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We study the phase diagram of two models of spin-1 /2 antiferromagnets composed of corner-sharing
tetrahedra, the basis of the pyrochlore structure. Primarily, we focus on the Heisenberg antiferromaget on the
checkerboard lattice �also called the planar pyrochlore and crossed-chain model�. This model has an aniso-
tropic limit, when the dimensionless ratio of two exchange constants J� /J�1, in which it consists of one-
dimensional spin chains coupled weakly together in a frustrated fashion. Using recently developed techniques
combining renormalization group ideas and one-dimensional bosonization and current algebra methods, we
show that in this limit the model enters a crossed-dimer state with twofold spontaneous symmetry breaking but
no magnetic order. We complement this result by an approximate “quadrumer triplet boson” calculation, which
qualitatively captures the physics of the “plaquette valence-bond solid” state believed to obtain for J� /J�1.
Using these known points in parameter space, the instabilities pointed to by the quadrumer boson calculation,
and the simple limit J� /J�1, we construct a few candidate global phase diagrams for the model, and discuss
the nature of the quantum phase transitions contained therein. Finally, we apply our quasi-one-dimensional
techniques to an anisotropic limit of the three-dimensional pyrochlore antiferromagnet, an approximate model
for magnetism in GeCu2O4. A crossed-dimer state is predicted here as well.
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I. INTRODUCTION

We consider one of the most frustrated two-dimensional
�2D� antiferromagnets, the checkerboard antiferromagnet,
also known as the planar pyrochlore and the crossed-chain
model �CCM�. As the name suggests, this model is motivated
by the three-dimensional �3D� pyrochlore materials. The 2D
model is obtained by a projection of 3D corner-sharing lat-
tice of tetrahedra on a 2D plane. This projection maps a
four-spin tetrahedron onto a four-spin square with additional
links �antiferromagnetic exchanges� along the diagonals. The
structure obtained in this way, depicted in Fig. 1, preserves
the corner-sharing arrangement of crossed squares, typical of
the original 3D pyrochlore lattice, but destroys the symmetry
between bonds of the tetrahedron: in two dimensions, the
horizontal and vertical bonds are not equivalent to diagonal
ones. This lowering of symmetry suggests consideration of
extended 2D models with the checkerboard structure where
exchange interactions on horizontal and vertical versus diag-
onal bonds take on different values. Among these, the quasi-
one-dimensional limit, in which exchange along horizontal
and vertical directions J is much stronger than that along
diagonal directions J�, is of special interest because it in-
volves competition between strong quantum fluctuations,
typical for one-dimensional �1D� spin chains, and equally
strong geometric frustration encoded in the structure of the
crossed-chain lattice.

The resulting checkerboard antiferromagnet has been ana-
lyzed by a variety of techniques along several complemen-
tary “directions” in the parameter space: semiclassical analy-
sis in the limit of large spin S�1,1–3 large-N expansion,4–6

easy-axis generalization �of the 3D model�,7 and a quasi-1D
�J� /J�1� approach.8 In parallel with analytic approaches,
the model was investigated numerically via exact diagonal-

ization studies9–11 and cluster-based strong-coupling expan-
sion techniques.12–14 The present paper complements these
approaches by combining a controlled analysis of the
quasi-1D limit with general arguments to pin down limits of
the phase diagram and postulate a likely global phase struc-
ture of the model.

We begin by expounding the more general context of the
problem. One of the central theoretical motivations behind
the study of frustrated quantum magnets is the hope that,
when magnetic ordering is suppressed by frustration, more
unusual types of order or even criticality may emerge. Phe-

FIG. 1. �Color online� Heisenberg antiferromagnet on the check-
erboard lattice, viewed as coupled spin chains. Horizontal �vertical�
spin chains run along the x �y� axis. Spins belonging to the hori-
zontal �correspondingly, vertical� chains are shown as green �light
gray� �correspondingly, red �dark gray�� filled circles. The intrac-
hain exchange �thick lines� is J, and the interchain exchange �diag-
onal thin lines� is J�.
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nomenological approaches suggest possible interesting quan-
tum phases exhibiting “valence-bond solid” �VBS� order, in
which spins pair into singlets that are spontaneously local-
ized on specific bonds, breaking lattice symmetries. More
exotically, such approaches suggest the possibility of phases
with “topological order,” in which spins fluctuate quantum
mechanically in a liquidlike state with, however, subtle topo-
logical properties and often excitations with anomalous �e.g.,
fractional� quantum numbers. More recent predictions from
such theories also include “deconfined” quantum critical
points and phases in which several types of quasi-long-range
�power-law� orders coexist unconnected by microscopic
symmetries.

Unfortunately, these types of phenomenological methods
do not give precise guidance as to the specific models in
which such quantum orders appear, and attempts to find them
in realistic microscopic Hamiltonians have met with at best
limited success. The one specific context in which examples
of all the above phenomena are, however, known to occur is
in one-dimensional spin chains. Moreover, the theoretical
and microscopic understanding of such spin models is vastly
more complete than in two or three dimensions. A natural
hunting ground for the exotic phenomenology described
above would hence seem to lie in spin models consisting of
chains weakly coupled into two- or three-dimensional arrays.
A recently gained understanding of the crucial role of nomi-
nally irrelevant operators and fluctuation-generated interac-
tions in describing frustrated quasi-1D magnetic systems,15

described below, brings the hunt to �some degree of� fruition.
In this paper, as in a previous work,15 we follow this

approach, taking as the weakly coupled units in question
S=1/2 Heisenberg nearest-neighbor antiferromagnetic
chains �other further-neighbor interactions along each chain
may be included, provided they are not overly strong�. A
cause for hope is that such a 1D chain is well known to
exhibit a critical ground state with power-law correlations of
various types. One prominent type of correlation in such a
chain is antiferromagnetic, specifically,

�S��n� · S��n��� �
�− 1�n−n�

	n − n�	
+ ¯ , �1�

where n is the coordinate along the chain, and the angular
brackets indicate a ground-state expectation value. The omit-
ted ¯ terms decay much faster ��1/ 	n−n�	2 or faster� than
the dominant slowly decaying antiferromagnetic one shown
here �we have also for simplicity neglected an unimportant
multiplicative logarithmic correction to this term�. The domi-
nance of antiferromagnetic correlations in the two-spin cor-
relation function often leads to the misconception that a good
picture of the ground state of the 1D Heisenberg chain is that
of fluctuating local antiferromagnetic order, i.e., a magnet in
which spins are locally Néel ordered but the quantization
axis fluctuates in space and time. Such a picture is in fact
incomplete. This becomes clear upon considering the fluc-
tuation of the local bond energy or dimerization,

B�n� = S��n� · S��n + 1� − �S��n� · S��n + 1�� . �2�

One finds that its �staggered� correlations

�B�n�B�n��� �
�− 1�n−n�

	n − n�	
+ ¯ �3�

have precisely the same slow power-law decay �again, up to
a multiplicative logarithmic correction� as the antiferromag-
netic ones in Eq. �1� above. Further examination of other
correlators reveals no additional power-law correlations with
competitive slow decay. Thus the 1D Heisenberg chain
should be thought of as consisting of locally fluctuating an-
tiferromagnetic and valence-bond solid orders of comparable
strength.

With this understanding, it is natural to expect that weakly
coupled arrays of such chains might be pushed by the inter-
chain coupling into magnetically ordered, dimer-ordered, or
perhaps critical states, if this coupling favors the intrinsic
antiferromagnetic or VBS ordering tendency, or fosters their
balanced competition, respectively. While we believe this
reasoning to be essentially correct, for many years, the rich-
ness of such possible behaviors went unrealized in the litera-
ture. This is because if the spin chains are linked by magnetic
two-spin Heisenberg interactions, these couple primarily to
the antiferromagnetic fluctuations within the chains, and not
to the VBS ones. Hence, for such a case, the problem of
Heisenberg spin chains coupled by weak interchain interac-
tions is rather well understood. With nonfrustrated transverse
�with respect to the chain direction� couplings, both renor-
malization group16 and self-consistent mean-field17 analysis
predict an instability toward a classical long-range-ordered
phase characterized by a nonzero expectation value of the

spin �S�r��0. This instability follows from the correlations in
Eq. �1�, which, loosely speaking, make the spin chain highly
susceptible to magnetic ordering.

More recently, it was recognized that the situation be-
comes more interesting and less clearcut when the interchain
interaction is strongly frustrated, as is the case for the
crossed-chain model we investigate here. The effect of frus-
tration is to reduce and, ultimately, nullify the effective in-
terchain magnetic field experienced by spins of the chain due
to transverse interchain exchange interactions �due to cancel-
lations between contributions from spins whose local fluctu-
ating orientations, according to Eq. �1�, are antiparallel�.
With no effective external field present, the classical ordering
instability is naturally absent, resulting in �almost� decoupled
behavior of distinct spin chains. In formal calculations em-
bodying this physical picture, the weak residual interchain
interaction which does not cancel with predominantly anti-
ferromagnetic correlations appears to be described by the
scalar product of conserved spin currents from the chains
involved. This observation led to the proposal that, as a re-
sult, the system of such coupled chains forms a liquidlike
ground state with fractionalized spin excitations �spinons�.
The systems considered included a frustrated spin ladder,18,19

its 2D extension, i.e., the spatially anisotropic frustrated
square lattice antiferromagnet,20 and the crossed-chain
model.8

As shown in Ref. 15, in the former two cases these con-
clusions are in fact incorrect, due to the neglect of the VBS
correlations, Eq. �3�, equally as inherent as the antiferromag-
netic ones to the Heisenberg chain. Although the microscopic
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magnetic exchange between spins on different chains does
not directly couple to VBS fluctuations, such a dimer cou-
pling between �certain pairs of� chains is inevitably gener-
ated by the weak residual magnetic interactions remaining
after the dominant antiferromagnetic cancellation. A careful
analysis of the types of such dimer couplings allowed by
symmetry and the detailed mechanism of their generation are
crucial in determining the fate of the spin system and the
strength of any ordering tendency.

