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We present a model of magnetotransport of inhomogeneous conductors based on an array of coupled
four-terminal elements. We show that this model generically yields nonsaturating magnetoresistance at large
fields. We also discuss how this approach simplifies finite-element analysis of bulk inhomogeneous semicon-
ductors in complex geometries. We argue that this is an explanation of the observed nonsaturating magnetore-
sistance in silver chalcogenides and potentially in other disordered conductors. Our method may be used to
design the magnetoresistive response of a microfabricated array.
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I. INTRODUCTION

The problem of determining the effective conductivity of
a classical inhomogeneous medium1 is an old one, but a
comprehensive theory of the magnetotransport in such sys-
tems is still far from complete. Moreover, much of the early
work on inhomogeneous conductors concentrates on the
zero-magnetic-field case since this is analogous to calculat-
ing the polarization of a random dielectric.2 For the classical
problem to be appropriate, the mean free path of the charge
carriers must be much less than the typical length scale of the
disorder so that Ohm’s law is obeyed locally in space:

E�r� = �̂�r�j�r� , �1�

where j is the current density, E is the electric field, and �̂ is
the resistivity tensor. In the case of a simple conductor that
possesses a single charge carrier and isotropic inhomogene-
ities, the resistivity tensor acquires the following form in a
magnetic field H:

�̂ = �0� 1 � 0

− � 1 0

0 0 1
� . �2�

It is clear that this tensor is characterized by just two param-
eters: the carrier mobility � �since the dimensionless variable
���H� and the scalar resistivity �0. While more complex,
anisotropic resistivity tensors have also been considered in
the inhomogeneous conductor problem,3–5 this paper shall be
solely concerned with Eq. �2�.

For inhomogeneous conductors, the effective resistivity
�eff is defined by �E�v=�eff�j�v, where �¯�v specifies an av-
erage over volume. In the absence of disorder, the magne-
toresistance �R /R���eff�H�−�eff�0�	 /�eff�0� is trivially
zero, for arbitrary orientation of the magnetic field. However,
in general, the magnetoresistance strongly depends on
whether it is transverse or longitudinal, i.e., whether the
magnetic field is perpendicular or parallel to the current. Fur-
thermore, any nonzero transverse magnetoresistance must be
an even function of field due to the rotational symmetry
about the current axis. Thus, �R /R�H2 in the low field
limit, which is usually defined to be ��1, but the crossover

from the low-field to high-field regime is not always obvious
in disordered systems, as will be discussed later.

Some recent experiments6–15 on the doped silver chalco-
genides, Ag2+�Se and Ag2+�Te, have added impetus to the
investigation of this problem. Both silver chalcogenides ex-
hibit a positive, transverse magnetoresistance that is a linear
function of magnetic field throughout the temperature range
4.5–300 K, with no signs of saturation up to fields of 60 T.6,7

In particular, the linearity continues down deep into the low-
field regime ��1. Such behavior is not what is seen in con-
ventional semiconductors, where the resistance increases
quadratically with increasing magnetic field at low fields
and, except in very special circumstances, eventually satu-
rates at fields typically of order 1 T,16,17 corresponding to
�
1. Since the silver chalcogenides are nonmagnetic com-
pounds, the origin of the large magnetoresistance is unclear,
although a quantum theory based on the partial population of
one Landau magnetic band has been proposed.18,19 However,
the large range in temperature over which the phenomenon
occurs suggests that one should examine large magnetoresis-
tances resulting from classical effects, namely the case where
the semiconductor is highly inhomogeneous.

The theoretical study of classically disordered conductors
may be divided into two separate classes: Media consisting
of two or more distinct phases, separated by sharp bound-
aries, and systems that possess continuously variable fluctua-
tions in the conductivity. In the first class, solutions for a
nonzero magnetic field have been derived for an isotropic
medium with a low volume fraction c�1 of insulating
spherical inclusions,20,21 and they give a positive linear mag-
netoresistance in the high field limit ��1, but the increase
of the magnetoresistance �R /R with field is small, being
proportional to c. An effective medium method has been
used to extend this solution to higher volume fractions,22 but
this result is approximate and it is still only applicable to
high fields ��1. The class of systems with continuously
varying conductivity fluctuations has only been studied for
weak, short-range disorder.3,23 Using an advection-diffusion
analogy, the effective magnetoresistance is determined to be
�R /R
	4/3�2/3 for �	�1, where the disorder width 	�1.

Thus, the main limitation of the current literature is that it
is generally restricted to media that only deviate slightly
from homogeneity, so the increase in magnetoresistance is
small and anomalous behavior only occurs at very high mag-
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netic fields. Whilst there is an exact solution for the effective
magnetoresistance in two dimensions that yields a linear
magnetoresistance, it is restricted to the special case of a
two-component media with equal proportions of each
phase.24–26 However, this does lend credence to the hypoth-
esis that classical disorder is the cause of the anomalous
magnetoresistance of the silver chalcogenides.

In order to attack the problem of strong inhomogeneities,
we previously introduced a two-dimensional random resistor
network model.27 We used it to show that classical disorder
is a possible cause of the anomalous magnetoresistance of
the silver chalcogenides, and we raised the possibility of us-
ing the networks to construct magnetic field sensors that op-
erate on principles similar to extraordinary magnetoresis-
tance �EMR� devices.28,29

In this paper, we investigate the galvanomagnetic proper-
ties of the random resistor network model in detail. This
model allows one to study the magnetoresistance of an inho-
mogeneous semiconductor across the whole magnetic field
range for a variety of disorder. By considering voltages and
current paths within the network, as well as network magne-
toresistances, we demonstrate that our resistor network is
also capable of simulating macroscopic media with compli-
cated boundaries. We use this result to include contact effects
between resistors within the network.

