Ferromagnetism and possible heavy-fermion behavior in single crystals of NdOs₄Sb₁₂

P.-C. Ho, W. M. Yuhasz, N. P. Butch, N. A. Frederick, T. A. Sayles, J. R. Jeffries, and M. B. Maple

Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, California 92093-0360, USA

J. B. Betts and A. H. Lacerda

National High Magnetic Field Laboratory/LANL, Los Alamos, New Mexico 87545, USA

P. Rogl

Institut fuer Physikalische Chemie, Universitaet Wien, A-1090 Wien, Währingerstrasse 42, Austria

G. Giester

Institut fuer Mineralogie und Kristallographie, Universitaet Wien, A-1090 Wien, Althanstrasse 14, Austria (Received 12 July 2004; revised manuscript received 5 July 2005; published 12 September 2005)

Single crystals of the filled-skutterudite compound NdOs₄Sb₁₂ have been investigated by means of electrical resistivity, magnetization, and specific heat measurements. The NdOs₄Sb₁₂ crystals have the LaFe₄P₁₂-type cubic structure with a lattice parameter of 9.3 Å. Possible heavy-fermion behavior is inferred from specific heat measurements, which reveal a large electronic specific heat coefficient $\gamma \approx 520 \text{ mJ/mol K}^2$, corresponding to an effective mass $m^* \approx 98m_e$. Features related to a ferromagnetic transition at ~0.9 K can be observed in electrical resistivity, magnetization, and specific heat. Conventional Arrott-plot analysis indicates that NdOs₄Sb₁₂ conforms to mean-field ferromagnetism.

DOI: 10.1103/PhysRevB.72.094410

PACS number(s): 71.27.+a, 75.30.Mb, 75.50.Cc

I. INTRODUCTION

The filled skutterudite compounds have the chemical formula MT_4X_{12} , where M is an alkali (Na or K), alkaline earth (Ca, Sr, Ba), lanthanide, or actinide atom; T is a transitionmetal atom (Fe, Ru, Os); and X is a pnictogen atom (P, As, Sb). The compounds crystallize in a $LaFe_4P_{12}$ -type structure with the space group Im³.¹ Due to the strong hybridization between f and conduction electrons and their unique crystal structure, the lanthanide- and actinide-based filled skutterudite materials display a wide range of strongly correlatedelectron phenomena, such as BCS-like superconductivity (e.g., PrRu₄Sb₁₂),^{2,3} heavy fermion behavior (e.g., $PrFe_4P_{12}$),⁴ heavy fermion superconductivity (e.g., PrOs₄Sb₁₂),^{5,6} ferromagnetism (e.g., PrFe₄Sb₁₂),⁷ metalinsulator transitions (e.g., PrRu₄P₁₂),⁸ Kondo-insulator behavior (e.g., UFe₄P₁₂ and CeFe₄P₁₂),⁹ valence fluctuation behavior (e.g., YbFe₄Sb₁₂),^{10,11} and non-Fermi-liquid behavior $(e.g., CeRu_4Sb_{12})$.^{12,13}

Previous studies have shown ferromagnetic ordering in Nd-based filled skutterudites. Measurements of NdFe₄Sb₁₂ revealed ferromagnetic order below 16.5 K with a Nd ordered moment of $2.04\mu_{\rm B}$ and a Fe collinear moment of $0.27\mu_{\rm B}$.¹⁴ Lower ferromagnetic transition temperatures were found in NdFe₄P₁₂ at 2 K,¹⁵ NdRu₄P₁₂ at 1.6 K,¹⁶ NdRu₄Sb₁₂ at 1.3 K,^{2,3} and NdOs₄Sb₁₂ at 0.8 K.¹⁶ Since NdOs₄Sb₁₂ displays ferromagnetism with a low Curie temperature and its neighboring compound PrOs₄Sb₁₂ shows heavy fermion behavior and unconventional superconductivity,^{6,17–20} possibly involving triplet spin pairing of electrons, there is a strong likelihood that PrOs₄Sb₁₂ is near a ferromagnetic quantum critical point. Thus, by thor-

oughly characterizing the physical properties of $NdOs_4Sb_{12}$, a deeper insight into the unusual behavior of $PrOs_4Sb_{12}$ may be attained. Earlier studies of the compound $NdOs_4Sb_{12}$ only reported the results of structural refinement²¹ and the value of the Curie temperature.¹⁶ In this report, we present a detailed investigation of $NdOs_4Sb_{12}$ single crystals, including measurements of x-ray diffraction, electrical resistivity, magnetization, and specific heat. We also discuss possible heavy fermion behavior in this Nd-based filled skutterudite compound.

II. EXPERIMENTAL DETAILS

NdOs₄Sb₁₂ single crystals were grown in a molten Sb flux as described previously,¹⁷ using high purity Nd, Os (3.5N), and Sb (6N). X-ray powder diffraction measurements were performed with a Rigaku D/MAX B x-ray machine on a powder prepared by grinding several single crystals, which indicated single phase NdOs₄Sb₁₂ with a minor impurity peak of Sb ($\leq 10\%$). The crystals had a LaFe₄P₁₂-type BCC structure,¹ with a lattice parameter *a*=9.30 Å. Two single crystals of similar dimension were selected for single crystal x-ray diffraction measurements. The data were collected on a four-circle Nonius Kappa diffractometer at 296 K using Mo K_{α} radiation (λ =0.071 073 nm). No absorption corrections were necessary because of the rather regular crystal shape and small dimensions of the investigated crystals. The structure was refined with the SHELXS-97 program.²²

Electrical resistivity $\rho(T,H)$ was measured using the standard four-wire technique in a Quantum Design Physical Properties Measurement System (PPMS) and in a ³He—⁴He dilution refrigerator in fields up to 8 T. The low temperature