Technically, this analysis can be accomplished in a con-
trolled fashion using powerful field-theoretical methods bor-
rowed from 1D physics. The point, made in Ref. 15, is that
no fine tuning of the two-spin interchain exchange interac-
tion can make the low-energy field theory exactly of current-
current type. Some higher-order derivative terms �typically
involving spatial derivatives of the staggered magnetization
field� are bound to be present �as getting rid of all of them to
all orders would require tuning an infinite number of inter-
chain couplings to zero�. Such derivative terms are com-
monly neglected on the grounds of their irrelevance with
respect to the Luttinger liquid fixed point of the independent
spin chain. However, the quasi-1D problem is not the same
as the purely 1D one. Instead of disregarding irrelevant high-
derivative terms from the outset, one has to consider if they,
in combination with the leading current-current term, can
produce quantum corrections to the relevant interchain cou-
plings. This indeed occurs both in the models of Ref. 15,
and, as we will see, in the crossed-chain model studied here.

In the present paper we extend the analysis of Ref. 15 to
the CCM and show that the previous claim of a sliding Lut-
tinger liquid ground state8 is not correct. Instead, similarly to
the spatially anisotropic square lattice model discussed
above, the ground state is of spontaneously dimerized type,
albeit with staggered ordering of dimers on parallel chains.
The resulting configuration, shown in Fig. 2, can be de-
scribed as a crossed-dimer one.

The paper is organized as follows. Section II describes the
Hamiltonian of the CCM, its lattice symmetries, and the pas-
sage to the field-theoretical description of the low-energy

degrees of freedom and the operator product algebra they
form. Section III describes perturbative analysis of the model
in the one-dimensional limit of weakly coupled chains,
J� /J�1. It contains key technical details of our work and
explains the mechanism by which the crossed-dimer phase is
stabilized. The limit of the fully two-dimensional model
�J��J�, the planar pyrochlore antiferromagnet, is analyzed
within the plaquette-operator mean-field approximation in
Sec. IV. This is followed by Sec. V, which summarizes the
preceding material in terms of two possible scenarios for the
global zero-temperature phase diagram of the checkerboard
antiferromagnet. There we present phenomenological
symmetry-based analyses of the quantum phase transitions
between various phases of the model �and also point out an
interesting connection with the recent deconfined quantum
critical point idea�. Section VI describes a three-dimensional
extension of our model, the quasi-one-dimensional pyro-
chlore antiferromagnet, and its possible relevance to the ex-
periments on GeCu2O4 and ZnV2O4. Our main points are
briefly summarized in Sec. VII. Two Appendixes contain im-
portant technical details of the fermionic formulation of the
low-energy sector of the S=1/2 isotropic Heisenberg chain.

II. FROM LATTICE TO CONTINUUM FIELD
THEORY

A. Lattice model and symmetries

The Hamiltonian of the system H describes a collection of
horizontal �Hh� and vertical �Hv� Heisenberg chains interact-
ing with each other via the interchain interaction V:

H = H0 + V = Hh + Hv + V . �4�

Spins �S=1/2� are located at the sites of the checkerboard
�crossed-chain� lattice shown in Fig. 1. The crossings of the
lattice have integer coordinates �n ,m�, so the sites of hori-
zontal chains have half-integer x coordinates n+ 1

2 and inte-
ger y coordinate m, while sites of the vertical chains are
described by �n ,m+ 1

2
� pairs. With this convention the Hamil-

tonian of horizontal chains reads

Hh = J

n,m

S�h�n − 1/2,m� · S�h�n + 1/2,m� . �5�

Similarly, Hv is given by

Hv = J

n,m

S�v�n,m − 1/2� · S�v�n,m + 1/2� . �6�

With local uniform magnetization defined by

s�h�n,m� = S�h�n − 1/2,m� + S�h�n + 1/2,m� , �7a�

s�v�n,m� = S�v�n,m − 1/2� + S�v�n,m + 1/2� , �7b�

the interchain interaction reads

V = J�

n,m

s�h�n,m� · s�v�n,m� �8�

and is characterized by the interchain exchange J��0 which
is much smaller than the in-chain antiferromagnetic ex-

FIG. 2. �Color online� Crossed-dimer dimerization pattern.
“Strong” bonds �where ��0� on horizontal �vertical� chains are
shown in green �light gray� �red �dark gray��. As before, spins on
horizontal �vertical� chains are denoted by green �light gray� �red
�dark gray�� circles.
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change J�0. We note that J� is the nearest-neighbor ex-
change on the checkerboard lattice while J is the next-
nearest-neighbor exchange interaction.

The space group symmetries of H, Eq. �4�, can now be
summarized. The translational subgroup is generated by unit
translation along the horizontal chains Th and that along the
vertical chains Tv. The remainder is generated by � /2 rota-
tions about a crossing, and reflections about, e.g., a vertical
line through either a site or midpoint of a bond of a horizon-
tal chain. We denote these two operations “site parity” Psh
and “link parity” PLh, respectively. As these are microscopic
lattice symmetries, they will be preserved by any renormal-
ization group transformation. Observe that PL is a product of
two other operations: PLh= Psh �Th.

B. Continuum field theory and scaling operators

The limit J��J allows us to approach the problem from
one-dimensional perspective: we treat V as a perturbation
and ask whether it can destabilize the critical ground state of
the independent �decoupled� spin chains. The smallness of
the J� /J ratio allows us to take the continuum limit along
every chain involved. As mentioned in the Introduction, a
single Heisenberg chain is described in the continuum limit
�i.e., at low energies� by a universal critical theory, with a
variety of power-law correlations. Formally, this is most
compactly described as the Wess-Zumino-Witten �WZW�
SU�2�1 theory,21 with the action22,23 �in 1+1 dimensions�

SWZW =
1

8�
� d2x Tr��g†��g

−
i

12�
� d3x ���	Trg†��gg†��gg†�	g . �9�

Here g is an SU�2� matrix. The coordinate x0=v
 �v is the
spin velocity and 
 is imaginary time� and x1=x, the coordi-
nate along the chain, and d3x is defined by extending this 2D
space into a three-dimensional hemisphere x2�0, the bound-
ary of which is the �compactified� physical 2D plane �x0 ,x1�,
and analytically continuing g�x0 ,x1� into this hemisphere
such that g�x0 ,x1 ,x2→−��→1 and g�x0 ,x1 ,x2=0�
=g�x0 ,x1�. This formal action is not of very much direct
practical use, but serves to illustrate the underlying degrees
of freedom of the critical theory. All operators in the WZW
SU�2�1 theory can be constructed from g. Corresponding to
the two dominant power-law correlations in Eqs. �1� and �3�,
there are two scaling operators22,23

N� � − iTrg� , �10�

� � Trg . �11�

Here � is the vector of Pauli matrices, and the � indicates
that the proportionality between these fields and the physical
staggered magnetization and dimerization involves a cutoff-

dependent factor. The operator N� represents the local stag-
gered magnetization, while � represents the local staggered
dimerization �it is the continuum version of the bond opera-
tor in Eq. �2��. There are also subdominant power-law corre-

lations arising from fluctuations of the chiral SU�2� currents,

J�R =
1

4�
Trg†�̄g� , �12�

J�L =
1

4�
Trg�g†� , �13�

with �= ��0− i�1� /2 and �̄= ��0+ i�1� /2. Physically, the opera-

tor J� =J�R+J�L represents the local uniform magnetization,

while v�J�R−J�L� represents the local magnetization �spin
transport� current.

All the low-energy power-law correlations of the weakly
coupled Heisenberg chains can be exposed by decomposing
lattice operators into a set of the above continuum operators
�and generally their derivatives, see below� for each chain.
This, for example, leads to the following decomposition of
the spin at a site n−1/2 along the horizontal chain number
m:

S�h�n − 1/2,m� = a�J�h,m�x� + �− 1�nN� h,m�x�� . �14�

Here x=na �a is the lattice spacing� and J� �N� � represents the
uniform �staggered� part of the spin density. Similarly, for
the vertical spin chains we have

S�v�n,m − 1/2� = a�J�v,n�y� + �− 1�mN� v,n�y�� , �15�

where y=ma. Notice that the continuum limit is taken only
for the coordinate along the chain; the perpendicular one
becomes an index m �n for vertical chains�. The uniform spin

magnetization J� is the sum of the right- �J�R� and left- �J�L�
moving components, J� =J�R+J�L, and represents the conserved
spin density �it is often referred to in the literature as the spin
“current,” the term originating from the relativistic concept
of space-time current, whose time component is the con-
served density�. Note that the staggered dimerization � does
not appear in Eq. �14�; in fact, it cannot appear in the decom-
position of any single spin operator since it is not a vector
under SU�2�. As discussed in the Introduction, for this reason
dimer order does not appear likely in weakly coupled
Heisenberg chains with unfrustrated interchain couplings.