The paper is organized as follows: Section II describes the
random resistor network model and derives expressions for
the network magnetoresistance and Hall resistance. In Sec.
III, we use the insight gained from studying the characteris-
tics of small networks to ascertain the symmetries of the
network magnetoresistance and, thus, determine the condi-
tion for which the magnetoresistance is nonsaturating. Next,
we examine larger networks by studying the magnetotrans-
port of uniform square networks and random square net-
works in Sec. IV. Finally, we address the ramifications of
contact resistances between resistors and boundary effects
within the resistor network in Sec. V, before concluding in
Sec. VI.

II. RESISTOR NETWORK MODEL

We tackle the inhomogeneous conductor problem by dis-
cretizing the medium into a random resistor network and
analysing it numerically. Standard resistor networks, where
the network unit is taken to be a two-terminal homogeneous
resistor, are inadequate for simulating current flow in a mag-
netic field, since it does not allow the current to flow perpen-
dicular to the voltage drop across a resistor. Thus, a network
of two-terminal resistors will not faithfully represent Eq. �2�,
which requires the local current to make an angle arctan���
with the local electric field.

The simplest resistor network model that takes account of
the Hall component is a two-dimensional square lattice con-
structed of four-terminal resistors, with a magnetic field ap-
plied perpendicular to the network. This is sufficient for
simulating a transverse magnetoresistance, but not a longitu-
dinal one since this requires a three-dimensional network.
Networks with multi-terminal elements have also been used
to study percolating media in a magnetic field30 but, unlike

our model, the elements were restricted to being either insu-
lators or conductors of a set conductivity.

In principle, the network resistor unit can be of arbitrary
geometry but, for simplicity, we take it to be a homogeneous
circular disk with four current terminals and four voltage
differences between the terminals, as shown in Fig. 1. These
currents and voltages are related via a 4
4 matrix z:

�i = zij � j . �3�

The coefficients zij can be determined by solving the Laplace
equation for the electric potential of a homogeneous, con-
ducting disk, using the currents as boundary conditions �see
the Appendix�. Note that this formulation implicitly assumes
a uniform injection of current into the terminals at all mag-
netic fields. In practice, a magnetic field generally perturbs
the current at a boundary between two different conductors,
but we shall neglect these corrections for now, and revisit
them later in our discussion of boundary effects in Sec. V.

If the terminals are taken to be equally spaced and the
angular width 
 of the terminal is held fixed �we will take

=0.14 radians in this paper�, then the resistor impedance
matrix has the form:

z =
�

�t�
a b c d

d a b c

c d a b

b c d a
� . �4�

Here, � is the disk scalar resistivity and t is the disk thick-
ness, while the matrix elements are dependent on 
 and �:
a=−g�
�+ �� /4�� , b=g�
�+ �� /4�� , c=0.35− �� /4�� and
d=−0.35− �� /4��. In the limit 
→0, the function g�
�
→� so that the disk resistance diverges as expected. Like
Eq. �2�, the impedance matrix z of each resistor is character-
ized by two independent parameters: the mobility � and the
quantity s=� / ��t�. Note that the cyclical permutation of ma-
trix elements is associated with any n-terminal resistor that is
invariant under rotations of 2� /n radians. There is also the
added constraint that �i�i=0, so we have a+b+c+d=0.

FIG. 1. The network resistor unit consists of a homogeneous,
conducting disk with four equally spaced terminals. Currents � en-
tering the disk are taken to be positive, while the voltage differences
� between the terminals are considered positive when measured in
the clockwise direction.
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To construct an N
M random resistor network, we con-
nect the disks together �e.g., using perfectly conducting
wires� and then vary � and s for each resistor. Note that we
can include positive charge carriers �holes� by allowing � to
be positive as well as negative, whereas previous studies of
inhomogeneous media have generally focused on charge car-
riers of the same sign. In the context of real materials such as
the silver chalcogenides, we can view the network as repre-
senting an array of silver-ion clusters and voids within the
semiconductor.

A typical N
M network is depicted in Fig. 2. One can
define a network impedance matrix Z so that the input volt-
ages Vi=ZijIj, where I corresponds to the input currents. The
impedance matrix is determined by grounding one terminal
to provide a point of reference for the voltages, and then
using Kirchoff’s laws to eliminate the current at the
grounded terminal as well as eliminating the internal currents
and voltages within the network. By classifying the voltages
and currents into 2N−1 longitudinal components Vi

L , Ii
L, and

2M Hall components Vi
H , Ii

H, the �2M +2N−1�
 �2M +2N
−1� impedance matrix Z can be written as

Z = �ZHH ZHL

ZLH ZLL 
 . �5�

To determine the magnetoresistance of an N
M network,
we set Ii

H=0 and completely ground the left side of the lon-
gitudinal voltages in Fig. 2 while setting VL on the right side
to a constant potential U. The network resistance RNM�H� is
then given by:

RNM�H� =
U

�
i

N

Ii
L

=
U

�
i

N

�ZLL�ij
−1Vj

L

, �6�

where the sum over input currents is performed along the
ungrounded �right� edge. Similarly, the Hall voltages are

VH = ZHL�ZLL�−1VL. �7�

If we keep the ratio N /M constant and take the limit where
N→�, then the resistor network should give us the galvano-
magnetic properties of a real material. Equation �6� is diffi-
cult to solve analytically for large networks and, in practice,
we just use Kirchoff’s laws to numerically solve for all the
currents and voltages in the network, since this allows us to
study the current flow and voltage landscape within a net-
work. However, considerable insight can be gained from ex-
amining the symmetries of Z.