		$NdOs_4Sb_{12}$			
Crystal size	$64 \times 78 \times 84 \ \mu m^3$	Lattice parameter a [Å]	9.3075(2)	Density ρ [g/cm ³]	9.745
Reflection in refinements	$473 \le 4\sigma(F_0)$ of 482	Number of variables	11	$R_F^2 = \Sigma F_0^2 - F_c^2 / \Sigma F_0^2$	0.0186
Goodness of fit	1.255				
Nd in 2a (0, 0, 0);		Thermal displacement	[Å ²]	Interatomic distances [Å]	
Occupancy	1.00(1)	Nd: $U_{11} = U_{22} = U_{33}$	0.0482(5)	Nd-12 Sb	3.4831
Os in 8c (1/4,1/4,1/4);		Thermal displacement	[Å ²]	Interatomic distances [Å]	
Occupancy	1.00(1)	Os: $U_{11} = U_{22} = U_{33}$	0.0025(1)	Os-6 Sb	2.6239
Sb in 24g (0, y, z); y:	0.15597(3)	Thermal displacement	[Å ²]	Interatomic distances [Å]	
Z:	0.34017(3)	Sb: <i>U</i> ₁₁	0.0026(1)	Sb –1 Sb	2.9033
Occupancy	1.00(1)	U_{22}	0.0044(1)	-1 Sb	2.9752
		U_{33}	0.0065(1)	-2 Os	2.6239
				-1 Nd	3.4831

TABLE I. Single crystal structural data measured at T=296 K for NdOs₄Sb₁₂. The crystal structure is LaFe₄P₁₂-type with the space group Im $\overline{3}$ (No. 204). The range of x-ray scattering angle is $2^{\circ} < 2\theta < 80^{\circ}$.

(0.02-2.6 K) and high-field $(8-18 \text{ T}) \rho(T,H)$ measurements were performed in the National High Magnetic Field Laboratory at Los Alamos National Laboratory, Los Alamos, NM. The electrical current applied to the sample was perpendicular to the applied magnetic field, which was along the [001] direction, in all $\rho(T,H)$ measurements. Measurements of $\rho(T,P)$ were made under hydrostatic pressures up to 28 kbar in a beryllium-copper piston-cylinder clamp²³ and a ⁴He cryostat. The pressure was determined inductively from the pressure-dependent superconducting transition of a Pb manometer.

DC magnetic susceptibility from 2 to 300 K was measured in a Quantum Design Magnetic Properties Measurement System (MPMS) SQUID magnetometer. The magnetization M(H,T) measurements were carried out in a ³He Faraday magnetometer with a gradient field of ~0.05-0.1 T/cm in external fields up to 5.5 T and at temperatures between 0.4 and 2 K. For the Faraday magnetometer measurements, several single crystals (total mass of 21.3 mg) were combined in a mosaic fashion and measurements were performed with magnetic field applied along the [001] axis. Specific heat C(T) of multiple single crystals (total mass of 42.15 mg) was measured between 0.5 and 70 K in a ³He calorimeter using a semiadiabatic heat-pulse technique.

III. RESULTS AND DISCUSSION

A. Single crystal structural refinement

Structural refinement was performed on x-ray diffraction data collected from single crystals of NdOs₄Sb₁₂; the results are listed in Table I. The thermal displacement parameters U_{ii} of the Nd atoms are isotropic and have large values compared with the U_{ii} for the Os and Sb atoms, a common feature in the filled skutterudites. The Nd sites are fully occupied, which is not always the case for filled skutterudites, such as Pr_{0.73}Fe₄Sb₁₂ and Eu_{0.95}Fe₄Sb₁₂.^{7.24} If the NdOs₄Sb₁₂ crystal is considered to be a simple Debye solid with the Nd atoms behaving like Einstein oscillators, the thermal displacement and the Einstein temperature Θ_E are related by

$$U = \frac{\hbar^2}{2m_{\rm Nd}k_{\rm B}\Theta_E} \coth\left(\frac{\Theta_E}{2T}\right),\tag{1}$$

where m_{Nd} is the atomic mass of Nd. For NdOs₄Sb₁₂, Θ_{E} is estimated as ~45 K, which is close to the values found for thallium-filled antimony skutterudites such as Tl_{0.22}Co₄Sb₁₂, Tl_{0.5}Co_{0.35}Fe_{0.5}Sb₁₂, Tl_{0.8}Co₃FeSb₁₂, and Tl_{0.8}Co₄Sb₁₁Sn.^{25,26}

B. Magnetic properties

The dc magnetic susceptibility $\chi_{dc}(T)$ of NdOs₄Sb₁₂ was measured at 500 Oe and is displayed in Fig. 1(a). The $\chi_{dc}^{-1}(T)$ data [Fig. 1(b)] exhibit different slopes at high and low temperatures. The linear slope of $\chi_{dc}^{-1}(T)$ between 65 and 300 K yields a Curie constant $[C_{CW} \equiv (N_A \mu_{eff}^2)/(3k_B)]$ ~1.85 cm³ K/mol, a negative Curie-Wiess temperature $(\Theta_{CW}) \sim -43$ K, and a effective moment $\mu_{eff} \sim 3.84 \mu_B$, which is close to the Nd³⁺ free-ion value of $3.62 \mu_B$. The Curie-Weiss fit to the low-temperature range of $\chi_{dc}^{-1}(T)$ [Fig. 2(c)] gives $C_{CW} \sim 0.69$ cm³ K/mol, a positive $\Theta_{CW} \sim 1$ K, and a value of $\mu_{eff} \sim 2.35 \mu_B$. The curvature in $\chi_{dc}^{-1}(T)$ is due to the influence of the crystalline electric field (CEF), and the positive Θ_{CW} from the low-temperature fit indicates ferromagnetic order developing below 1 K.