The action of the microscopic space group symmetries
�described above� upon the continuum scaling operators will
be crucial in the following. These are rather clear on physical
grounds.24

Translation,

T : J� → J�, N� → − N� , � → − � . �16�

Site parity,

Ps : J� → J�, N� → N� , � → − � . �17�

Link parity. Using PL= Ps �T we find

PL : J� → J�, N� → − N� , � → � . �18�

We will see at the end of this section that this symmetry is

responsible for the absence of N� v ·N� h terms in the Hamil-
tonian of the problem.
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Because of somewhat nonintuitive point-splitting identi-
ties, the WZW model can be written in Hamiltonian form
�known as the Sugawara form� in terms of the spin currents.
For a single chain, one has

HWZW =
2�v

3
� dx�J�R�x� · J�R�x� + J�L�x� · J�L�x�� . �19�

Applied to the set of horizontal chains �labeled by m�, the
lattice Hamiltonian Hh, Eq. �5�, transforms into

Hh =
2�v

3 

m
� dx�J�h,m,R�x� · J�h,m,R�x� + J�h,m,L�x� · J�h,m,L�x�

+ gbsJ�h,m,R�x� · J�h,m,L�x�� . �20�

Here v= �� /2�Ja is the spin velocity. Note again that
Jh,m,R/L

a �x� depends on position x=na along the chain direc-
tion whereas its y=ma coordinate dependence only shows up
via the �horizontal� chain index m. We have actually included
in Eq. �20� a correction �proportional to gbs� to the WZW
model, which is present in the Heisenberg chain but is mar-
ginally irrelevant in the situation under consideration. For
this reason, it may be safely neglected in what follows. Simi-
larly,

Hv =
2�v

3 

n
� dy�J�v,n,R�y� · J�v,n,R�y� + J�v,n,L�y� · J�v,n,L�y�

+ gbsJ�v,n,R�y� · J�v,n,L�y�� . �21�

C. Decomposition of the full lattice model

Now we are ready to express the interchain perturbation

Eq. �8� in terms of low-energy modes J� and N� . We begin by
analyzing the sum of two neighboring spins on the same
�say, horizontal� chain,

s�h�n,m� = S�h�n − 1/2,m� + S�h�n + 1/2,m�

= a�2J�h,m�x� − �− 1�na�xN� h,m�x�� . �22�

For the reasons to be explained in detail below, we have

retained the next-to-leading irrelevant contribution ��xN� � in
this expression. A similar decomposition is done for the sum
of two spins on the crossing vertical chain. The interchain
interaction V thus reads

V = 

n,m

�gjjJ�h,m�x� · J�v,n�y�

− gnj��− 1�n�xN� h,m�x� · J�v,n�y� + �− 1�mJ�h,m�x� · �yN� v,n�y��

+ gnn�− 1�n+m�xN� h,m�x� · �yN� v,n�y� , �23�

where, as before, x=na, y=ma, and the following couplings
are introduced to shorten notations:

gjj = 4J�a2, gnj = 2J�a3, gnn = J�a4. �24�

It is important to observe that Eq. �23� does not contain

N� h ·N� v type of terms, which are forbidden by the symmetry

of the checkerboard lattice. For example, reflection
with respect to the vertical chain changes the sign of

N� h �PL :N� h→−N� h�, while leaving N� v invariant �see Eq. �18��.
This reflects strong frustration of the model under study, as
discussed in the Introduction. Observe also that any pair of
horizontal and vertical chains cross only once, which makes
Eq. �23� local in space. This requires us to think carefully
about the short-distance regularization of the low-energy
theory defined by Eqs. �20�, �21�, and �23�—the correspond-
ing analysis is described in the next section.

D. Operator product expansion

Various perturbations to the WZW model Eq. �19� �such
as the intrachain backscattering gbs in Eqs. �20� and �21�, and
the interchain V, Eq. �23�� are most conveniently analyzed
with the help of operator product expansions �OPEs�. These
are operator identities that are derived by applying Wick’s
theorem to a correlation function of a pair of operators at
nearby points, say, �x ,
� and �0,0�—several of the examples
below are worked out in Appendix B; see also Appendix A
of Ref. 25 for more examples. The OPEs below are valid for
operators from the same chain, and, to lighten expressions,
we suppress chain indices here.

The spin currents J�R/L obey the following chiral OPEs,
which are frequently used in the literature23 �these, for ex-
ample, are used to derive the renormalization-group flow of
gbs term in Eqs. �20� and �21��:

JR
a�x,
�JR

b�0� =
�ab

8�2v2�
 − ix/v + �
�2 +
i�abcJR

c �0�
2�v�
 − ix/v + �
�

�25�

and

JL
a�x,
�JL

b�0� =
�ab

8�2v2�
 + ix/v + �
�2

+
i�abcJL

c�0�
2�v�
 + ix/v + �
�

, �26�

where, as explained in Appendix A 2, �=a /v is the short-
time cutoff of the theory and 
=sgn�
�.

Being a conserved current, Ja is also a generator of rota-
tions. Thus the OPE of Ja and Na should be nontrivial. In
fact, this one is the most important OPE for the subsequent
analysis �see Appendix B for the derivation�,

JR
a�x,
�Nb�0� =

i�abcNc�0� − i�ab��0�
4�v�
 − ix/v + �
�

,

JL
a�x,
�Nb�0� =

i�abcNc�0� + i�ab��0�
4�v�
 + ix/v + �
�

. �27�

Finally, fusing spin current with dimerization � gives back
the staggered magnetization

JR
a�x,
���0� =

iNa�0�
4�v�
 − ix/v + �
�

,
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JL
a�x,
���0� =

− iNa�0�
4�v�
 + ix/v + �
�

. �28�

Observe that Eqs. �25�–�28� form a closed operator
algebra—this is the key technical reason behind the genera-
tion of the interchain interaction of staggered magnetizations
in frustrated spin chain models �see Ref. 15 and Sec. III B
below�.

III. LOW-ENERGY HAMILTONIAN

The spatially anisotropic J1-J2 model15 has taught us that
keeping track of the nominally irrelevant terms is crucial for
a correct solution of the problem. In this section, we extend
this line of thinking to the crossed-chain model and demon-
strate that indeed irrelevant terms produce symmetry-
allowed relevant ones in a simple perturbation theory.

A. Symmetry analysis

Before proceeding with microscopic calculations, it is in-
structive to write down the most general form of the inter-
chain Hamiltonian �V that is allowed by symmetries of the
crossed-chain lattice. The reason to do so is that, while many
such terms will be absent in a naive continuum limit of the
original spin model, those that are “accidentally” missing
�i.e., not prohibited by any symmetry� may be expected to be
generated as a “quantum correction” �i.e., through a renor-
malization group �RG� transformation� when naively irrel-
evant terms are taken into account. The necessary complete
set of space group generators for this analysis, Th, Psh, PLh,
and R�/2, was introduced in Sec. II A.

Naturally �as in any field theory�, there are an infinite
number of possible interactions, and since there are addition-
ally an infinite number of chains, the multitude of potential
terms is compounded. Physically, however, “pairwise” inter-
actions involving fields on only two chains at a time are
expected to be most important �interactions involving more
chains simultaneously can be shown to occur only in higher
order in J� /J�. Such an interchain Hamiltonian naturally
splits into the sum of �V�, which describes interactions be-
tween two crossing chains, and �V�, which includes interac-
tions between parallel chains, �V=�V�+�V�. Within these
chain-pair interactions, we narrow the search by considering
the “most relevant” possibilities �ones involving the smallest

number of the smallest-scaling-dimension primary fields N�

and � and no derivatives�. Since we are perturbing the
decoupled-chain system, the appropriate sense of “relevant”
is that of the decoupled �1+1�-dimensional critical theories.
We find

�V� = 

n,m

a1�− 1�n+m�h,m�na��v,n�ma� �29�

and

�V� = 

n,m,l



�=h,v

�a2�l�N� �,m�na� · N� �,m+l�na�

+ a3�l���,m�na���,m+l�na�� . �30�

We note that in Eq. �30�, an interaction is possible be-
tween parallel chains an arbitrary distance l apart. From the
point of view of the decoupled-chain fixed point, there is no
notion �or effect in RG rescaling� of “distance” between
chains, so all such terms are equally “relevant” in this point
of view. One would expect, however, these terms �i.e.,
a2�l� ,a3�l�� to decay in magnitude with increasing l.

It is straightforward to check that these terms and only
these terms satisfy the symmetry requirements of the check-
erboard lattice. First, the invariance of �V� is easy to estab-
lish, as it involves pairs of operators � and N� from like chains
�i.e., horizontal-horizontal or vertical-vertical�. These trans-
form identically under all operations, and invariance is trivi-
ally shown.

The crossed-chain term �V� is more involved. We sketch
the arguments for its invariance. Rotation by � /2 about a
crossing is manifest, as the fields in Eq. �29� are drawn from
a single such crossing. Unit translation along the x direction
makes �h→−�h while �v is obviously not affected. However,
�−1�n+m also changes its sign, �−1�n+m→ �−1�n+1+m, so that
Th��V��=�V�. Reflection with respect to a site on a horizon-
tal chain Psh preserves �v but does change sign of dimeriza-
tion on every horizontal chain: Psh��h�=−�h. But at the same
time Psh interchanges even and odd vertical chains, i.e.,
Psh(�−1�n+m)=−�−1�n+m. Thus Psh��V��=�V�. Link parity
PLh is simple since every � is even under it. Moreover, since
PLh is nothing but reflection with respect to, say, the vertical
chain number n, the vertical chain with index n+1 then
transforms into that with index n−1, etc. Hence, even and
odd vertical chains are not interchanged by PLh, and
�−1�n+m→ �−1�n+m, showing the invariance under this final
generator. Notice that the staggering factor �−1�n+m plays a
very important role in this consideration—its presence makes
the local interaction of staggered dimerizations possible.

One could wonder if �V� could similarly include a stag-

gered product of magnetizations �−1�n+mN� h ·N� h, but this is
prohibited by the PLh symmetry. We note that microscopi-
cally, such a term cannot be generated �see the following
subsection for the mechanics of generation of the allowed
terms� as a consequence of the identity Ja�x ,
���x ,
��=0
which follows from the OPE Eq. �28�. The only symmetry-

allowed combination of N� ’s that can show up in �V� is

�N� h ·N� v�2. Such a term does arise in the large-S “order-from-
disorder” calculations �see Ref. 3�, but in the S=1/2 micro-
scopic model it has scaling dimension 2 and is thus deemed
irrelevant. Moreover, one can derive, using Abelian

bosonization, the OPE of two N� fields at the same spatial
point x: Na�x ,
�Nb�x ,0�� i�abc sgn�
�Jc�x ,0�. This allows
one to identify26 this biquadratic term with the dimension-2
scalar product of two spin currents on crossing chains �that

is, the gjj term in Eq. �23��, �N� h ·N� v�2→J�h ·J�v.
Observe now that none of the symmetry-respecting terms

in �V� and �V� are present in the nave continuum limit of the
theory Eq. �23�. Below we show that second-order perturba-
tion theory in the interchain exchange J� generates �V� with
coupling constant a1�J�

2 /J. Similar arguments show that
a2,3�J�

4 /J3. This is because in J�
2 order one generates terms

involving a product of derivatives of N� fields on parallel

STARYKH, FURUSAKI, AND BALENTS PHYSICAL REVIEW B 72, 094416 �2005�

094416-6



chains, �J�
2 �xN� h ·�xN� h. Once these are present, one can fol-

low calculations in Ref. 15 to find that both a2 and a3 terms
in �V� are generated, but this happens only in the next,
�J�

2 �2=J�
4 , order of the perturbation expansion. Since, as we

show below in Sec. III C, the �V� contribution is relevant, it
is sufficient to keep only the leading a1 type terms—
subleading a2,3 ones are too small �a2,3 /a1�J�

2 /J2�1� to
change the outcome.