III. SMALL NETWORKS AND NETWORK SYMMETRIES

In order to elucidate the basic properties of the resistor
network model, we begin by studying small networks,
namely 1
M and N
1 networks. The simplest network is a
single resistor, shown in Fig. 3�a�, and this yields �R /R=0
as expected, because we have assumed that the disk is a
conventional conductor with no implicit magnetoresistance.
Moreover, this behavior holds for generic 1
M networks
which are simply equivalent to chains of two-terminal resis-
tors. However, N
1 networks exhibit nontrivial behavior
since they allow for a plurality of current paths within the
network when N�1. A 2
1 network of identical resistors
��1=�2 in Fig. 3�b�	 yields �R /R��2 while a 3
1 network
of identical resistors gives a nonzero magnetoresistance that
saturates when ��1. Figure 4 reveals that among uniform
N
1 networks there is a general trend for even-N networks
to have a nonsaturating magnetoresistance and for odd-N
networks to possess a saturating magnetoresistance, where
the saturation level �R��� /R scales as N2. We see that the
differences in �R /R between odd-N and even-N networks
diminish as N increases, with N and N+1 lying on the same
curve for sufficiently small �. However, note that the N
1
network does not represent a well-defined system in the
infinite-N limit since RN1�0�→0.

Studies of N
1 networks consisting of two types of re-
sistors have also yielded interesting patterns in the high field
behaviour of �R /R. For the 2
1 network shown in Fig.
3�b�, the magnetoresistance saturates when s1�1�s2�2,
where the saturation value of �R /R depends on �s1�1

−s2�2�, but setting �1��2 and s1�1=s2�2 always gives a

FIG. 2. Schematic diagram of an N
M network. One terminal
is grounded to provide a point of reference for the voltages, and we
can disregard the current at the grounded terminal by imposing
current conservation. Voltages and currents can be classified into
2N−1 longitudinal components Vi

L , Ii
L and 2M Hall components

Vi
H , Ii

H.

FIG. 3. Examples of small resistor networks corresponding to
�a� a single resistor, �b� 2
1 network and �c� 3
1 network, where
�i��si ,�i�.
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nonsaturating magnetoresistance. Another example is the 3

1 network in Fig. 3�c� which always has a saturating mag-
netoresistance except when s1�1=2s2�2. Similar patterns oc-
cur in networks of larger N.

The emergence of these symmetries can be understood by
considering the impedance matrix Z. One can demonstrate
that it has the form:

Z = S + �A , �8�

where S and A are symmetric and antisymmetric matrices,
respectively. For chains of resistors, including the case where
we only have one resistor, S and A are always independent of
�, but in general they are only constant in the limits where
�→0 and �→�. Note that Z must always be a symmetric
matrix at zero magnetic field, since an antisymmetric matrix
implies dissipationless current flow. To see this, consider the
power of the network

P = VTI = ITV = ITZTI = ITZI .

Thus, we have P=0 if ZT=−Z. Since the presence of a mag-
netic field induces dissipationless flow, it makes physical
sense to have an antisymmetric matrix attached to �.

The relevant quantity that is used to derive the magnetore-
sistance is the �2N−1�
 �2N−1� matrix ZLL. From Eq. �5�, it
also has the form ZLL=SLL+�ALL. We can write ZLL=�Z� so
that Z�→ALL as �→�. Moreover, ALL is an odd antisym-
metric matrix for all N, so Z� will possess at least one eigen-
value that approaches zero at large fields.

Now, the sum of the input currents along the right edge
can be written as

�
i

N

Ii
L =

1

�
�

i

N

�
n

2N−1
wn,iwn,j

T

�n
Vj

L, �9�

where wn and �n are the nth eigenvector and eigenvalue of
Z�, respectively. Since � appears in the denominator, all
terms will vanish in the high field limit except for the singu-
lar terms associated with the eigenvalues approaching zero.
Their behavior will determine whether the magnetoresistance
is saturating or nonsaturating. If we assume that only one

eigenvalue �0 approaches zero in the high field limit, then we
have

�
i

N

Ii
L �

U

��0
��

i

N

w0,i
2

+ O� 1

�

 . �10�

The behavior of �0 is governed by SLL /� so we must have
�0�1/� when ��1. Therefore, �0 cancels � in the denomi-
nator and the magnetoresistance is only nonsaturating if
�i

Nw0,i→0 at large fields. This explains why special configu-
rations of resistors in the small networks give a nonsaturating
magnetoresistance. In the case where the magnetoresistance
is saturating, �0 dominates the electrical transport and Ii

L

→w0,i. More generally, �i
Nw0,i will determine the exact de-

pendence of RNN�H� on field as �→�.
To be more concrete, let us consider the simple case

where

ALL = � 0 1

− 1 0

 . �11�

Then the zero eigenvalue has the �normalized� eigenvector
w0i= �−1�i /�2N−1 and in the high field limit we obtain

�
i

N

Ii
L �

U

2N − 1���
i

N

�− 1�i
2

+ ���,N�� , �12�

where ��� ,N� is a finite-field correction factor that vanishes
as �→�. Therefore, we have the high-field resistance

RNN�H� � �2N − 1 if N is odd

2N − 1

���,N�
if N is even. � �13�

The magnetoresistance is nonsaturating for even-N net-
works and it saturates for odd-N networks, in agreement with
Fig. 4. The fact that RNN�H� scales linearly with N for odd-N
networks is in apparent contradiction with the inset of Fig. 4,
but consistency is recovered once one notes that R�0��1/N
so that, at high fields, RNN�H� /R�0��N2 for N�1.