Although the crystal structure of NdOs₄Sb₁₂ has tetrahedral symmetry (T_h),²⁷ this is only a slight deviation from cubic symmetry (O_h). Thus, to simplify the CEF analysis, only O_h symmetry was considered. In an ionic (localized) model with cubic symmetry, the Nd³⁺ tenfold degenerate J =9/2 Hund's rule ground state multiplet splits into a Γ_6 doublet and two Γ_8 ($\Gamma_8^{(1)}, \Gamma_8^{(2)}$) quartet states. In the treatment of Lea, Leask, and Wolf,²⁸ these energy levels and their corresponding wave functions in cubic O_h symmetry can be parametrized by the variables x_{LLW} and W, where x_{LLW} is the ratio of the fourth- and sixth-order terms of the angular momentum operators and W is an overall energy scale. The CEF

FIG. 1. (a) DC magnetic susceptibility χ_{dc} versus temperature *T* from 0 to 10 K measured at 500 Oe. Fits of $\chi_{dc}(T)$ to a CEF model in which the ground state is either Γ_6 (dashed line) or $\Gamma_8^{(2)}$ (solid line). Below 10 K, these two lines overlap. (b) χ_{dc}^{-1} versus *T* from 0 to 300 K. Fits of $\chi_{dc}(T)$ and $\chi_{dc}^{-1}(T)$ to a CEF model in which the ground state is either Γ_6 (dashed line) or $\Gamma_8^{(2)}$ (solid line).

contribution to the molar magnetic susceptibility can be determined from the expression²⁹

$$\chi_{\text{CEF}}(T) = N_{\text{A}}g_J^2 \mu_{\text{B}}^2 \left[\sum_i \frac{|\langle i|J_z|i\rangle|^2}{k_{\text{B}}T} p_i - 2\sum_{i,j(\neq i)} \frac{|\langle i|J_z|j\rangle|^2}{E_i - E_j} p_i \right],\tag{2}$$

where N_A is Avogadro's number, g_J is the Landé g-factor, μ_B is the Bohr magneton, $p_i = e^{-E_i/(k_BT)}/Z$ is the thermal population probability (Z is the partition function), and the E_i 's are the energies of the multiplets. However, the occurrence of ferromagnetic order in NdOs₄Sb₁₂ requires the presence of a molecular field constant Λ to account for the effective field, with $\chi^{-1} = \chi^{-1}_{CEF} - \Lambda$.

The low-temperature value of μ_{eff} (2.35 μ_B) indicates that the ground state of Nd³⁺ is either Γ_6 or $\Gamma_8^{(2)}$. A wide range of x_{LLW} values with a Γ_6 ground state can fit the $\chi(T)$ data reasonably well ($-1 \le x_{LLW} \le 0.1$). For a Γ_8 ground state, a good fit to the $\chi(T)$ data is only found for $x_{LLW} \approx -0.4$. All the fits imply that the splitting between the ground and first excited states is greater than 120 K. When compared with the $\rho(T)$ data (to be discussed later), the best fits are (I) $x_{LLW}=-0.1$, W=3.9, and (II) $x_{LLW}=-0.4$, W=-7.2, corresponding to the following level schemes: (I) $\Gamma_6(0 \text{ K})$, $\Gamma_8^{(1)}$ $\times(180 \text{ K})$, $\Gamma_8^{(2)}(420 \text{ K})$ and (II) $\Gamma_8^{(2)}(0 \text{ K})$, $\Gamma_8^{(1)}(220 \text{ K})$, $\Gamma_6(600 \text{ K})$, with $\Lambda=1.39 \text{ Nd-mol/cm}^3$ and an effective ground state moment $\sim 2.31\mu_B$ for both schemes. These fits are displayed in Figs. 1(a) and 1(b). The Heisenberg intera-

FIG. 2. (a) Magnetization M versus magnetic field H isotherms and the saturation magnetization $M_{\rm sat}$ determined from M versus H isotherms below the Curie temperature $\Theta_{\rm C}$. (b) M^2 versus H/Misotherms (Arrott plot) for NdOs₄Sb₁₂. (c) Inverse initial magnetic susceptibility (open circles) determined from $M^2=0$ intercepts of M^2 versus H/M isotherms, compared to the $\chi_{dc}^{-1}(T)$ data (pluses). The line is a Curie-Weiss fit. (d) H/M=0 intercepts of M^2 versus H/M isotherms plotted versus T. Positive values correspond to the spontaneous magnetization $M_{\rm sp}$.

tion strength between a Nd ion and its eight nearest neighbors is estimated to be 0.522 K from Λ .