B. Importance of irrelevant terms

Here we describe microscopic calculation of �V�. We be-
gin by expanding the action in powers of V Eq. �23�. This
generates a number of terms of which the most important
ones involve products of spin currents and staggered magne-
tizations from the same chain �and with the same spatial
coordinate—that is, all fields belong to the same crossing�.
Thus we pick out gjjgnn and cross terms from gnj

2 . These
contributions can be written in the form



a,b



n,m

�− 1�n+m	 � d
 d
�v��x,n;y,m;
,
��	x=na,y=ma,

�31�

where

v� = gnj
2 ��xNh,m

a �x,
�Jh,m
b �x,
��Jv,n

a �y,
��yNv,n
b �y,
��

+ Jh,m
a �x,
��xNh,m

b �x,
���yNv,n
a �y,
�Jv,n

b �y,
���

+ gjjgnnJh,m
a �x,
��xNh,m

b �x,
��Jv,n
a �y,
��yNv,n

b �y,
�� .

�32�

Now apply the OPE Eq. �27� to the product of fields from the
same chain and at the same spatial point x. For example,

JR
a�x,
��xN

b�x,
�� = lim
x�→x

�x�J
a�x,
�Nb�x�,
��

=
− i�i�abcNc�x,
�� − i�ab��x,
���

4�v2�
 − 
� + �
−
��
2 .

�33�

Similarly,

JL
a�x,
��xN

b�x,
�� =
i�i�abcNc�x,
�� + i�ab��x,
���

4�v2�
 − 
� + �
−
��
2 . �34�

We observe that the OPE of the full spin current J� and N� at
the same spatial point does not contain staggered magnetiza-
tion,

Ja�x,
��xN
b�x,
�� = �JR

a�x,
� + JL
a�x,
���xN

b�x,
��

= −
�ab��x,
��

2�v2�
 − 
� + �
−
��
2 . �35�

This is a very important result, with which Eq. �31� can be
brought into the surprisingly compact form

V2 = 

a,b

�ab

n,m

�− 1�n+m�2gnj
2 + gjjgnn�

�� d
 d
�
�h,m�na,
���v,n�ma,
��

�2�v2�
 − 
� + �
−
��
2�2 . �36�

The integral involved is obviously convergent,

�
−�

�

dt
1

�t + �t�4 =
2

3�3 =
2v3

3a3 . �37�

Using Eq. �24� for the g’s involved, we finally obtain the
following fluctuation-generated correction to the low-energy
effective action:

�S = −
1

2
V2 = −

3J�
2 a3

�2v
� d



n,m
�− 1�n+m�h,m�na,
��v,n�ma,
� .

�38�

Denoting

g� = v
3J�

2 a2

�2v2 , �39�

we have the following addition to the interchain Hamiltonian
V, Eq. �23�, to analyze �this is because Z=�e−S and
�S=�d
 �V�:

�V� = − g�a

n,m

�− 1�n+m�h,m�na��v,n�ma� . �40�

The staggered dimerization � has scaling dimension 1/2,

which means that it is as important for the chain physics as N�

is. In fact, up to logarithmic corrections, correlation func-
tions of the staggered dimerization and magnetization decay
with the same power law, x−1; see Eqs. �1� and �2�.

This is also clear from the OPEs Eqs. �27� and �28�,
which show that N� and � transform into each other under

chiral rotations generated by J�R/L. Since any pair of horizon-
tal and vertical chains has only one crossing, Eq. �40� is a
sum of local terms, each of which is marginal �space-time
dimension is 1, and dimension of the product �h�v is 1 as
well�. However, we shall see below that this marginality is
superficial—an infinite number of marginal crossings add up
to a relevant perturbation.

C. Mean-field analysis of the effective interchain interaction
Eq. (40)

From now on it is safe to omit derivative terms present in
V, Eq. �23�; their role was to generate, as described in Sec.
III B, more relevant symmetry-allowed interchain interac-
tions. With this in mind, we write down the renormalized
version of Eq. �23�,

V = 

n,m

�gjjJ�h,m�na� · J�v,n�ma�

− �− 1�n+mg�a�h,m�na��v,n�ma�� . �41�

As discussed above, the first term originating from the naive
continuum limit of Eq. �8� has scaling dimension 2 while the
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second term, which is �V� generated by high-energy fluctua-
tions, has scaling dimension 1. Thus we are allowed to dis-
card the irrelevant current-current piece of V, Eq. �41�. As a
result, all that remains of the interchain interaction is given
by �V� �Eq. �40��, V→�V�, which was not present in the
naive continuum limit Eq. �23� at all. We tackle it, in analogy
with analysis of Ref. 15, by the chain mean-field approxima-
tion. The staggering factor �−1�n+m suggests a staggered
dimer order on parallel chains. That is, we assume the pattern

�h,m�x� = �− 1�m���, �v,n�y� = �− 1�n��� , �42�

where ��� is a mean-field expectation value. The interchain
coupling is then decoupled into a sum of independent single-
chain Hamiltonians,

�V� = − 

m

�− 1�mg�a���

n

�h,m�x = na�

− 

n

�− 1�ng�a���

m

�v,n�y = ma� . �43�

Look on one of them, say, that of the horizontal chain with
index m �which is fixed now�. Now we can take the con-
tinuum limit �
nf�na�→a−1�dx f�x�� and

�V��m� = − �− 1�mg���� � ��x�dx , �44�

which can be easily analyzed along the lines of Ref. 15.
Using the Abelian bosonization expression for the staggered
dimerization

��x� =
	

�a
cos��2���x�� , �45�

where � is the spin boson field and 	 is a nonuniversal con-
stant of order 1,27 we arrive at the effective single-chain sine-
Gordon action for the mth chain,

S�m� =� d2r�1

2
����2 − G cos �2��� . �46�

The action S�m� is written in terms of dimensionless coordi-
nates r�= �x /a ,v
 /a� and the effective coupling constant
G=	2g��cos �2��� / ��2v�. The self-consistent equation for
�cos �2��� follows from the exact solution28 for the free
energy Fm of the sine-Gordon model Zm=�D� exp�−S�m��
=exp�−Fm�:

�cos �2��� = −
dF

dG
=

d ln Z

dG
=

c0
2

3�3
G1/3, �47�

where the constant c0 reads

c0 =
2��1/6�

����2/3�
����3/4�

2��1/4� �
2/3

. �48�

Simple algebra gives

�cos �2��� =
c0

3

3
�	2g�

�2v
= 0.265 316

J�

J
, �49�

where we have set 	=1. Hence the expectation value of the
staggered dimerization is proportional to J�,

��� =
	

�a
�cos �2��� = 0.0844

J�

Ja
. �50�

The spin gap � is given by the mass m of the lightest
breather in the sine-Gordon theory,28

m = 2M sin��/6� = M , �51�

where M and G are related by

G

2
=

��1/4�
���3/4�

�M
����2/3�
2��1/6�

�3/2

. �52�

Thus M =c0G2/3, and finally the spin gap � is found as

� = m = M =
4	2c0

3

�6�3
� J�

J
�2

= 0.675 688� J�

J
�2

. �53�

The resulting dimerization pattern is shown in Fig. 2. An
equivalent configuration is obtained by a global shift of
crosses by one lattice spacing along either the x or y direc-
tion. It is worth pointing out that exactly such interdimer
correlations—crossed-dimer ones—have been observed in
the exact diagonalization study of finite CCM clusters �see
Table II and Fig. 5 in Ref. 11�.

IV. THE PLANAR PYROCHLORE: PLAQUETTE VBS AND
ITS INSTABILITIES

In the preceding sections we focused on the quasi-1D
limit J��J, and established the existence of the spontaneous
long-range order of the crossed-dimer configuration �Fig. 2�.
In this section we will explore a different region in the pa-
rameter space, where the nearest-neighbor coupling J� and
next-nearest-neighbor exchange coupling J are nearly equal.
Earlier numerical studies using exact diagonalization10 and
strong-coupling expansion techniques12–14 showed that the
ground state at J=J� is a valence-bond crystal with long-
range quadrumer order, shown in Fig. 3. Here we review a
simple theoretical account of this plaquette VBS �P-VBS�
state using the quadrumer-boson approximation,29–31 and ex-
amine its instabilities to other orders. This analysis, together
with the results in the preceding sections, will serve as a
basis for our discussion on the global phase diagram of the
CCM in the following section. Our simple approach pre-
sented here is meant to give a qualitative picture; more quan-
titatively reliable numerical results can be obtained, for ex-
ample, by series expansion, as developed in Refs. 12 and 14.

In the following analysis it is more convenient to use a
new coordinate system labeled by �j ,k�, rotated by � /4 from
the x and y axes; see Fig. 3. The quadrumerized valence-
bond crystal breaks lattice translation symmetry, and each

quadrumerized plaquette centered at �j ,k� has four spins, S� l

�l=1,2 ,3 ,4�. From the outset we assume the breaking of
translation symmetry and begin with the Hamiltonian for a
single quadrumerized plaquette,
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Hp = J��S�1 · S�2 + S�2 · S�3 + S�3 · S�4 + S�4 · S�1�

=
J�

2
��S�1 + S�2 + S�3 + S�4�2 − �S�1 + S�3�2 − �S�2 + S�4�2� .

�54�

The lowest-energy state of Hp is a spin singlet with energy
−2J�, which can be written as

s†	0� =
1

2�3
�	↑↑↓↓� + 	↓↓↑↑� + 	↑↓↓↑� + 	↓↑↑↓� − 2	↑↓↑↓�

− 2	↓↑↓↑�� , �55�

where 	1234� denotes the state with Sl
z=l. The first

excited states are a triplet with energy −J�,

t+
†	0� =

1

2
�	↑↑↑↓� + 	↑↓↑↑� − 	↑↑↓↑� − 	↓↑↑↑�� , �56a�

tz
†	0� =

1
�2

�	↑↓↑↓� − 	↓↑↓↑�� , �56b�

t−
†	0� =

1

2
�	↓↓↓↑� + 	↓↑↓↓� − 	↓↓↑↓� − 	↑↓↓↓�� . �56c�

The operators s†, t±
†, and tz

† can be thought of as creation
operators of hard-core bosons.