Since Eq. �13� is independent of M, we expect it to be
valid for all uniform networks. However, in the case of large
random networks, the situation is more complicated since
there is generally a distribution of eigenvalues that ap-
proaches zero at high fields. This must be properly treated
using sophisticated tools such as random matrix theory.

IV. LARGE SQUARE NETWORKS

To investigate larger networks, we focus on N
N net-
works because their zero-field resistance remains finite as
N→�. Of course, a finite zero-field resistance is obtained for
any N
M network provided we keep the ratio N /M con-
stant as N→�, but square networks are chosen for numerical
convenience.

A. Uniform resistor networks

The simplest square network is where all the resistors are
identical and in this case the zero-field resistance is constant

FIG. 4. �Color online� Magnetoresistance of uniform N
1 net-
works with set � ,s, where the saturating curves correspond to N
=3, 7, and 11, in order of increasing size. The remaining curves
represent N=2, 6, and 10, in order of size again. Inset: For odd N
the saturation level �R��� /R�N2.
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as system size is increased. In accordance with Eq. �13�,
uniform square networks retain the “odd-even” trend of N

1 networks, where odd-N networks display a saturating
magnetoresistance and even-N networks exhibit a nonsat-
urating one �see Fig. 5�. The key difference is that the �R /R
curves collapse onto a straight line for ��1 as N→�, while
there are no changes to the low field ���1� behavior, where
�R /R��2. This nonsaturating, linear behavior resembles the
magnetoresistance of the silver chalcogenides and it makes
large networks candidates for sensors of high magnetic
fields. Note that �R /R is independent of s since it just ap-
pears as a scaling of R�H� in uniform networks. From the
inset of Fig. 5, we see that the magnetoresistance saturation
of odd networks scales linearly with N as expected.

From the point of view of experimentally constructing
N
N uniform networks, it is worth examining the effect of
adding a finite resistance r at the connections between ele-
ments. One can mathematically show that this is, in fact,
equivalent to reducing the angular width 
 of the terminals.
From our numerical simulations, we find that it does not
change whether the magnetoresistance is saturating or other-
wise, but in Fig. 6 we see that the size of �R /R at a given
field decreases with increasing r. Additionally, it changes the
field scale such that the divergence of odd and even curves,
as well as the crossover from linear to quadratic behaviour, is
shifted to higher fields. The reduction in �R /R as r increases
is not surprising, because in the limit where r→�, the
Ohmic dissipation in the network is dominated by the con-
nections between disks and we effectively recover a network
of two-terminal resistors, which has �R /R=0.

Another important characterization of uniform networks
is the Hall coefficient RH. In terms of network parameters
�see Fig. 2�, we have

Rj
H =

Vj
H − VM+j

H

H�
i

N

Ii
L

, �14�

where it is a function of the position across the network j
=1,2 ,… ,M. By symmetry, we expect Rj

H=RM+1−j
H . The Hall

coefficient converges rapidly with increasing system size, so
we will restrict our consideration to uniform 16
16 net-
works. In Fig. 7, we observe that it has the general form
Rj

H=s�f j��� so, if we take �= �ne��−1 , RH is inversely pro-
portional to carrier density n like conventional semiconduc-
tors. In contrast to a conventional semiconductor, it is also
dependent on � at low fields and the strength of this depen-
dency increases as we approach the network edges j=1, 16.
This already hints that network boundaries play an important
role in the magnetotransport of uniform networks, as will be
discussed in Sec. V.

B. Random resistor networks

To model real inhomogeneous conductors, it is necessary
to consider random resistor networks. In this case, we take
the distribution of � within the network to be Gaussian, with
width ��. Since s is always positive, we take s=�2, where �
also has a Gaussian distribution of width ��. We can then
define the width of s to be �s=���4�− ��2�, where �¯� is an
average over the Gaussian distribution. A numerical analysis
of random N
N networks produces positive magnetoresis-
tances that depend on the particular network configuration

FIG. 5. �Color online� Magnetoresistance of N
N uniform net-
works, where the saturating dotted curves correspond to N=5, 9,
and 13, in order of increasing size, and the remaining dotted curves
are N=10 and 14 as curve size decreases. The solid curve represents
the straight line �R /R�0.35� that the dotted curves collapse onto
when 1���2N. Inset: For odd N the saturation level �R��� /R
�1.4N.

FIG. 6. �Color online� Magnetoresistance of 9
9 and 8
8
uniform networks, where there is a constant resistance r at the con-
nections between elements. Note that �R /R of the 8
8 network
corresponds to the larger curve at given r. The unit in which r is
measured, r0, is taken to be R�0� of a uniform square network with
r=0.

