large cluster could be composed from several subclusters
connected by vacant sites, a process that may increase the
mixing produced by the algorithm.

The programming used for the XY model also applies to
the planar rotator model; it is only necessary to set the out-
of-plane components Sz=0 and then never allow them to
change for the PRM. Thus it is straightforward to study the
two models with essentially the same MC approach.

Before performing higher precision simulations for the
FSS analysis of �, preliminary calculations were made for a
range of system sizes, including L=16, 32, 64, 96, and 160.
For a given L�L lattice, the number of vacancies placed at
random locations was Nvac=�vacL

2 �spins removed from sys-
tem or equivalently, set to zero length�. For larger systems or
very low vacancy density, the results are nearly independent
of the particular random choice of vacancy positions. In the
general case, however, it is necessary to average over equiva-
lent systems �same L, �vac� with different particular choices
of the vacancy locations. The statistical errors in the averages

�i.e., errors due to the randomness of MC sampling� are most
significant especially as the vacancy density approaches the
critical value that forces Tc to zero. The statistical errors also
tend to be largest in the smaller systems. Therefore we aver-
aged over Nsys copies of the system, with this number taken
largest for small systems. For �vac�0.35, we used Nsys=64,
32,8,4, for L=16,32,64,96, respectively. For larger density,
�vac�0.35, we doubled these values for Nsys, and addition-
ally included runs with Nsys=4 for L=160.

For thermal equilibration before calculating averages,
5000 MC steps �MCS� were applied for small systems
�L�40� and 10 000 MCS for large systems. For each of the
Nsys individual realizations of a given L and �vac, averages at
one temperature were calculated using between 20 000 and
80 000 MCS �Ndata�, with the greatest number applied to the
larger systems. For example, calculation for one temperature
of a 16�16 lattice at �vac=0.1 involved an average over
64�25 000=1.28 million MCS. On the other hand, one
temperature of a 96�96 lattice at �vac=0.36 involved an
average over 8�80 000=640 000 MCS. Near 0% vacancy
density, these MC parameters produce insignificant error
bars; when �vac exceeds 30%, on the other hand, the resulting
error bars are considerably greater and resist reduction. As
suggested above, the error bars in �, �, and UL can be re-

FIG. 7. �Color online� The helicity modulus for the PRM at
vacancy concentrations �vac indicated in the legend. The dashed line
is Eq. �12�. Part �a� shows the overall trend; error bars are smaller
than the symbols. Part �b� displays the behavior as the transition is
extinguished at the critical vacancy concentration.
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duced more readily by increasing Nsys than by increasing
Ndata when significant vacancy density is present �especially
at �vac�0.3�.

III. MONTE CARLO DATA

Calculations were carried out for a range of vacancy den-
sities from zero to 50%. We especially concentrated on the
region 0.30��vac�0.40, which required the most careful
analysis. For vacancy density less than 30%, it is clear that
there is a transition at a finite temperature, for both the PR
and XY models. At the higher vacancy concentrations, statis-
tical errors were generally more significant. Even so, looking
at the trends in the data with system size, in the following we
show the MC evidence that the transition temperature is re-
duced to zero when the vacancy concentration is approxi-
mately 40%, for both models.

A. Planar rotator model

At low vacancy concentrations ��vac�0.20�, MC results
for UL, �, �, and ��T� bear a great resemblance to those

shown above for 4% vacancies, with fairly smooth depen-
dencies on temperature. The primary modification is the gen-
eral trend of important features towards lower temperature
with increasing �vac. At higher concentrations, errors become
more significant, as seen, for example, in the helicity modu-
lus at 38% vacancies, Fig. 5. In addition to larger relative
errors, the absolute magnitude of � is drastically reduced. It
is very clear, however, that the BKT transition is still present
at this concentration, with kBTc /JS2�0.06 as estimated from
the crossing point of the L=160 data. This is additionally
supported by the corresponding behavior of Binder’s cumu-
lant, seen in Fig. 6, which gives the estimate kBTc /JS2

�0.05, somewhat lower, as can be expected.
An indication of the tendency for reduction of Tc with

vacancy concentration is given in Fig. 7, showing ��T� for
L=96 systems. While these crossing points consistently
overestimate Tc, a better view of this critical point reduction
is provided by the various graphs of ��T� at different con-
centrations, Fig. 8. One can see clearly that once the vacancy
concentration passes a value around 41%, the fitted value of
� does not fall below the value 1/4, at least for the lowest
temperatures used �kBT /JS2=0.01�.