Isothermal magnetization measurements M(H), displayed in Fig. 2(a), were made above and below the Curie temperature $(\Theta_{\rm C})$. In the paramagnetic state, the M(H) isotherms between 2 and 5 K can be fit well by a Brillouin function with effective J=2.7 that includes a temperature shift of 1 K due to ferromagnetism. The M(H) isotherms in the vicinity of $\Theta_{\rm C}$ were used to construct a conventional Arrott plot consisting of M^2 versus H/M isotherms, shown in Fig. 2(b). The isotherms in the Arrott plot are linear and parallel in the vicinity of $\Theta_{\rm C}$ for $H \leq 1$ T, indicating that NdOs₄Sb₁₂ is a mean-field ferromagnet. The intercepts of the linear fits to the (H/M) axis (= the inverse initial magnetic susceptibility) agree well with the low-temperature $\chi_{dc}^{-1}(T)$ data [Fig. 2(c)]. The intercepts of the linear fit to the M^2 axis are shown in Fig. 2(d), where zero identifies $\Theta_{\rm C}$ =0.93 K. Below $\Theta_{\rm C}$, the intercept of the M^2 axis corresponds to the square of the spontaneous magnetization (M_{sp}^2) , which levels off and results in a small value of $M_{\rm sp} \sim 0.7 \mu_{\rm B}/{\rm f.u.}$ However, a linear extrapolation of the negative M^2 -axis intercept back to zero temperature yields a much larger value of $\sim 1.76 \mu_{\rm B}/{\rm f.u.}$, which is comparable to the saturation magnetization $M_{\rm sat}$ of $\sim 1.73 \mu_{\rm B}/{\rm f.u.}$ determined directly from the M(H) data of $NdOs_4Sb_{12}$ [Fig. 2(a)]. The value of M_{sat} is also consistent with the saturation magnetization found in NdFe₄P₁₂ $(1.72\mu_{\rm B}/{\rm f.u.}).^{15}$

C. Electrical resistivity

Low-temperature electrical resistivity $\rho(T)$ data for NdOs₄Sb₁₂ in various magnetic fields from 0 to 18 T are shown in Figs. 3(a) and 3(b). The zero-field residual resistivity ratio RRR $\equiv \rho(300 \text{ K})/\rho(0.02 \text{ K})$ of ~45 indicates that the single crystal studied is of good metallurgical quality [Figs. 3(a) and 3(d)]. A shoulder occurs in the zero-field $\rho(T)$ curve at ~1.2 K, below which $\rho(T)$ has a sharp drop, indicating the development of an ordered state. The temperature $T_{\rm d}$ at which this drop occurs is defined as the intercept of two lines, one of which is a linear fit to the data above the transition while the other is a linear fit to the data below the transition. The upper and lower limits of the transition are defined as the temperatures midway between T_d and the temperatures at which the data deviate from the linear fits. Shown in Fig. 3(c) is the field dependence of T_d , which increases with increasing field up to 6 T, and is no longer observed in the $\rho(T)$ data at higher fields. The temperature $T_{\rm d}$ correlates with the onset of ferromagnetic order at 0.9 K determined from magnetization and specific heat measurements. Displayed in Fig. 3(d) are the high-temperature $\rho(T, 0 \text{ T} \leq H \leq 9 \text{ T})$ data for NdOs₄Sb₁₂, which show a slight increase in $\rho(T)$ with increasing field.

In order to analyze the behavior of the resistivity below $\Theta_{\rm C}$, the $\rho(T)$ data were fit with a power-law of the form $\rho(T) = \rho_0 + BT^n$. The fitting curves are plotted as dashed lines in Fig. 4(a). The residual resistivity ρ_0 increases with increasing field and has a linear *H* dependence above 8 T [Fig. 4(b)]. Between 0 and 18 T, the exponent *n* varies from 3 to

FIG. 3. (a) Low-temperature electrical resistivity ρ versus temperature *T* for magnetic fields *H* between 0 and 6 T for NdOs₄Sb₁₂. The solid lines are guides to the eye. (b) Low-temperature electrical resistivity ρ versus *T* for magnetic fields *H* between 8 and 18 T for NdOs₄Sb₁₂. The solid lines are guides to the eye. (c) Position of the shoulder T_d in $\rho(T)$ (which corresponds to Θ_C) versus *H*, with vertical bars indicating the width of the transition at T_d as described in the text. (d) High-*T* resistivity ρ versus *T* at *H*=0, 0.5, 1, 2, 4, 6, 8, and 9 T.

4, which indicates that NdOs₄Sb₁₂ exhibits neither typical Fermi-liquid ($n \sim 2$) nor typical non-Fermi-liquid (n < 2) behavior [Fig. 4(c)]. Since ferromagnetic ordering occurs below $\Theta_{\rm C}$, electron-spin wave scattering was considered with the form³⁰

$$\rho(T) = \rho_0 + A \frac{T}{\Delta_{\text{spw}}} \left(1 + 2 \frac{T}{\Delta_{\text{spw}}} \right) \exp\left(-\frac{\Delta_{\text{spw}}}{T}\right), \quad (3)$$

where Δ_{spw} is the spin-wave energy gap, which may result either from magnetic anisotropy or from broken symmetry due to the presence of a CEF. This formula describes the $\rho(T,H)$ data well, and the fitting curves are shown as solid lines in Fig. 4(a). As determined from these fits, the spinwave energy gap Δ_{spw} is ~0.75 K at 0 T, increases approximately linearly to ~4.5 K as the field increases to 12 T, and then drops to ~3.4 K at 18 T [Fig. 4(d)].

Figure 5(a) displays the zero-field $\rho(T)$ data, which have a slight negative curvature at ~130 K that may be related to scattering from the CEF levels. In order to analyze the CEF contribution to $\rho(T)$ at 0 T, it is necessary to subtract a lattice contribution $\rho_{\text{lat}}(T)$ and an impurity contribution $\rho_{\text{imp}}(\sim 9.4 \ \mu\Omega \text{ cm})$ from the resistivity data. Usually, $\rho_{\text{lat}}(T)$

FIG. 4. (a) Low-*T* electrical resistivity ρ versus temperature *T* with power-law (dashed line) and spin-wave (solid line) fits at various magnetic fields for NdOs₄Sb₁₂. (b) Residual resistivity ρ_0 versus *H*. (c) Exponent *n* of the power-law fit versus *H*. (d) Energy gap Δ_{spw} from the spinwave fit versus *H*.