FIG. 7. �Color online� Hall coefficient Rj
H for different positions

j across a uniform 16
16 network. It is dependent on � as well as
s, and it has the general form Rj

H=s�f j���.
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for small N and, consequently, exhibit a large range in be-
havior whose variation increases with increasing H. How-
ever, this range in behavior diminishes with increasing N, as
illustrated in Fig. 8. The distributions of magnetoresistance at
large field clearly show a decreasing distribution width as N
increases and the distribution becomes evenly spread about
the mean for sufficiently large N. Therefore, the magnetore-
sistance of the infinite random network should be given by
the average magnetoresistance of finite networks.

Figure 9 displays our key results for simulations per-
formed on 20
20 random networks. We find that the aver-
age �R /R is linearly dependent on field and that it is
strongly dependent on �, but it is still insensitive to s like in
the uniform case. This linear dependence can be argued on
the grounds that current in a strongly disordered medium at
large fields is forced to flow perpendicular to the applied
voltage a significant proportion of the time and, therefore,
contributes the Hall resistance �xy �H to the effective mag-
netoresistance. The character of the mobility distribution de-

termines the size of the relative magnetoresistance because,
at sufficiently large magnetic fields, we see that �R /R� ���
for �� / ����1 and �R /R��� for �� / ����1, where the
exact proportionality constants depend on the details of the
distribution. Therefore, we would expect �R /R of an inho-
mogeneous semiconductor to diminish with increasing tem-
perature, since this corresponds to a decrease in � due to
phonon excitations. This is consistent with experiments on
the silver chalcogenides.6

The crossover from linear to quadratic behavior occurs at
field ���−1 for �� / ����1 and ����−1 for �� / ����1.
Thus, even when the characteristic field ���−1 is of order 1 T,
the measured crossover field of a disordered semiconductor
can be several orders of magnitude smaller, provided �� is
large. This yields a possible explanation for why the linearity
of the silver chalcogenide magnetoresistance continues down
to fields as low as 10 Oe.

It is also of interest to determine how disorder affects the
Hall coefficient, because experiments on the silver chalco-
genides have established that an anomalous universal rela-
tionship exists between the magnetoresistance and the Hall
resistance.7 Unfortunately, an enormous range in behavior is
displayed for the Hall resistance of finite random networks,
and there is no obvious convergence in the behaviour for
network sizes N�30. Thus, we need to examine even larger
networks in order to determine the Hall resistance for the
infinite network. One possible approach is to implement a
numerical renormalization group technique where each resis-
tor unit is replaced by a new, renormalised resistor unit con-
sisting of a 2
2 resistor network, but this is beyond the
scope of this paper.

V. BOUNDARY EFFECTS

A. Effects of macroscopic boundaries

Before we conclude our study of large resistor networks,
we need to address an apparent conundrum: The uniform
network in the infinite limit should behave like a classical
homogeneous conductor with no magnetoresistance. To see
this, consider a single resistor, like Fig. 1, within the infinite
uniform network. From translational symmetry, current en-
tering the resistor from the right �bottom� terminal is equal to
the current leaving from the left �top�. If we assume that the
current flowing perpendicular to the applied voltage is zero,
as dictated by the boundary conditions, then the magnetore-
sistance of the uniform network becomes equivalent to that
of a single resistor, and is thus zero. So why is the magne-
toresistance that we calculated for the infinite uniform net-
work nonzero and nonsaturating? The answer lies in bound-
ary effects due to the perfectly conducting electrodes that are
used to apply the potential difference across the network.

Figure 10 depicts the boundary between the ideal elec-
trode and a material of finite resistivity �1 in the x−y plane.
If a magnetic field H is applied in the z direction, the classi-
cal electrical transport in homogeneous material obeys
Ohm’s law, with a resistivity tensor �̂ given by Eq. �2�. Now,
the electric field Ey that is parallel to the surface must be
continuous across the boundary according to the standard

FIG. 8. �Color online� Distributions of magnetoresistance taken
from 1000 samples for each network size, where we have set ���
=0, ��H=50, and ���=0 �so that �s / �s�=1/�2�.

FIG. 9. �Color online� Average magnetoresistance �R /R, as a
function of dimensionless magnetic field H /H0, of 20
20 random
resistor networks for 3 different mobility distributions, where H0

=1 kOe is a typical field scale. The magnetoresistance was aver-
aged over 10 random network configurations and, in order of in-
creasing size, the curves correspond to: �i� ���=0.1H0

−1 , ��=H0
−1,

�ii� ���=H0
−1 , ��=0, and �iii� ���=0, ��=5H0

−1. Inset: By scal-
ing the curves so that they all have the same magnetoresistance at
around 4H0, it can be seen that linearity continues down to lower
fields when the mobility disorder is large, ���H0

−1.
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Maxwell equations. Since the electric field inside an ideal
conductor is always zero, then Ey =0 and the electric field
outside the conductor must, therefore, be perpendicular to
the perfectly conducting surface. This, combined with the
form of �̂, causes the current to enter and exit the perfectly
conducting electrodes at the angle �=arctan �. For strong
fields ��1, the current is angled at almost 90° to the electric

field, so the effective resistivity of the material close to the
electrodes is

�eff � �Ex

jy
� � �1� . �15�

This provides an explanation for the linear magnetoresis-
tance of the infinite uniform network in Fig. 5. In general,
currents will be perturbed at a boundary that is perpendicular
to the x−y plane if there is a mismatch of Hall electric fields
Ey across the interface when jy =0.