To substantiate these results, the FSS analysis was applied
to � by making higher precision calculations at L=20, 32,
48, 64, 96, for temperatures concentrated near the initial Tc
estimates from the other methods. The fits with �vac�0.10
and 0.30��vac�0.40 were improved by increasing the total
number of MC steps, using Ndata�Nsys from 2�106 to
20�106, with averaging over Nsys from 20 to 200. ��T� was
fitted to expressions �13� and �14� by the nonlinear least
squares Marquardt-Levenberg algorithm,45 determining the
parameters A and c0 as functions of T. Tc is estimated as the
point where A=1 or c0=0; the fitting of c0 essentially be-
comes impossible once T passes above Tc. As an example,
the results of this fitting at �vac=0.04 are shown in Fig. 9,
leading to the estimate, �c�0.809�2�, about 1% below those
estimates from UL and �. In the system without vacancies,
we obtained �c�0.891�1�, consistent with published
works.8,9 Closer to the critical vacancy density, the fitting is

FIG. 8. �Color online� Application of the correlation exponent �
for estimating Tc, for the PRM at the vacancy concentrations indi-
cated in the legend, derived from scaling of � for systems of sizes
L=16, 32, 64, and 96. Part �a� gives the rough overall trend and part
�b� shows how � does not fall to the value 1/4 at vacancy concen-
trations greater than 41%.

FIG. 9. Results of finite-size scaling for the PRM at 4% vacancy
concentration, showing the fitting parameters c0 and A defined in
�13� and �14�. Tc is estimated from the point where A=1 or where
c0=0. These fits were derived from MC runs for systems of sizes
L=20, 32, 48, 64, and 96.
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more difficult, as indicated in Fig. 10, for �vac=0.38, leading
to the estimate, �c�0.075�6�, actually slightly above the es-
timates from UL and �. There are similar slight deviations at
the other vacancy concentrations. In Fig. 11, we show the
overall trends in the fitting parameter A�T� with varying va-
cancy concentration; a clear indication is given of how Tc
falls with �vac approaching a value slightly greater than 40%.
At high vacancy concentrations, the estimates of Tc from
FSS of � generally tend to be above those from the scaling
of � and from UL. Indeed, we have used the �-scaling ex-
pressions �13� and �14� that apply to the pure model, and
there is no guarantee that they can be applied at high vacancy
concentration.

In Fig. 12, the critical temperatures extracted from the
FSS scaling of helicity modulus or from � and using and Eq.
�8� are shown as functions of vacancy concentration. The
scaling fitting of � was made using systems with L=16, 32,
64, 96, FSS of � involved L=20, 32, 48, 64, 96. The nu-
merical values of Tc are summarized in Table I. Taken as a
whole, the results give significant evidence for extinction of
the BKT transition at a vacancy concentration close to 41%.

B. XY model

The general trends in MC data for the XY model are rather
similar to those found for the planar rotator. The most obvi-

ous distinction, however, is that the extra entropy due to the
out-of-plane spin component forces the transition tempera-
ture to be lower in the XY model, no matter what vacancy
concentration is considered.

It is interesting to show some data at 40% vacancy con-
centration, where the transition is seen to occur very slightly
above zero temperature. In Fig. 13 the helicity modulus for
system sizes from L=16 to L=160 is displayed. As the data
for increasing system size is seen to systematically fall to
lower values, this graph alone cannot undeniably prove the
presence of a transition. However, when taken in conjunction
with the fits for �, which passes the value 1/4 around
kBT /JS2�0.018, we can say that even at 40% vacancy den-
sity there occurs a transition at finite temperature. This can
be seen in Fig. 14, where ��T� is shown for the various
vacancy concentrations studied. On the other hand, perform-
ing the MC calculations at temperatures as low as kBT /JS2

TABLE I. Dependence of dimensionless critical temperature
�c�kBTc /JS2 on �vac, as estimated from ��Tc�=1/4, and from FSS
analysis of �, applying A�Tc�=1 and c0�Tc�=0.

�vac �c�PRM-�� �c�PRM-�� �c�XY-��

0.0 0.907�4� 0.891�1� 0.700�5�
0.04 0.815�5� 0.809�1� 0.637�5�
0.10 0.683�4� 0.685�2� 0.547�5�
0.16 0.545�4� 0.56�1� 0.453�5�
0.20 0.456�4� 0.48�2� 0.384�5�
0.30 0.230�4� 0.26�1� 0.208�5�
0.33 0.153�7� 0.190�8� 0.147�5�
0.36 0.093�5� 0.120�8� 0.087�5�
0.38 0.050�6� 0.075�6� 0.049�5�
0.39 0.034�6� 0.041�5�
0.40 0.019�9� 0.036�8� 0.018�7�
0.41 0.005�9� 0.003�7�
0.42 0.000�5� 0.000�5�
0.44 0.000�5� 0.000�5�

FIG. 10. Results of finite-size scaling for the PRM at 38% va-
cancy concentration, as explained in Fig. 9.