is estimated from an isostructural nonmagnetic reference compound; in the case of NdOs₄Sb₁₂, the resistivity of LaOs₄Sb₁₂, which has an empty 4-f shell, was used. However, above 100 K, $\rho(T)$ of LaOs₄Sb₁₂ exhibits a significant negative curvature that is common in La-based compounds such as LaAl₂.^{31,32} This curvature is generally less pronounced in Sc-, Y-, and Lu-based compounds, which have completely empty or filled 4f-electron shells. However, the compounds $ScOs_4Sb_{12}$, YOs_4Sb_{12} , and $LuOs_4Sb_{12}$ have not yet been synthesized. Above 100 K, $\rho_{\text{lat}}(T)$ was estimated from $SmOs_4Sb_{12}$, as $\rho(T)$ of $SmOs_4Sb_{12}$ has an approximately linear-T dependence between 100 and 300 K.³³ The s-f exchange scattering effect in $\rho(T)$ of SmOs₄Sb₁₂ only appears below 80 K due to the small energy splitting $(\sim 35 \text{ K})$ between the ground and the first excited states in that compound. Thus it is reasonable to assume that $\rho(T)$ of $SmOs_4Sb_{12}$ for 100 K $\leq T \leq 300$ K is due to electron-phonon scattering and use it as an estimate of the high-temperature portion of $\rho_{\text{lat}}(T)$ for NdOs₄Sb₁₂.

The incremental resistivity $\Delta\rho(T) = \rho(T) - \rho_{\text{lat}}(T) - \rho_{\text{imp}}$ [Fig. 5(b)] is best described by two energy-level schemes that are consistent with the CEF analysis of $\chi(T)$ discussed previously. During the CEF analysis of $\Delta\rho(T)$, it was also found that *s*-*f* exchange scattering alone could not entirely account for $\Delta\rho(T)$; otherwise, ρ_{imp} would always be negative, which is unphysical. Thus, the effect of aspherical Coulomb scattering³⁴⁻³⁶ was also considered, with the ratio between the *s*-*f* exchange scattering and the aspherical Coulomb scattering defined as x:(1-x). In Fig. 5(b), the fit curves representing the two best-fit energy schemes are plotted in comparison with $\Delta\rho(T)$, which is described well by both fits above 40 K. The departure of $\Delta\rho(T)$ from the fits below 40 K may be due to a reduction of the electron scat-

FIG. 5. (a) Zero-field resistivity ρ and the estimated $\rho_{\text{lat}} + \rho_{\text{imp}}$ versus temperature *T* for NdOs₄Sb₁₂, where $\rho_{\text{imp}} \sim 9.4 \ \mu\Omega$ cm. (b) Temperature dependence of the incremental resistivity $\Delta\rho = \rho - \rho_{\text{lat}} - \rho_{\text{imp}}$ and CEF fits for two different ground states: Γ_6 (dashed line) and $\Gamma_8^{(2)}$ (solid line), where x/(1-x) is the ratio of s-f exchange to aspherical Coulomb scattering for NdOs₄Sb₁₂.

FIG. 6. (a) Isotherms of electrical resistivity ρ versus magnetic field *H* for NdOs₄Sb₁₂. (b) and (c) Calculated ρ versus *H* isotherms including the effects of s-f exchange and aspherical Coulomb scattering using the CEF parameters determined from zero-field data.

tering, resulting from the development of the coherent heavy-fermion ground state in NdOs₄Sb₁₂ as the temperature is lowered. The $\rho(H)$ isotherms are displayed in Fig. 6(a) and qualitatively agree with the $\rho(H)$ isotherms generated using the cubic-CEF parameters determined from the zero-field fits to $\Delta\rho(T)$ [Figs. 6(b) and 6(c)].

Measurements of $\rho(T)$ were performed from 1 to 300 K under nearly hydrostatic pressure *P* between 0 and 28 kbar (Fig. 7). In Fig. 7 it can clearly be seen that the pressureinduced change in the high-*T* electrical resistivity is much more pronounced than the resistivity change induced by high field [Fig. 3(c)], in the pressure and temperature ranges of this investigation. However, at low temperatures, the value of T_d is more strongly influenced by an increase in field *H* [Fig. 3(b)] than by variation of *P* [Fig. 7(b)].

FIG. 7. Electrical resistivity ρ versus temperature *T* for NdOs₄Sb₁₂ at various pressures *P* up to 28 kbar. Inset (a): Expanded view of the resistive ferromagnetic transitions. Inset (b): Temperature of the drop in $\rho(T)$ due to the onset of ferromagnetism T_d (approximately corresponding to the Curie temperature Θ_C) versus *P* with vertical bars indicating the width of the transition.

D. Specific heat

Specific heat divided by temperature C/T versus T data for NdOs₄Sb₁₂ are shown in Fig. 8(a). The data reveal a pronounced peak at ~0.8 K that correlates well with the magnetic ordering temperature $\Theta_{\rm C}$ inferred from the shoulder of $\rho(T)$, the divergence of $\chi_{\rm dc}(T)$, and the Arrott-plot analysis. No obvious Schottky anomaly associated with CEF energy splitting was observed in the C(T) data below 20 K. This is consistent with the fact that all the fits to the dc magnetic susceptibility data imply that the CEF splitting between the ground and first excited states is greater than 120 K. The Schottky anomaly due to 120 K CEF splitting would exhibit a peak at ~40 K and make a negligible contribution to C(T) 20 K. Such a peak would also be difficult to resolve against the large lattice background.