Figure 11�a� demonstrates that, in a large uniform net-
work, the current is most strongly perturbed at the electrode
boundaries in a strong magnetic field. Deep within the net-
work, away from the boundaries, the current is uniformly
spread, so a measurement of the bulk magnetoresistance us-
ing a four-probe31 measurement, will yield a zero magnetore-
sistance in the infinite size limit. There is also the extra re-
striction that no current is allowed to enter or leave the top
and bottom edges of the network, so this forces the majority
of the current to enter the network at the top left corner and
leave at the bottom right corner. As �→�, we obtain singu-
larities of the current in the aforementioned corners. This
type of behaviour has already been noted in the context of
real homogeneous materials.32

In addition, the anomalous Hall coefficient in Fig. 7 quali-
tatively matches calculations for the response of simple Hall
devices constructed from homogeneous materials with a
square geometry33,34 like that in Fig. 10. There, a geometrical
correction factor is used to describe the diminution of the
Hall voltage due to finite size effects, and this factor is de-
pendent on the ratio of the electrode width L1 with respect to
the length L2 of the Hall device, i.e., the ratio N /M of an
infinite uniform resistor network.

It is important to stress that random resistor networks cor-
respond to an entirely different class of system from the ho-
mogeneous conductor: The infinite random resistor network
represents an inhomogeneous material, while a uniform net-

FIG. 10. �Color online� An L1
L2 homogeneous medium with
two perfectly conducting electrodes attached. The electrode bound-
ary may be treated as an interface between an ideal conductor and a
material with finite resistivity �1. In a magnetic field, current j en-
ters the ideal conductor at an angle �=arctan � with respect to the
electric field E.

FIG. 11. �Color online� Visualizations of currents and voltages at large field in a 20
20 network of disks with radii 1 �arbitrary units�,
where the potential difference U=−1 V. The black arrows represent currents, where arrow size corresponds to the magnitude of the current.
�a� Uniform network at �=30. �b� Random network with ���=0, ��H=30 and �s / �s�=1/�2.
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work may only be regarded as inhomogeneous when the sys-
tem size is finite. Comparing Figs. 11�a� and 11�b�, we see
that the current paths are highly inhomogeneous and fila-
mentary within the random network unlike the uniform case.
The voltage landscape is also nontrivial and the current paths
create loops within the random system. Therefore, the mag-
netoresistance should be nonzero deep within the random
network, away from the boundaries.

We can strengthen this claim by considering the voltage
correlation function:

Vcorr�x� = �V�r + x� − V�r��r, �16�

where V�r� is the voltage at position r in the network, x
denotes vectors oriented in the x-direction, and �¯�r repre-
sents an average over r. Taking the radii of the disks to be 1
�arbitrary units�, we should note that Vcorr�Nx̂�=U in an N

N network, since this corresponds to measuring the poten-
tial difference across the whole network.

Figure 12 plots the voltage correlation function at large
magnetic field of 20
20 networks for four different cases of
disorder. When the network is uniform, we see that the slope
of Vcorr�x� suddenly increases for large x, which implies that
the voltage drops within the network are smaller than those
close to the boundary. This demonstrates that much of the
magnetoresistance of the network is confined to the bound-
aries, as expected. In contrast, as we increase the disorder in
the network, the behavior of Vcorr�x� tends to a straight line,
indicating that the linear magnetoresistance is spread across
the whole of the network and is not just a boundary effect.
Of particular interest is the fact that maximum insensitivity
to the boundary is achieved when ���=0, which could imply
that the magnetoresistance is largest when electrons and
holes are present in equal proportions, as has been measured
in experiment.8 Recent calculations by Guttal and Stroud26

on two-dimensional, two-phase media further support these
observations. They prove that the magnetoresistance of their
inhomogeneous conductor is linear when ���=0, but it can
saturate when ����0, like in experiment.

B. Finite-element modeling of macroscopic media

In addition to studies of random media, there is also in-
terest in understanding classical macroscopic media with
complex geometries, because of possible geometrical effects
in magnetoresistance and Hall measurements. Geometric en-
hancements of the magnetoresistance are already the basis of
sensitive EMR magnetic-field sensors.28,29 In general, it is
difficult to analytically calculate the magnetotransport of
macroscopic media with complicated boundaries, because
the calculation involves solving differential equations for the
currents/voltages where the boundary conditions contain de-
rivatives that are oblique to the boundary surfaces.35 Thus,
standard mathematical techniques, such as separation of vari-
ables, will typically fail in these problems, although the ap-
plication of conformal mappings in two dimensions has
proved successful in dealing with simple geometries.34,36,37

However, one can, in principle, use infinite uniform networks
to simulate two-dimensional, macroscopic, composite con-
ductors, in a manner analogous to the finite-element model-
ing of EMR devices.38 Moreover, current perturbations at the
connections between disks can be disregarded entirely in
these networks if we choose the terminals to have the same
resistivity as the disks. Boundaries within the macroscopic
system still present a potential problem since they involve
disks of differing resistivity connected together. But, at fixed
magnetic field, the magnitude of these contact effects will
tend to zero as the granularity of the network goes to zero
�N ,M→��, provided the number of elements with contact
effects scales slower than the total number of elements. This
is certainly true for one-dimensional boundaries within a
two-dimensional homogeneous medium, since the number of
boundary elements in the network scales like N while the
total number of elements scales like N2.