FIG. 11. Fitting parameter A�T� for the FSS of �, Eq. �14�, with
vacancy concentrations �vac in percent indicated next to the curves.
Lines are guides to the eye.

FIG. 12. The critical temperatures versus vacancy concentration
for the PRM, extracted from fits of � together with Eq. �8� and from
FSS of ��T�. The inset shows Tc as �vac approaches the critical
region.
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=0.01, the exponent � does not acquire such a low value as
1/4 even for 41% vacancy concentration.

In Fig. 15, the critical temperatures extracted from � and
Eq. �8� and from the helicity modulus �using L=96� are

shown as functions of vacancy concentration. The numerical
values as derived using ��Tc�=1/4 are given in Table I. Just
as in the PR model, these results demonstrate the extinction
of the BKT transition at a vacancy concentration close to
41%. As the transition is controlled by the in-plane spin com-
ponents, the presence of the extra Sz component in the XY
model changes the overall scale of transition temperatures,
but does not affect the critical vacancy concentration.

Finally, we can also make some comparison to the XY
model using repulsive vacancies studied in Ref. 12. Consid-
erable data was presented there for the case of 16% vacan-
cies. Therefore it is interesting to note how the transition
temperature is changed if the vacancies are allowed to be at
completely random positions in the current model.

A graph of ��T� for this case is given in Fig. 16, showing
clearly the transition occurring at kBTc /JS2�0.453. Alterna-
tively, and with even less computational effort, the transition
can be found as done in Refs. 10,12 by plotting � /L�2−�� vs
T, taking �=1/4, and looking for the common crossing point
of data at various system sizes. This is seen in Fig. 17, which
gives the same estimate for Tc. In the repulsive vacancy

FIG. 13. �Color online� The helicity modulus for the XY model
at 40% vacancy concentration for system sizes indicated. The
dashed line is Eq. �12�.

FIG. 14. �Color online� Application of the correlation exponent
� for estimating Tc, for the XY model at the vacancy concentrations
indicated in the legend, derived from scaling of � for systems of
sizes L=16, 32, 64, and 96. Part �a� gives the rough overall trend
and part �b� shows how � does not fall to the value 1/4 at vacancy
concentrations greater than 41%.

FIG. 15. The critical temperatures versus vacancy concentration
for the XY model, extracted from fits of � together with Eq. �8� and
from the crossing of ��T� with Eq. �12� for L=96 systems. The
inset shows Tc as �vac approaches the critical region.

FIG. 16. �Color online� Application of the correlation exponent
� for estimating Tc, for the XY model at 16% vacancy concentra-
tion, derived from using systems of sizes L=16, 32, 64, and 96. The
inset shows how the critical temperature was estimated as
kBTc /JS2�0.453.
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model at the same vacancy concentration, the transition oc-
curs at a slightly higher temperature, kBTc /JS2�0.478. The
result is reasonable; there is greater disorder in the model
with fully random vacancies, hence requiring less thermal
disordering due to temperature to reach the high-temperature
phase. Stated otherwise, the repulsive vacancy model has
more builtin order and hence requires greater thermal energy
per spin to reach the high-temperature phase.

IV. CONCLUSIONS

Hybrid MC calculations applied to the planar rotator and
XY models on a 2D square lattice show that the BKT transi-
tion is extinguished �Tc→0� at a vacancy concentration close
to 41%, a number related to the percolation limit. Then, al-

though the BKT phase transition has an unusual nature, in
which the quasi-long-range topological order is destroyed by
the unbinding of vortices, the percolation problem of systems
exhibiting such a transition must have some similarities to
the traditional 2D Ising model. In general, the transition tem-
peratures for the XY model are lower than those for the PR
model, due to the extra entropy of out-of-plane spin motions,
but otherwise, the static properties are closely related. The
transition temperatures were determined most precisely us-
ing the finite-size scaling of the in-plane magnetic suscepti-
bility, under the assumption that the spin-correlation expo-
nent � goes to the universal value 1/4 at the transition,
regardless of the vacancy concentration. This is equivalent to
saying that the presence of spin vacancies does not change
any fundamental symmetries of the problem. Tc calculated
this way is completely consistent with the corresponding re-
sults from the helicity modulus and Binder’s fourth order
cumulant. At vacancy concentration higher than 41%, the
intrinsic disorder of the system always produces a phase with
short range correlations that decay exponentially, i.e., the
usual “high-temperature” BKT phase whose properties are
strongly determined by the presence of unbound vortices and
antivortices. The lack of percolation across the system at
�vac�0.41 disrupts the ability to generate quasi-long-range
topological correlations. It then becomes impossible to lower
the temperature adequately to reach the ordered phase of
very low vortex density, dominated by spin waves.
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