As mentioned above, the ground state of the CCM is
known to be a gapped P-VBS state at the planar pyrochlore
point J=J�. As long as J�J�, we may thus expect that a
good approximation to the ground state should be obtained
by direct product of the singlet states, Eq. �55�, weakly hy-
bridized with the triplets, Eqs. �56�. Motivated by this obser-
vation, we employ the quadrumer boson approximation29–31

in which we keep only the low-lying four states, singlet and
triplet, in each quadrumerized plaquette, and discard the
other higher-energy states. Now the boson operators are sub-
ject to the constraint

s†s + t+
†t+ + tz

†tz + t−
†t− = 1. �57�

The plaquette Hamiltonian is then written as

Hp = − 2J� + J��t+
†t+ + tz

†tz + t−
†t−� . �58�

The spins S� l can also be written in terms of the hard-core
boson operators. The representations are found from matrix
elements of the spin operators with the four states. After
some algebra we find

Sl
z =

1

4
�t+

†t+ − t−
†t−� +

�− 1�l

�6
�tz

†s + s†tz� , �59a�

Sl
+ =

1
�8

�t+
†tz − tz

†t−� −
�− 1�l

�3
�t+

†s + s†t−� , �59b�

Sl
− =

1
�8

�tz
†t+ − t−

†tz� −
�− 1�l

�3
�t−

†s + s†t+� , �59c�

where l=1,2 ,3 ,4. Assuming that the density of triplets is
low in the P-VBS state, we keep only terms linear in t� and
set s=s†=1:

Sl
a =

�− 1�l

�6
�ta

† + ta� , �60�

where a=x ,y ,z and we have introduced

tx = −
1
�2

�t+ + t−�, ty =
1

�2i
�t+ − t−� . �61�

With the coordinate system �j ,k� in Fig. 3 the total Hamil-
tonian of the checkerboard antiferromagnet reads

H = 

j,k

Hp�j,k� + J�

j,k

�S� j,k,1 · S� j−1,k,4 + S� j,k,2 · S� j,k−1,1

+ S� j,k,3 · S� j+1,k,2 + S� j,k,4 · S� j,k+1,3� + J

j,k

�S� j,k,1 · S� j,k+1,3

+ S� j,k,4 · S� j,k+1,2 + S� j,k,3 · S� j+1,k,1 + S� j,k,4 · S� j+1,k,2� , �62�

where S� j,k,l is the lth spin S� l in the quadrumerized plaquette
centered at �j ,k�. With the approximation Eq. �60� the
Hamiltonian becomes

H = 

p�
�−

7

2
J� +

1

2 

a=x,y,z

�a
†�p��H�p���a�p��� , �63�

where we have introduced the triplet boson field

�a�p�� = � t̃a�p��

t̃a
†�− p��

� �64�

with the momentum p� = �p1 , p2� and the Fourier transform

t̃a�p�� =
1

�N0


j,k

e−i�jp1+kp2�ta�j,k� , �65�

where N0 is the number of quadrumerized plaquettes. The
Hamiltonian matrix is given by

FIG. 3. �Color online� Quadrumerized checkerboard lattice with
coordinates �j ,k� shown. The plaquettes with �blue� circles are qua-
drumerized. Each unit cell contains four spins.
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H�p�� = �J� + ��p�� ��p��
��p�� J� + ��p��

� , �66�

where

��p�� =
2

3
�J − J���cos p1 + cos p2� . �67�

With the Bogoliubov transformation

� t̃a�p��

t̃a
†�− p��

� = �cosh �p� sinh �p�

sinh �p� cosh �p�
�� ba�p��

ba
†�− p��

� , �68�

where

exp�− 4�p�� = 1 +
2��p��

J�

, �69�

the Hamiltonian �Eq. �63�� is diagonalized,

H = 

p�
�−

7

2
J� +

3

2
E�p�� + E�p��


a

ba
†�p��ba�p��� . �70�

The energy dispersion of the triplet eigenmode ba�p�� is given
by

E�p�� = �J��J� +
4

3
�J − J���cos p1 + cos p2���1/2

. �71�

The simple quadrumer boson approximation described
above reproduces the basic feature of the previous numerical
studies:10,12–14 at J�J� the P-VBS state is a stable singlet
ground state with a gap to excited states.

The softening of the triplet mode Eq. �71� tells us poten-
tial instabilities that the P-VBS state may have �see also Ref.
14�. First, from E�0�= �J��8J−5J�� /3�1/2 we see that it be-
comes unstable at J�→8J /5, when the bosons condense at

p� =0� . The resulting state has the long-range Néel order, like
the one realized in the square lattice limit J��J. This can be
easily seen from Eq. �60�, in which we may suppose that
ta
†+ ta is a nonvanishing c number upon condensation of

bosons. In the present approximation, the transition from the
plaquette singlet to the Néel-ordered state occurs at
�J /J��c1=5/8, which should be compared with the estimate
�J /J��c1=0.79–0.81 from a sophisticated strong-coupling
expansion.14 Second, the P-VBS state becomes unstable as
J /J�→ �J /J��c2=11/8, at which bosons with momentum
p� = �� ,�� condense. Upon Bose condensation the spins will
have a magnetic long-range order, shown in Fig. 4, with the
spin configuration ↑↑↓↓↑↑↓↓ along the diagonal directions
and the Néel order along the horizontal and vertical chain
directions �as can be seen by replacing ta

†+ ta→ �−1� j+k in Eq.
�60��. In fact, this is one of the magnetically ordered states
which are shown to be stable at J�J� in the 1/S expansion;
see Figs. 2�b� and 6 in Ref. 3. The softening of the triplet
mode at p� = �� ,�� is also found in the strong-coupling ex-
pansion in Ref. 14 with the estimated critical coupling
�J /J��c2=1.06–1.13.

Finally, we comment on two defects in our approach. One
is that the lattice translation symmetry is explicitly broken
from the outset and cannot be restored within the theory.

This means that the Néel-ordered state at J��5J /8 inevita-
bly has the P-VBS order as well—i.e., it is a coexistence
phase. This should probably be viewed as an artifact of the
approach—see Sec. V for discussion of this portion of the
phase diagram. The other defect is that we have ignored
interactions among the triplet bosons �as well as projected
out the other higher-energy states—singlet, triplet, and
quintuplet—on each quadrumerized plaquette�. In the crudest
approximation we adopted, the first excited states are a trip-
let excitation S=1 with no energy dispersion at J�=J. The
numerical studies10,12–14 showed, however, that at J=J� the
lowest excited states are in the spin-singlet sector �see, for
example, Sec. V in Ref. 10�. The cluster-based
calculations12,13 indicate that these singlet excitations are
bound states of two S=1 excitations. To describe correctly
the singlet excitations in terms of the quadrumer bosons, one
needs to go beyond the linear approximation Eq. �60� and
include interactions among the bosons. We do not try to do
this here, but only point out that the dispersionless triplet
mode is naturally susceptible to forming a bound state. Away
from the planar pyrochlore point J�=J, not much is known
about the low-energy excitations in the S=0 sector; it is not
well understood how the singlet energy levels in the spin gap
change as a function of J� /J.32

V. GLOBAL PHASE DIAGRAM OF THE CCM

In this section we discuss the global zero-temperature
phase diagram of the CCM as the control parameter J� /J is
increased from 0 to �. Our analysis relies on three well-
established facts. First, the ground state at J��J obviously
has the Néel order and is smoothly connected to the Néel-
ordered state of the antiferromagnetic Heisenberg model on
the square lattice. Second, by now there is convincing
numerical10,12–14 and analytical4–6 evidence for the PVBS
state at and around J=J�. Finally, as shown in Sec. III, the
ground state is spontaneously dimerized in the quasi-one-

FIG. 4. �Color online� The magnetically ordered state due to
condensation of bosons ba�� ,��. The solid circles represent, say, up
spins, and the open circles represent down spins. The quadrumer-
ized plaquettes in the nearby P-VBS phase are indicated by �blue�
circles.

STARYKH, FURUSAKI, AND BALENTS PHYSICAL REVIEW B 72, 094416 �2005�

094416-10



dimensional J��J limit as well, where long-range crossed-
dimer order �Fig. 2� sets in.

The first question we address here is how the two dimer-
ized phases, plaquette VBS �P-VBS� and crossed-dimer VBS
�CD-VBS�, are connected. We propose the two complemen-
tary scenarios in Secs. V A and V B below. The nature of the
transition between the P-VBS and the Néel states is dis-
cussed in Sec. V C.

A. Scenario I: Direct transition between the crossed-dimer
and plaquette VBS

The “minimal” assumption is that the two quantum-
disordered valence-bond phases connect at some critical
value J� /J�1. The validity of this assumption can only be
verified by the exact calculation of the ground-state energies
of two dimerized phases in the whole interval 0�J� /J�1
of interest. Such a calculation is obviously beyond our ana-
lytic approximations suited for J� /J→0 �CD-VBS, Sec. III�
and J� /J→1 �P-VBS, Sec. IV� limits. Instead, we take a
phenomenological point of view here and assume that the
ground state energies are such that a direct transition be-
tween the CD-VBS and P-VBS phases is possible. At least
partial support to this point of view is provided by the exact
diagonalization study of Sindzingre et al.11 which seems to
indicate a single change in the ground state around
J� /J�0.8.

The question then is if this transition between these two
phases can be continuous. In general, this question is difficult
to answer. Most formally, the renormalization group theory
of continuous critical phenomena sets only some rather weak
constraints on the existence of a continuous phase transition
between any two phases A and B. In particular, it requires the
existence of an abstract scale-invariant fixed point �critical
field theory� with a single “relevant” symmetry-allowed op-
erator in its spectrum, such that a positive �negative� coeffi-
cient of this operator in the action takes the system into
phase A �B�. The critical fixed point theory itself must clearly
have higher symmetry than either phase A or B, but no a
priori restriction is placed on the relation of the symmetries
of phase A to those of phase B.