It is important to note that the homogeneous conductor
constructed from the infinite uniform network will possess a
mobility �* and resistivity �* that is different from those of
the elements that generate the network. Generally, these ef-
fective network parameters will depend on the geometry of
the element as well as the connections between elements. For
the situation where there is no resistance between the ele-
ments, the effective quantities can be determined from the
resistivity and Hall coefficient of a single element. Therefore,
using Eq. �4�, we have parameters

�* =
2�

�t
�g�
� + 0.35	 , �17�

�* =
��

2�g�
� + 0.35	
. �18�

The high-field magnetoresistance of the uniform square net-
work in Fig. 5 is then given by �R /R
�*H.

To confirm the validity of our numerical approach, we can
compare the magnetoresistance of infinite uniform networks
with results of the conformal mapping approach. Following
the method of Rendell and Girvin,35 we find that the L1

L2 homogeneous medium in Fig. 10 has resistance:

FIG. 12. �Color online� Voltage correlation function at large
magnetic field for 20
20 networks of varying disorder. Note that
the cases with ���=0 correspond to �s= �s� /�2, since s=�2. For
random networks, the function has been averaged over 100
samples.
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R = �1
�1 + �2

�
0

1

dx cos �L1L2
�x�

�
0

1

dx cos �L2L1
�x�

, �19�

where

�L1L2
�x� = �

n�odd�

4 arctan���
n�

sin�n�x�

cosh�n�L1

2L2

 .

Thus, for the special case where L1=L2, we have the exact
result R=�1

�1+�2, which is in agreement with our numeri-
cal simulations of N
N networks in Fig. 5 if we take N
→� , �=�*H and �1=�*.

For a general N
M uniform network with M �N, the
numerical simulations in Fig. 13 demonstrate that the resis-
tance is approximately given by the expression:

RNM�H� � RNN�H� + RNN�0��M

N
− 1
 . �20�

Thus, in the limit where N ,M→�, we have resistance

RNM � �*��1 + ��*H�2 − 1 +
M

N

 . �21�

This becomes independent of network dimensions as H
→�, like previous studies of two-terminal devices have
predicted,39 but the high-field magnetoresistance is �R /R
�N /M since RNM�0�=�*M /N.

C. Contact resistance between elements

The insights gained in the previous section can be used to
analyze contact effects between elements in the network. We
previously assumed a uniform current injection into the disk
terminals, but this is generally difficult to achieve when �
�1. The assumption of uniform current is only valid for all
fields when the Hall resistance �� and thickness t is identical

for each element. To assess the ramifications of current per-
turbations at the disk terminals, we consider the simple case
of ideal metal bridges connecting the disks. Our numerical
simulations show that current distortions are restricted to the
vicinity of the perfectly conducting electrode, while other
calculations40 demonstrate that the lengthscale of the current
distortion is proportional to 
. Therefore, when 
�1, it is
legitimate to replace the bridge with a two-terminal resistor
possessing a field-dependent resistance. Using our results for
a homogeneous conductor with boundaries, we determine the
contact resistance between disks i and j to be

�c
ij =

1

2
��i

ti
h��iH� +

� j

tj
h�� jH�
 , �22�

where we take h���=�1+�2−1 to obtain the correct low-
field and high-field limits.

The contact resistance cannot be eliminated from our net-
work model by reducing the terminal width 
, because the
disk impedance coefficients associated with field in Eq. �4�
are independent of 
 like �c, even though the disk resistance
tends to infinity as 
→0. Moreover, in the case of the infi-
nite uniform network at large fields, the contact resistance �c
is equal to the network resistance �RNM without metallic
bridges for all 
�1.

From simulations of random square networks that include
this contact resistance, we find that the size of the network
magnetoresistance is increased by up to 100% or more, de-
pending on the network disorder, but the major results are
qualitatively unchanged: the variation in magnetoresistance
decreases with increasing network size like in Fig. 8, the
average magnetoresistance is linearly dependent on field, and
the crossover point is determined by the mobility distribu-
tion, as in Fig. 9. One important consequence of these con-
tact resistances is that the bulk magnetoresistance is always
nonsaturating and linear, plus the network’s sensitivity to the
network boundaries is reduced. For example, an infinite uni-
form square network with metal bridges will possess a non-
zero bulk magnetoresistance of �c /R�0� due to the contacts,
and we find that this accounts for about 70% of a two-
terminal measurement of the network’s magnetoresistance.

Note that contacts of perfectly conducting wires represent
an extreme limit where the contact effects are greatest. A
potentially richer case is where the wires are replaced by
interfaces between elements. Here, the magnitude of each
contact resistance in a random network ranges from Eq. �22�
right down to zero, when neighboring elements have the
same Hall resistance and thickness. Thus, we can expect to
recover bulk magnetoresistances, similar to those displayed
in Fig. 12, that sensitively depend on network disorder.