In Fig. 8(a), the specific heat of $LaOs_4Sb_{12}$ is displayed in comparison with that of NdOs₄Sb₁₂, where the electronic specific heat coefficient γ and the Debye temperature $\Theta_{\rm D}$ of LaOs₄Sb₁₂ are \sim 36 mJ/mol K² and \sim 280 K, respectively. After the specific heat of nonmagnetic $LaOs_4Sb_{12}$ (an estimate of the lattice heat capacity of $NdOs_4Sb_{12}$) is subtracted from the specific heat of NdOs₄Sb₁₂, the difference divided by temperature $\delta C/T$ is plotted against T^2 and shown in the inset of Fig. 8(a). The value of γ for NdOs₄Sb₁₂ estimated from the $\delta C/T$ versus T^2 plot ranges from ~436 to ~530 mJ/mol K². Below 13 K, $\delta C/T$ versus T^2 is not constant, which could be due to a difference between the actual lattice heat capacities of NdOs₄Sb₁₂ and LaOs₄Sb₁₂. Nevertheless, the curvature in C/T versus T^2 of NdOs₄Sb₁₂ [inset of Fig. 8(b)] and the magnetic transition occurring at ~ 1 K cause difficulties in the analysis of the data using the typical formula $C/T = \gamma + \beta T^2$. Since we have strong evidence against the possibility of a CEF Schottky contribution from the analysis of the $\chi(T)$ data, the curvature in C/T versus T^2 is possibly due to either the rattling motion of the Nd atoms

FIG. 8. (a) Zero-field *C* versus *T* for NdOs₄Sb₁₂ and LaOs₄Sb₁₂ below 20 K. Inset: $\delta C/T$ versus T^2 below 20 K, where $\delta C \equiv C(\text{NdOs}_4\text{Sb}_{12}) - C(\text{LaOs}_4\text{Sb}_{12})$. The extrapolated values of the two dashed lines at 0 K set the lower and upper limits of $\gamma(\text{NdOs}_4\text{Sb}_{12}) - \gamma(\text{LaOs}_4\text{Sb}_{12})$. (b) A comparison between *C* of NdOs₄Sb₁₂) - $\gamma(\text{LaOs}_4\text{Sb}_{12})$. (b) A comparison between *C* of NdOs₄Sb₁₂ and a fit of $C_{\text{el}} + C_{\text{lat}}$, where $C_{\text{el}} = \gamma T$ and C_{lat} is composed of C_{Deb} and C_{Ein} as described in the text. The electronic specific heat coefficient γ , the Debye temperature (Θ_D), the Einstein temperature (Θ_E), and the coupling constant *r* for the Einstein oscillator are estimated as 520 mJ/mol K², 255 K, 39 K, and 0.48 respectively. Inset: *C*/*T* versus T^2 for NdOs₄Sb₁₂ below 20 K for NdOs₄Sb₁₂.

or a narrow peak in the density of electronic states near Fermi energy, such as a Kondo resonance.³⁷ However, we do not consider the application of the resonance level model (RLM)³⁷ to be appropriate, because the magnetization data above $\Theta_{\rm C}$ are fit well by a Brillouin function and no obvious Kondo effect is observed in the $\rho(T)$ data of NdOs₄Sb₁₂. In the previous specific heat studies of the Tl_{0.22}Co₄Sb₁₂ filled skutterudite compound, Sales et al.25 found that the difference in heat capacity between Tl_{0.22}Co₄Sb₁₂ and the unfilled skutterudite compound Co₄Sb₁₂ can be accurately described by a quantized oscillator (Einstein model) with an Einstein temperature $\Theta_{\rm E}$ of 55 K. Since the x-ray structural refinement at room temperature for NdOs₄Sb₁₂ indicates a small $\Theta_{\rm E}$ ~ 45 K associated with the Nd atoms, it can be assumed that the Nd atoms partially act like Einstein oscillators with a mixing ratio r, and the lattice contribution to the specific heat can be expressed as $C_{\text{lat}} = C_{\text{Ein}} + C_{\text{Deb}}$,

$$C_{\rm Ein} = r \left[3R \frac{(\Theta_{\rm E}/T)^2 e^{(\Theta_{\rm E}/T)}}{[e^{(\Theta_{\rm E}/T)} - 1]^2} \right],\tag{4}$$

FIG. 9. (a) Incremental specific heat ΔC ($\Delta C \equiv C - C_{el} - C_{lat}$) (left axis) and the magnetic entropy S_{mag} (right axis) versus temperature *T*. (b) Logarithmic plot of the power-law fit (dotted line) and the anisotropic-spin-wave fit (dashed line) to the incremental specific heat $\Delta C(T)$ after the electronic and lattice contributions have been removed (in a very limited measuring range below Θ_C).

$$C_{\text{Deb}} = (17 - r) \cdot \frac{12\pi^4}{5} R \left(\frac{T}{\Theta_{\text{D}}}\right)^3,$$
 (5)

where R is the universal gas constant, $\Theta_{\rm D}$ represents the Debye temperature, and $r \leq 1$. The effective Debye contribution is (17-r)/r times bigger than that of the Einstein-like Nd rattling motion due to the participation of the rest of the atoms in the unit cell. Below 20 K, a least-squares fit of $C_{\rm el} + C_{\rm lat}$ to the C(T) data was performed, where $C_{\rm el} = \gamma T$ is the electronic specific heat, from which estimated values of $\gamma, \Theta_{\rm D}, \Theta_{\rm E}$, and r were derived. The fitting curve is plotted in Fig. 8(b) along with the C(T) data of NdOs₄Sb₁₂ as a comparison. The values obtained for γ , $\Theta_{\rm D}$, $\Theta_{\rm E}$, and r are estimated as 520 mJ/mol K², 255 K, 39 K, and 0.48, respectively. The value of $\Theta_{\rm D}$ is close to the Debye temperature of LaOs₄Sb₁₂, the value of Θ_E is comparable to that determined from the x-ray data, and the value of γ is close to that estimated from the simple subtraction of the LaOs₄Sb₁₂ specific heat data, suggesting that NdOs₄Sb₁₂ is possibly a heavy fermion compound.