A conventional—and more stringent—criterion for the ex-
istence of a continuous transition is based on the specific
realization of the critical theory provided by a Landau-
Ginzburg-Wilson �LGW� action written in terms of order pa-
rameters. More physically, LGW theory permits a continuous
transition by the “condensation” of some “soft mode” of
phase A, which transforms nontrivially under the symmetry
group of A. The condensation of this soft-mode order param-
eter then leads to a lowering of symmetry �since by assump-
tion the condensation breaks some symmetries that it trans-
forms under� in phase B. A necessary criterion for a LGW-
allowed continuous phase transition is thus that the
symmetry group of one phase �B in the example� is a sub-
group of the other �phase A�.33 Further restrictions are im-
plied by detailed consideration of the LGW expansion �e.g.,
presence of cubic terms, etc.�, as is standard.33

Recent work on related but distinct quantum phase tran-
sitions has provided explicit theoretical examples of non-

LGW critical theories,34 demonstrating that the violation of
this conventional criterion is more than a formal possibility.
Unfortunately, there is at present no general prescription to
supplant the LGW criterion, so we are left in the uncomfort-
able position of being unable to solidly argue for or against
the possibility of a continuous quantum critical point. In-
stead, we will content ourselves here with the LGW analysis.

It is straightforward to conclude that a continuous transi-
tion between the CD-VBS and P-VBS states is prohibited by
the LGW criterion. This can be seen by the two lattice re-
flections R1,2, which map the crossed-chain lattice onto it-
self, i.e., symmetries of the Hamiltonian. Here R1 is the
reflection with respect to a horizontal chain �it corresponds to
a link parity operation PL Eq. �18� on all vertical chains�, and
R2 is the reflection with respect to a horizontal line passing
through the centers of empty plaquettes �this is a site parity
Ps Eq. �17� from the point of view of vertical chains�; similar
reflections with respect to vertical lines are accounted for by
the � /2 rotational symmetry �about chain crossings� of the
lattice.

Both phases are twofold degenerate, as can been seen
from Fig. 5 �and hence can be described by Ising order pa-
rameters�. Their symmetries are distinct. In particular, note
first that R1 is a symmetry of the CD-VBS phase, but not the
P-VBS �it interchanges the two P-VBS ground states�. Thus
the symmetry group of the CD-VBS phase is not a subgroup
of that of the P-VBS phase. Second, R2 is a symmetry of the
P-VBS phase, but not the CD-VBS phase. Thus the symme-
try group of the P-VBS phase is not a subgroup of the CD-
VBS state. Since neither symmetry group is a subgroup of
the other, a continuous LGW transition between the two
states is not possible, as promised.

The simplest alternative is a first-order transition between
the two phases, which is always possible, and may perhaps
be likely. Another possibility, is that, between the two states,
there is a finite range of coexistence of P-VBS and CD-VBS
order. Such a coexistence phase can have continuous LGW
�Ising� transitions to both the P-VBS and CD-VBS states.
The latter scenario is only one of a multitude of conceptually
possible phase structures, for which we have no physical
motivation. We indicate this uncertainty by the question
mark in Fig. 5.

B. Scenario II: CD to P-VBS via an intermediate ordered
phase

A quite different scenario is suggested by the quadrumer-
boson approximation of Sec. IV: an intermediate magneti-

FIG. 5. �Color online� Global phase diagram of the CCM in
scenario I of Sec. V A. Thick vertical lines with question marks
indicate that the corresponding transition, according to Landau
theory reasoning, either is first order or occurs via an intermediate
coexistence phase.
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cally ordered phase between the CD-VBS and P-VBS states.
It was found there that the P-VBS state becomes unstable at
�J� /J�c2=8/11 as the J� /J ratio is reduced below the planar
pyrochlore value of 1. The resulting state, depicted in Figs. 4
and 6, possesses long-range magnetic order. We denote it as
the Néel* state in the following. This magnetically ordered
state was previously found in the large-S approach,3 where it
arises as a result of a quantum “order-from-disorder” selec-
tion among the large family of degenerate �at S=�� collinear
ordered states. The fact that it also appears as a result of the
triplet softening of the S=1/2 P-VBS phase of Sec. IV gives
a strong independent argument in favor of its stability. Of
course, as in the previous scenario, the ultimate fate of the
Néel* phase is to be decided by accurate numerical investi-
gations, and here we just assume that this ordered phase is
indeed the ground state in a finite J� /J window within the
�0, 1� interval.

The transition between the P-VBS and the Néel* phases
manifests itself as a triplet condensation transition within the
consideration of Sec. IV. Since such a soft-mode transition is
the general physical interpretation of LGW theory, it should
not come as a surprise that the Néel* to P-VBS transition
satisfies the LGW criterion for a continuous critical point. In
particular, the symmetry group of the Néel* state is generated
by �1� spin rotations about the ordering axis, �2� translations
along a diagonal ��1, 1� or �1,−1� in the coordinate system of
Fig. 6� composed with a time reversal which inverts the spins

S�r→−S�r, �3� reflections R2, and �4� � /2 rotations about the
center of a plaquette containing four parallel spins. Plainly,
from Fig. 6, every one of these operations is also a symmetry
of the P-VBS state; hence the symmetry group of the Néel*

state is a subgroup of that of the P-VBS state. Moreover, the
triplet condensation amplitude can be identified with the
Néel* order parameter: an O�3� vector specifying the direc-
tion of spin orientation at some reference site in Fig. 6. In-
deed, a LGW expansion could be developed in this order
parameter, but we content ourselves with the expectation that
the P-VBS to Néel* transition is likely in the continuous O�3�
universality class.

Clearly, the Néel* phase cannot survive down to the
J� /J=0 point which describes decoupled S=1/2 spin
chains, as quantum spin fluctuations destroy antiferromag-
netic Néel long-range order in individual chains.3 The calcu-
lations of Sec. III emonstrate that at small J� /J, the fluctu-
ating dimerization field � takes over the �quasiclassical� spin
fluctuations and drives the chains into the CD-VBS phase.

We can again apply the LGW criterion to ask whether a
continuous CD-VBS to Néel* transition is possible. Clearly,

the symmetry group of the CD-VBS state cannot be a sub-
group of the Néel* phase, since the former is spin-
rotationally invariant. However, the Néel* phase is invariant
under R2, which, as we saw in the previous subsection, is
not a symmetry of the CD-VBS phase. Thus, the symmetry
group of the Néel* state is not a subgroup of that of the
CD-VBS phase, and a continuous LGW transition between
these two phases is prohibited.

The transition then is likely either a first-order one or
proceeds via an intermediate ordered and bond-modulated
coexistence phase. Such a phase is easy to imagine—start
with the Néel* state and modulate slightly spin-exchange
couplings along horizontal and vertical chains so that
“strong” bonds repeat the pattern of dimers in the CD-VBS
phase. This state clearly breaks R2, but does preserve the
long-range magnetic order �for sufficiently weak modula-
tion� of the Néel* phase. The transition from the CD-VBS to
such a “modulated” Néel* one is then continuous O�3� spin-
symmetry breaking, while at some higher J� /J the bond
modulation goes away via a continuous Z2 transition and one
obtains the pure Néel* phase. Which of the two possibilities,
first order or coexistence, is realized cannot be decided
within our analytical approach, and for this reason the tran-
sition between CD-VBS and Néel* phases is marked by a
question mark in Fig. 6.

C. Plaquette VBS to Néel transition

Regardless of the phase structure for J� /J�1, we expect
a transition at larger J� from the P-VBS state to the conven-
tional Néel state. As is the case with the CD-VBS to Néel*

transition discussed above, a continuous P-VBS to Néel QCP
is forbidden within LGW theory �by similar arguments,
which we refrain from giving explicitly for brevity�. In this
particular case, however, an alert reader may note that the
two phases appear to be very similar to those recently argued
to be connected by a continuous but non-LGW continuous
phase transition, deemed a deconfined quantum critical point
�DQCP�.34

The analogy, however, is not complete. Significantly, the
checkerboard lattice differs in detail from the square lattice
discussed in Ref. 34 in its point symmetry group. In particu-
lar, a � /2 rotation about a site of the lattice, a symmetry of
the square lattice, is not a symmetry operation of the check-
erboard lattice. We believe this symmetry distinction is suf-
ficient to destabilize the putative DQCP. It is beyond the
scope of this paper to fully recapitulate the arguments of Ref.
34, which would be necessary to explain this conclusion in a
stand-alone fashion. Instead, we will sketch these arguments,
assuming the reader will refer to Ref. 34 for further details.

The crucial, indeed defining, property of the DQCP is an
emergent topological conservation law, exactly maintained at
the critical fixed point. Specifically, “Skyrmion number” is
conserved by the fixed-point theory. This is not true micro-
scopically at the lattice level, but is an emergent feature of
critical theory, as argued in Ref. 34. A crucial step in that
argument is the remarkable identification �due to Haldane35�
of the Skyrmion creation operator with the columnar or
plaquette VBS order parameter. These can be defined

FIG. 6. �Color online� Global phase diagram of the CCM in
scenario II of Sec. V B. The continuous O�3� transition between the
Néel* and P-VBS phases is indicated by a dashed vertical line.
Other notations are as in Fig. 5.
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through a complex scalar field � �see Ref. 34�. We empha-
size that although � has the symmetries of the rather “con-
ventional” VBS order parameter, it is not to be viewed as a
nearly free field in the LGW sense, but rather some “com-
posite” operator in the critical field theory. Under the � /2
site rotation above, one finds �→ i�, and consequently, for
the square lattice, the Skyrmion creation operator can appear
only in the fourth order in the continuum field theory action
for the square lattice antiferromagnet, i.e., as a perturbation
of the form S�=�d
 d2x	4 Re �4. A variety of arguments in-
dicate then, because of the large �fourth� power of � which
appears, 	4 is irrelevant at the DQCP. On the checkerboard
lattice, lacking this � /2 site rotation, the remaining symme-
tries of the system are insufficient to rule out the much more
relevant “quadratic” term S�=�d
 d2x	2 Re �2. The pres-
ence of the nonzero 	2 term is, incidentally, also tied to the
only twofold degeneracy of the P-VBS state, compared to the
fourfold degeneracy of the columnar and plaquette VBS
states on the square lattice.