The situation is further complicated when we consider
three-dimensional effects at the connections between resis-
tors. An interesting example is where the disk resistivity �
and mobility � are constant within the network, but s is
varied by altering the disk thickness t. Calculations by Bruls
et al.41,42 that involve mapping sample thickness variations
onto a two-dimensional problem, have shown that sharp
changes in thicknesses, like those at the interfaces between
resistors, will have resistance

FIG. 13. �Color online� Comparison of resistances from a rep-
resentative sample of N
M networks with M �N, where we have
defined �RNM �RNM�H�−RNM�0� and we have set s=1. These
curves approach Eq. �21� in the limit of infinite network size.
Curves with M �3N are indistinguishable from the M =3N curves
and are, therefore, not shown.
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�c
ij 
 ���ij , �23�

where �ij ��ti− tj� / ti , ti� tj and ��ij �1. Thus, the contact
resistance still has a linear field dependence at large fields,
but the size of the effect is reduced so that the assumption of
uniform current injection is now valid for ���ij

−1. A thor-
ough analysis of these more complex contact effects will be
the subject of future work.

VI. CONCLUSION

In this paper we have modeled an inhomogeneous con-
ductor using a two-dimensional random resistor network that
consists of four-terminal resistors in order to take account of
the Hall component. We have shown that the network imped-
ance matrix Z becomes an odd, antisymmetric matrix at large
magnetic field, so that the high-field behavior of the magne-
toresistance is determined by the zero eigenvalue of Z. We
find that a nonsaturating magnetoresistance can be obtained
in networks as small as 2
1, where a plurality of current
paths is allowed within the network, while large networks
typically possess a linear magnetoresistance. This is in con-
trast to EMR devices that exhibit an extremely large but
saturating magnetoresistance.28,29

By considering large square networks, we have demon-
strated that uniform networks in the limit of infinite size are
equivalent to homogeneous conductors and the observed lin-
ear magnetoresistance in this system results from boundary
effects at the macroscopic electrodes. As such, they can be
used to model macroscopic media with complex boundaries.
However, large random networks model strongly inhomoge-
neous semiconductors and their magnetoresistance is not
simply a boundary effect. They correctly reproduce the
anomalous magnetoresistance of the silver chalcogenides:
Nonsaturating behavior with a linearity that continues down
to low fields for large mobility disorder. Moreover, the mag-
netoresistance may be large when the Hall resistance is zero,
like in experiment.

The advantage of such a phenomenological model of
positive, nonsaturating magnetoresistance is that it is poten-
tially relevant to a whole range of materials. Already, similar
magnetoresistances have been observed in metallic VOx thin
films,43 micro-sized Cox−C1−x composites44 and LaSb2
crystals.45 Two-dimensional electron gases also show a mys-
terious linear magnetoresistance46 and classical disorder has
been cited as a possible cause.47

A major limitation of our random resistor network model
is that it is restricted to two dimensions and, thus, cannot
describe longitudinal magnetoresistance. It is also known
that weakly disordered systems with continuous fluctuations
in the conductivity possess magnetoresistances that depend
on the dimensionality.1 Therefore, we must extend our resis-
tor network model to three dimensions in order to fully simu-
late an inhomogeneous semiconductor. However, we antici-
pate that our two-dimensional resistor networks will
motivate experiments on the magnetotransport of systems
with controlled disorder and on high-field magnetic sensors.

Finally, it would be interesting to explore the magneto-
thermopower of our resistor networks. A giant magnetother-

mopower is associated with Ag2−�Te samples48 and its origin
may also lie in classical disorder, because experiments on
composite semiconductor-metal structures demonstrate that
the magnetothermopower can be geometrically enhanced.49
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APPENDIX: IMPEDANCE MATRIX OF A 4-TERMINAL
CIRCULAR DISK

We begin by writing the electric field in terms of the
potential, E=−�U, and then combining charge conservation
� . j=0 with Ohm’s law to obtain the following differential
equation for the potential:

�

�xi
��ik

�U

�xk

 = 0, �A1�

where the conductivity tensor �̂= �̂−1. For the case of a ho-
mogeneous medium, Eq. �A1� is simply the Laplace equa-
tion.

Consider the homogeneous disk in Fig. 1. If we assume
uniform current injection into the terminals, then we can use
the currents as the boundary conditions to solve the Laplace
equation for the potential. In the absence of a magnetic field,
it is sufficient to take 
�1 in order for this assumption to be
valid, but the currents will generally be distorted when �
�1. To simplify the problem, we shall initially neglect these
distortions.

Taking the currents entering each terminal to be I1 , I2 , I3,
and I4, respectively, we then obtain the following potential
along the edge of the disk:

U��,�� = −
�

�
t
�
n=1

�
1

n2 ��S − �T�cos�n�� + �T + �S�sin�n��	 ,

�A2�

where � defines the angular position on the disk edge, and
we have

S = 2I1 sin�n
/2� + I2�sin�n�/2 + n
/2� − sin�n�/2 − n
/2�	

+ I3�sin�n� + n
/2� − sin�n� − n
/2�	

+ I4�sin�3n�/2 + n
/2� − sin�3n�/2 − n
/2�	 ,

T = I2�cos�n�/2 − n
/2� − cos�n�/2 + n
/2�	

+ I4�cos�3n�/2 − n
/2� − cos�3n�/2 + n
/2�	 .

To determine the impedance matrix z, we take the poten-
tial differences between the equally-spaced terminals,
i.e., U�� ,� /2�−U�� ,0� , U�� ,��−U�� ,� /2� , U�� ,3� /2�
−U�� ,�� and U�� ,0�−U�� ,3� /2�, and then sum up the
series in Eq. �A2� for a sufficient number of terms.
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