The temperature dependence of the magnetic entropy S_{mag} was derived from the integration of $\Delta C/T$ versus *T* and is shown in Fig. 9(a), where $\Delta C \equiv C - C_{\text{el}} - C_{\text{lat}}$. The magnetic entropy (S_{mag}) in NdOs₄Sb₁₂ reaches 0.69*R* ($\approx R \ln 2$) at 0.85 K and levels off at a value of $\sim 1.14R$ ($\approx R \ln 3$). The magnetic entropy reaches $\sim 74\%$ of its full value at Θ_{C} , and a noticeable magnetic contribution persists up to ~ 3 K, revealing the existence of magnetic fluctuations above Θ_{C} . It

has been argued for the antiferromagnetic system $Gd_{1-r}Y_rNi_2Si_2$ that magnetic fluctuations can contribute to C(T) at temperatures up to five times the Néel temperature.³⁸ Thus, we cannot completely rule out the possibility that the short range magnetic correlations near the ferromagnetic transition temperature regime give rise to enhancement of the specific heat of $NdOs_4Sb_{12}$.³⁸⁻⁴⁰ However, it is unlikely that they would account for a large fraction of the enhanced specific heat, due to the following arguments: (i) The paramagnetic-state M(H) isotherm data (2–5 K) scale well with a Brillouin function. The M(H) data at 2 and 3 K, and the $\chi_{\rm dc}^{-1}(T)$ data along with the initial χ^{-1} from the Arrott-plot analysis do not show obvious evidence of magnetic fluctuations above 2 K [displayed in Figs. 2(a) and 2(b)]. (ii) The value estimated for $\gamma(520 \text{ mJ/mol } \text{K}^2)$ is within the upper and lower limits of γ (436–530 mJ/mol K²) estimated from the analysis done by comparing the specific heat of NdOs₄Sb₁₂ with that of the nonmagnetic compound LaOs₄Sb₁₂ suggesting that our analysis is justified. (iii) The lower limit (4 K) of the fitting range used to determine γ from the formula $C = C_{el} + C_{lat}$ is four times the Curie temperature, which is safely higher than the temperature at which the calculated S_{mag} saturates. (iv) Heavy fermion behavior has been found in the neighboring compounds $PrOs_4Sb_{12}$ ($\gamma \sim 600 \text{ mJ/mol } \text{K}^2$) (Ref. 41) and $SmOs_4Sb_{12}$ $(\gamma \approx 880 \text{ mJ/mol K}^2)$;³³ earlier studies of the related compound NdFe₄P₁₂ also reported possible evidence for an enhanced electron mass.^{15,42} Considering all of these points, it seems likely that NdOs₄Sb₁₂ displays heavy fermion behavior.

Since S_{mag} lies between $R \ln 2$ (=0.69R) and $R \ln 4$ (=1.39R), it is difficult to determine conclusively whether the Γ_6 doublet or $\Gamma_8^{(2)}$ quartet is the Nd³⁺ ground state. If the Γ_6 doublet is the ground state, then the extra entropy may result from another degree of freedom, such as a tunneling mode or off-center mode of Nd³⁺ ion in an Sb-icosahedron cage.⁴³ If the $\Gamma_8^{(2)}$ quartet is the ground state, the smaller entropy may be due to an overestimated lattice contribution to the specific heat or transfer of entropy to the conduction electron system.

Figure 9(b) displays the incremental specific heat $\Delta C(T)$ after the electronic and lattice contributions have been removed. Even though the range of the $\Delta C(T)$ data below $\Theta_{\rm C}$ is very limited, the data were fit with spin-wave formulas $\Delta C(T) \propto T^n$ for magnetically isotropic metals and $\Delta C(T)$ $\propto T^{3/2} \exp(-\Delta_{\rm spw}/T)$ for magnetically anisotropic metals.⁴⁴ From the first formula, the value of the exponent $n \approx 2.3$ is higher than the value of 1.5 expected from a spin wave in an isotropic metal. The spin-wave energy gap Δ_{spw} determined from the second formula is ~0.54 K, consistent with the value of 0.75 K determined from the zero-field resistivity data.

IV. SUMMARY

We have performed x-ray diffraction, electrical resistivity, magnetization, and specific heat studies of NdOs₄Sb₁₂ single crystals, which exhibit interesting strongly correlatedelectron behavior. X-ray experiments have revealed full occupancy of Nd sites and a large mean square displacement of Nd ions in NdOs₄Sb₁₂. The compound NdOs₄Sb₁₂ exhibits mean-field-type ferromagnetism with $\Theta_{\rm C} \sim 0.9$ K. The value of γ estimated from the analysis of the specific heat is large, ~520 mJ/mol K² ($m^* \sim 98m_e$), indicating that NdOs₄Sb₁₂ is a possible heavy fermion compound. A cubic CEF analysis suggests two best-fit energy level schemes: (I) Γ_6 (0 K), $\Gamma_8^{(1)}$ (180 K), $\Gamma_8^{(2)}$ (420 K); (II) $\Gamma_8^{(2)}$ (0 K), $\Gamma_8^{(1)}$ (220 K), Γ_6 (600 K), both with a molecular field parameter Λ = 1.39 Nd mol/cm³. The electrical resistivity data indicate that both s-f exchange and aspherical Coulomb scattering are present in NdOs₄Sb₁₂. Low-temperature electrical resistivity data suggest the possible existence of spin-wave excitations below $\Theta_{\rm C}$. The uncertainty in the CEF-energy-level scheme ground state and the possible existence of spin-wave excitations may be resolved by further neutron scattering experiments.