A necessary and sufficient condition for the stability of
this DQCP on the checkerboard lattice is thus the irrelevance
of 	2. Ultimately, this can be decided only by detailed nu-
merical calculations of the scaling dimension of the �2 op-
erator. Unpublished numerical results36 for the easy-plane
deformation of the theory �which is more numerically trac-
table� suggest that it is in fact relevant. If this conclusion is,
as we suspect, true for the SU�2� symmetric model, the
DQCP is not stable on the checkerboard lattice. Thus we are
led to conclude that there is no viable candidate theory for a
continuous Néel to P-VBS quantum critical point in this
model, and that such a transition is quite unlikely.

The simple harmonic analysis of the previous section pre-
dicts another soft-mode transition in the O�3� universality
class out of the quadrumerized VBS state to one with Néel
order at J /J��1. The resulting magnetically ordered phase
is, by its very construction, a coexistence region with both
P-VBS and Néel order, that is, with less symmetry than ei-
ther phase. This is built into the quadrumer boson expansion
because all excitations are constructed about a background
that explicitly has the reduced symmetry of the P-VBS state,
and there is no mechanism to restore the full point group
symmetries of the checkerboard lattice. Thus we believe the
alternative possibility of a direct first-order �since the DQCP
theory is unstable� transition from the P-VBS to the true
Néel state should not be ruled out as a possibility. The pos-
sible existence of a coexistence region between VBS and
Néel orders in various models is still a subject of some con-
tention. It has been discussed in great detail in Ref. 37. An
exact diagonalization study of the quantum checkerboard
antiferromagnet,11 has concluded that, if present at all, the
coexistence phase is very narrow. Clearly more detailed stud-
ies of this interesting question are needed. At present, we can
only reiterate that a single continuous transition is highly
unlikely in view of the arguments presented above.

VI. BACK TO THREE DIMENSIONS

Consider now the 3D pyrochlore. Although all bonds of a
tetrahedron are equivalent by symmetry, it makes sense to

ask, in analogy with the 2D lattice that we analyzed in this
paper, what would happen if some bonds were stronger than
others. The particular generalization motivated by the present
study of the 2D projected model �which can be thought of as
a “shadow” of the 3D pyrochlore on a 2D plane�, involves a
modified model in which two opposite bonds of tetrahedron
are strong �J� whereas four remaining bonds, connecting the
strong ones, are weak �J��. Then, in the limit J� /J�1, one
is back to the problem of strong spin chains coupled by weak
and frustrated interchain J�. Now, however, chains are ar-
ranged in layers: chains are parallel to each other �oriented
along either x or y direction� in each layer, but are orthogonal
to those in the layers right above and below. That is, chains
form a stack of the type x-y-x-y¯ along the vertical �z�
direction. Chains in one layer do not interact with each other;
J� couples orthogonal chains from neighboring layers. This
is just a 3D generalization of the 2D situation analyzed in
this paper. It does not introduce any new features, and hence
the answer for the ground state is straightforward—it is
spontaneously dimerized into the pattern shown in Fig. 7.

Such a generalization is not unrealistic. It appears that the
S=1/2 pyrochlore material GeCu2O4 has exactly such a
quasi-one-dimensional structure,38 thanks to a strong Jahn-
Teller elongation of CuO6 octahedra along the crystal c
direction.38 From the high-temperature tail of the uniform
spin susceptibility one can estimate the ratio of �frustrated�
interchain exchange J� to the intrachain one J as J� /J
�0.16.38 At lower temperatures the uniform spin susceptibil-
ity follows that of the spin chain down to Tc=33 K, where a
small discontinuity is observed. The specific heat shows a
sharp peak at the same temperature, suggesting a first-order
transition to the magnetically ordered state of yet unknown
structure.38 The theory presented in this paper predicts that
for a sufficiently small J� /J ratio, the ordered state will be

FIG. 7. �Color online� Three-dimensional dimerization pattern
of a generalized quasi-one-dimensional pyrochlore antiferromagnet.
Also shown, by a long �blue� arrow, is its two-dimensional projec-
tion, which coincides with the crossed-dimer order of Fig. 2.
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replaced by the quantum-disordered valence-bond solid
shown in Fig. 7.

Another very interesting realization of one-dimensionality
in the 3D setting is provided by the S=1 pyrochlore material
ZnV2O4.39 There, spin chains are formed below the struc-
tural orbital-ordering transition at Tc1=50 K, as observed in
the recent neutron scattering experiment.40 This is followed
by the second, magnetic, transition at Tc2=40 K. The result-
ing collinear magnetic order can be described as follows:
S=1 spins order antiferromagnetically along the strong
�chain� directions in such a way that spins along weaker �J��
bonds form a four-spin pattern,41 “up-up-down-down-up-
up-¯. This 3D structure is, in fact, rather similar to the 2D
one, Fig. 4, found in Sec. V B: observe that spins on the inter
chain bonds in that figure follow the same four-spin pattern
of two up and two down spins. This is not a coincidence—in
both cases the classical order can be understood in terms of
the well-known order-from-disorder phenomenon,42 induced
by either quantum3 or thermal41 fluctuations. This analogy
suggests that magnetically ordered state of GeCu2O4, ob-
served in Ref. 38, should be similar to that in the low-
temperature phase of ZnV2O4—clearly more experimental
and theoretical studies of this question are required. The
analogy does not apply in the J� /J→0 limit where decou-
pled S=1 chains, although in the quantum-disordered phase
with a finite spin gap ��0.4J,43 do not break translational
symmetry. This is in contrast with S=1/2 chains studied in
this paper; the decoupled limit is characterized by the
crossed-dimer order, Fig. 7, which does break translational
symmetry. Properties of the 3D phase transitions between
quantum-disordered and ordered phases constitute another
interesting theoretical problem which we leave for future
studies.

VII. CONCLUSIONS

The main result of this work consists in the prediction of
the crossed-dimer VBS phase, illustrated in Figs. 2 and 7.
This VBS phase arises in the 1D limit of the model as a
result of the frustration-fostered competition between classi-

cal �represented by the staggered magnetization N� � and quan-
tum �represented by the staggered dimerization �� ordering
tendencies. Our analysis is based on the careful perturbative
implementation of the well-known SU�2� symmetry of the g
matrix field of the WZW model, which provides rigorous
field-theoretical description of the low-energy sector of the
S=1/2 isotropic Heisenberg chain. This symmetry is made
explicit by the OPEs Eqs. �25�–�28�, which show transforma-
tion properties of the low-energy “quantum triad”

�J�R/L ,N� ,�. As shown in Sec. III consistent implementation
of these OPEs requires a careful treatment of the often ne-
glected gradient terms �“nonprimary fields” in the conformal

field theory nomenclature, such as �xN� � which link together
quantum fluctuations of the conserved spin current with
those of the staggered magnetization and dimerization fields.
Once this is done, straightforward interchain perturbation
theory leads to the frustration-generated interaction of dimer-
izations on the crossing chains, Eq. �40�.

Our finding of the CD-VBS phase in the J��J limit of
the checkerboard antiferromagnet eliminates a previously
proposed8 sliding Luttinger liquid phase as the candidate for
the ground state. Like many others, that work8 overlooked
the crucial role of the gradient terms in the analysis of the
frustrated interchain interaction between critical S=1/2
Heisenberg chains.

It is also worth pointing out here that our calculation clari-
fies previous somewhat inconclusive “sightings” of the
decoupled-chain phase4,6 that arise in a widely used large-N
approach44 to frustrated spin models. By its very construc-
tion, that technique fails to account, at the leading N=�
level, for the fluctuation-generated residual dimer-dimer in-
teraction in the anisotropic 1D limit �although one does ex-
pect finite 1 /N corrections to the inter-dimer interaction to
appear once the fluctuations of the compact gauge field are
accounted for4�.

We have also presented a global phase diagram of the
CCM �Sec. V�. Although phenomenological in nature, our
analysis stresses the importance of lattice symmetries in de-
lineating the order of possible direct transitions between
various quantum �CD- and P-VBS� and classical �ordered
Néel and Néel*� phases of the CCM found in this and previ-
ous studies. We find that most of such transitions are required
to be of the first-order type, or proceed via an intermediate
coexistence phase, as illustrated in Figs. 5 and 6. This claim
concerns even the relatively well studied P-VBS to Néel
transition11,12,14 and clearly calls for more numerical �as well
as analytical� investigations of this interesting question.

Last but not least, we have also presented a simple but
intriguing extension of the approach to the anisotropic three-
dimensional pyrochlore antiferromagnet, which may be rel-
evant to both S=1/2 and S=1 pyrochlore-based magnetic
materials.38,40 We hope that this interesting connection will
inspire new experiments in this exciting area.
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APPENDIX A: CORRELATION FUNCTIONS

1. Fermionic formulation

Formally, the WZW model in Eqs. �9� and �19� describes
all the low-energy properties of the S=1/2 Heisenberg spin
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chains, and is the starting point for a perturbative analysis of
interchain coupling terms. Unfortunately, as remarked in Sec.
II B, this action and Hamiltonian, while compact and self-
contained, are not directly useful for concrete calculations.
Indeed, in two-dimensional conformal field theory, analysis
often proceeds without any action or Hamiltonian, solely on
the basis of algebraic operator product relations that essen-
tially specify the field content and correlation functions of
the theory. We will ultimately proceed by using operator
product relations along these lines. In the crossed-chain
model, however, due to the local nature of interactions be-
tween perpendicular chains, we need to pay particular atten-
tion to proper short-distance regularization of the theory. It is
therefore desirable to have a more concrete formulation of
the theory.

To do so, we use the well-known phenomena of spin-
charge separation in one-dimensional spin-1 /2 Dirac fermi-
ons. In particular, using bosonization, one may show that all
degrees of freedom �all states and operators� of such Dirac
fermions are identical to those of a free scalar “charge” bo-
son and a spin sector described by the WZW SU�2�1 theory
of interest to us. Moreover, the free Dirac fermion Hamil-
tonian,

Hd = iv� dx��L,s
† �x�L,s − �R,s

† �x�R,s� , �A1�

can be expressed as the sum of decoupled spin and charge
Hamiltonians, Hd=HWZW+H�, with

H� =
v
2
� dx���x���2 + ��x���2� , �A2�

where �� ,�� are conjugate “charge” boson fields
����x� ,���x���=−isgn�x−x�� /2. The right-moving and left-
moving fermion operators may, if desired, themselves be re-
expressed in terms of the gapless spin and charge fluctua-
tions, which is commonly and conveniently done with the
help of Abelian bosonization.23 We do not, however, require
these expressions here.

Because the spin degrees of freedom in HWZW �described
by the SU�2�-valued field g� are independent of the charge
boson fields, we may safely replace HWZW by Hd at the price
of enlarging the physical Hilbert space to include these
charge degrees of freedom, without, however, affecting the
spin physics in any way. In particular, regardless of the spin
interactions we add to HWZW, the charge sector remains al-
ways in its ground state, the vacuum of Eq. �A2�.

The fermionic formulation provides a convenient way to
calculate while simultaneously regularizing the short-
distance properties of the theory. This is accomplished by
representing the important operators in the spin sector in
terms of the Dirac fermions. First, the spin currents may be
fully and simply reexpressed in terms of the Dirac fermions:

J�R = �R,s
†

� s,s�

2
�R,s�, J�L = �L,s

†
� s,s�

2
�L,s�. �A3�

We can thereby construct the uniform magnetization

J� =J�R+J�L in terms of fermions. Observe that J� is invariant
under chiral U�1� charge symmetry,

�R/L,s → ei�R/L�R/L,s �A4�

with independent phases �R��L. This invariance implies in-

dependence of J� from the charge sector, Eq. �A2�, no matter
what its precise form is.

The second important operator in the spin sector is the
staggered magnetization. Unlike the uniform magnetization,
however, it does not have a simple expression in terms of the
fermions. Instead, one may define a fermionic “staggered”
�corresponding to the 2kF component for physical electrons
in the Tomonaga-Luttinger model� spin density

N� F = �R,s
†

� s,s�

2
�L,s� + �L,s

†
� s,s�

2
�R,s�. �A5�

Using standard bosonization relations, one finds

N� F = N� cos �2���. �A6�

Hence the fermionic staggered spin density, Eq. �A5�, repro-

duces the desired staggered magnetization N� , but multiplied
by a factor involving the charge boson ��.

Observe that N� F is not invariant under the chiral charge
symmetry Eq. �A4� and this implies that it does couple to the
charge sector of Eq. �A1�, as is explicitly stated in Eq. �A6�
above. �It is invariant under the diagonal subgroup of Eq.
�A4� with �R=�L which only reflects that it conserves the
total charge of the system, but not the charges of right- and
left-moving chiral sectors independently.�

Similarly, we may define a fermionic staggered dimeriza-
tion operator,

�F =
i

2
��R,s

† �L,s − �L,s
† �R,s� . �A7�

Bosonization gives

�F = � cos �2���. �A8�

As for the staggered magnetization, �F defined from the
Dirac fermions reproduces the staggered dimerization opera-
tor � in the spin sector, but with an undesired multiplicative
charge factor. Here we observe again that this multiplicative
charge factor follows from the fact that �F does not respect

Eq. �A4�, similarly to N� F above.
We will see below that, for our purposes this second fac-

tor in Eqs. �A6� and �A8� is innocuous, so that we may use

N� F ,�F in place of the true N� ,� fields. We stress this is not
generally true, and such a replacement is possible only under
special circumstances we outline below. For example, be-

cause N� F ,�F contain charge fluctuations, their correlation

functions are not the same as those of the N� ,� operators, and
hence the latter cannot be evaluated using free fermion ap-
paratus. However, the fermionic operators have the same op-
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erator products with the spin current field J� as the corre-
sponding spin operators. This is because the spin current, as
discussed above, does not depend on charge sector, and as a

result the “charge pieces” of N� F and �F stay “inert” during
OPE calculations as outlined in Appendix B. As it turns out,
such operator products are all we need in order to solve the
problem. Thus, we can evaluate these crucial operator prod-
ucts using those of the free fermions. Furthermore, we can
regularize the problem by adopting a short-distance cutoff
for the Dirac fermions. This is particularly convenient, as a
simple ultraviolet regularization is available in the Dirac for-
mulation which keeps SU�2� spin rotation symmetry mani-
fest at all stages.

2. Fermion Green’s function

To proceed with our program we need then the Green’s
function of free fermions �R/L. As the interchain interaction
Eq. �23� is the sum of local terms over crossings of the
lattice, one needs to be careful about the high-energy regu-
larization of the continuum theory. We have found that the
most natural and physically appealing regularization is pro-
vided by the soft-momentum cutoff scheme.45,46 In that
scheme the cutoff a is introduced via an e−a	q	 factor in the
mode expansion of collective bosonic fields. In going from
the momentum to the coordinate space, cutoff dependence on
a transforms into that on ��a /v in the temporal �
� direc-
tion. Adopting this scheme, one finds that the zero-
temperature �T=0� Green’s function for the right-moving
fermions on the same chain �chain index is omitted for brev-
ity� is given by

FR�x,
� = − �T̂�R,s�x,
��R,s
+ �0,0�� = −

1

2�v�
 − ix/v + �
�
,

�A9�

where �=a /v is the ultraviolet cutoff in the temporal direc-
tion and 
=sgn�
�=��
�−��−
� is the sign function. For
the left-moving ones

FL�x,
� = FR
*�x,
�

= FR�− x,
�

= − FR�x,− 
�

= −
1

2�v�
 + ix/v + �
�
. �A10�

It is often convenient to introduce complex coordinates

z = 
 + ix/v, z̄ = 
 − ix/v , �A11�

in terms of which

FR�z̄� = −
1

2�vz̄
, FL�z� = −

1

2�vz
. �A12�

It is important to keep in mind, however, that expressions of
Eqs. �A9� and �A10� are “superior” to Eq. �A12� in that they
contain an explicit cutoff prescription.

APPENDIX B: DERIVATION OF OPE EQ. (27)

We need Eqs. �A3� and �A5� and the single-particle
Green’s function, Eqs. �A9� and �A10�. Consider the product
of JR

a�x1 ,
1� and NF
b�x2 ,
2� at nearby points �such that

	z1−z2	�� with zi=
i+ ixi /v�. To shorten notations, we de-
note �x1 ,
1�=1, etc. Now use Wick’s theorem for free fermi-
ons, as appropriate for Eq. �A1�, as well as the identity
ab=�ab+ i�abcc, to reduce the product of four �’s to that
of two of them and FR,

JR
a�1�NF

b�2� = −
1

4
FR�1 − 2��i�abcs,s�

c ��R,s
+ �1��L,s��2�

+ �L,s
+ �1��R,s��2�� + �ab��R,s

+ �1��L,s�2�

− �L,s
+ �1��R,s�2�� , �B1�

where summation over repeated spin indices s and s� is as-
sumed. Fusing �x1 ,
1� and �x2 ,
2� points, one finds that the
coefficient of �abc is just 2NF

c �2�, whereas that of �ab is
−2i�F�2�, the staggered dimerization operator; see Eq. �A7�.
Hence

JR
a�1�NF

b�2� =
i�abcNF

c �2� − i�ab�F�2�
4�v�z̄1 − z̄2 + �
1−
2

�
. �B2�

The second OPE, between J�L and N� F, is obtained by replac-
ing FR→FL and changing the sign of the last term in Eq.
�B2� as is readily verified by the explicit calculation. Thus

JL
a�1�NF

b�2� =
i�abcNF

c �2� + i�ab�F�2�
4�v�z1 − z2 + �
1−
2

�
. �B3�

Observe now that the multiplicative charge factor
cos�2��� from Eqs. �A6� and �A8� appears on both sides of
Eqs. �B2� and �B3� above. Dividing by it, we obtain the OPE
quoted in Eq. �27�,

JR
a�z̄�Nb�w,w̄� =

i�abcNc�w,w̄� − i�ab��w,w̄�
4�v�z̄ − w̄�

,

JL
a�z�Nb�w,w̄� =

i�abcNc�w,w̄� + i�ab��w,w̄�
4�v�z − w�

. �B4�

It is instructive to repeat the same calculation using Abe-
lian bosonization. Consider, for example, JR

z �x1 ,
1�Nx�x2 ,
2�.
Abelian bosonization tells us that

JR
z �1� =

1
�2�

�x1
�R,�1� , �B5�

Nx�2� =
	

4�a
�e−i�2���R,�1�−�L,�1�� + H.c.� , �B6�

where �R/L, are the spin components of chiral right and left
bosons, and the scale factor 	= �cos �2����� is the expecta-
tion value of the charge field. The angular brackets �¯��

denote the average with respect to the charge Hamiltonian
H�� which includes now the four-fermion umklapp term re-
sponsible for the opening of the charge gap �as a result of
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which 	�0� �see Appendix A of Ref. 27 for more details�.
Thus charge fluctuations are explicitly separated from

spin ones in the manipulations to follow. To fuse Eqs. �B5�
and �B6�, we need

�R,�1�ei��R,�2� = i��T̂�R,�1��R,�2��ei��R,�2�, �B7�

which is obtained by expanding the exponential on the left-
hand side of Eq. �B7�, pairing �R,�1� with �R,�2� in all
possible ways �Wick’s theorem for free chiral spin bosons�,
and collecting the rest of the series back into the exponential.
Using Eq. �B7� and the fact that right and left bosons are
independent from each other, we find

JR
z �1�Nx�2� = �x1

�T̂�R,�1��R,�2��Ny�2� . �B8�

Finally,

�T̂�R,�1��R,�2�� = −
1

4�
ln�� + 
1−
2

�z̄1 − z̄2�� �B9�

for free chiral bosons. Hence

JR
z �1�Nx�2� =

iNy�2�
4�v�z̄1 − z̄2 + �
1−
2

�
, �B10�

which is just one component of Eq. �B2�. To get the �ab term
of Eq. �B2� one has to consider explicitly the OPE of, say, Jz

and Nz fields.
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