ACKNOWLEDGMENTS

We thank Dr. C. Capan for technical support at NHMFL at Los Alamos and Professor D. P. Arovas at UCSD for helpful discussions. We also thank S. K. Kim and A. P. Thrall for assistance in sample preparation. Research at UCSD was supported by the U. S. Department of Energy under Grant No. DE-FG02-04ER46105, the U. S. National Science Foundation under Grant No. DMR-0335173, and the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grant No. DE-FG52-03NA00068. The work at the NHMFL Pulsed Field Facility (Los Alamos National Laboratory) was performed under the auspices of the NSF, the State of Florida and the US Department of Energy.

- ¹W. Jeitschko and D. Braun, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. **33**, 3401 (1977).
- ²N. Takeda and M. Ishikawa, J. Phys. Soc. Jpn. **69**, 868 (2000).
- ³K. Abe, H. Sato, T. D. Matsuda, T. Nanmiki, H. Sugawara, and Y. Aoki, J. Phys.: Condens. Matter 14, 11757 (2002).
- ⁴Y. Aoki, T. Namiki, T. D. Matsuda, K. Abe, H. Sugawara, and H. Sato, Phys. Rev. B **65**, 064446 (2002).
- ⁵M. B. Maple, E. D. Bauer, V. S. Zapf, E. J. Freeman, N. A.

Frederick, and R. P. Dickey, Acta Phys. Pol. B 32, 3291 (2001).

- ⁶E. D. Bauer, N. A. Frederick, P.-C. Ho, V. S. Zapf, and M. B. Maple, Phys. Rev. B 65, 100506(R) (2002).
- ⁷E. Bauer, S. Berger, C. Paul, M. D. Mea, G. Hilscher, H. Michor, M. Reissner, W. Steiner, A. Grytsiv, P. Rogl, and E. W. Scheidt, Phys. Rev. B **66**, 214421 (2002).
- ⁸C. Sekine, T. Uchiumi, I. Shirotani, and T. Yagi, Phys. Rev. Lett. 79, 3218 (1997).

- R. P. Guertin, J. Appl. Phys. **57**, 3073 (1985).
- ¹⁰M. B. Maple, N. R. Dilley, D. A. Gajewski, E. D. Bauer, E. J. Freeman, R. Chau, D. Mandrus, and B. C. Sales, Physica B 259–261, 8 (1999).
- ¹¹A. Leithe-Jasper, D. Kaczorowski, P. Rogl, J. Bogner, M. Reissner, W. Steiner, G. Wiesinger, and C. Godart, Solid State Commun. **109**, 395 (1999).
- ¹²N. Takeda and M. Ishikawa, Physica B **259–261**, 92 (1999).
- ¹³E. D. Bauer, A. Ślebarski, R. P. Dickey, E. J. Freeman, C. Sirvent, V. S. Zapf, N. R. Dilley, and M. B. Maple, J. Phys.: Condens. Matter **13**, 5183 (2001).
- ¹⁴E. Bauer, St. Berger, A. Galatanu, Ch. Paul, M. Della Mea, H. Michor, G. Hilscher, A. Grytsiv, P. Rogl, D. Kaczorowski, L. Keller, T. Hermannsdörder, and P. Fischer, Physica B **312–313**, 840 (2002).
- ¹⁵ M. S. Torikachvili, J. W. Chen, Y. Dalichaouch, R. P. Guertin, M. W. McElfresh, C. Rossel, M. B. Maple, and G. P. Meisner, Phys. Rev. B **36**, 8660 (1987).
- ¹⁶H. Sato, H. Sugawara, T. Namiki, S. R. Saha, S. Osaki, T. D. Matsuda, Y. Aoki, Y. Inada, H. Shishido, R. Settai, and Y. Onuki, J. Phys.: Condens. Matter **15**, S2063 (2003).
- ¹⁷N. A. Frederick, T. D. Do, P.-C. Ho, N. P. Butch, V. S. Zapf, and M. B. Maple, Phys. Rev. B **69**, 024523 (2004).
- ¹⁸T. Cichorek, A. C. Mota, F. Steglich, N. A. Frederick, W. M. Yuhasz, and M. B. Maple, Phys. Rev. Lett. **94**, 107002 (2005).
- ¹⁹E. E. M. Chia, M. B. Salamon, H. Sugawara, and H. Sato, Phys. Rev. Lett. **91**, 247003 (2003).
- ²⁰E. E. M. Chia, M. B. Salamon, H. Sugawara, and H. Sato, Phys. Rev. B **69**, 180509(R) (2004).
- ²¹C. B. H. Evers, W. Jeitschko, L. Boonk, D. J. Braun, T. Ebel, and U. D. Scholz, J. Alloys Compd. **224**, 184 (1995).
- ²²G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Refinements (University of Goettingen, Germany, 1997); windows version by McArdle, Natl. Univ. Galway, Ireland.
- ²³E. D. Bauer, R. P. Dickey, V. S. Zapf, and M. B. Maple, J. Phys.: Condens. Matter **13**, L759 (2001).
- ²⁴E. D. Bauer, A. Ślebarski, N. A. Frederick, W. M. Yuhasz, M. B. Maple, D. Cao, F. Bridges, G. Giester, and P. Rogl, J. Phys.: Condens. Matter 16, 5095 (2004).

- ²⁵B. C. Sales, B. C. Chakoumakos, D. Mandrus, J. W. Sharp, N. R. Dilley, and M. B. Maple, Mater. Res. Soc. Symp. Proc. 545, 13 (1999).
- ²⁶R. P. Hermann, R. Jin, W. Schweika, F. Grandjean, D. Mandrus, B. C. Sales, and G. J. Long, Phys. Rev. Lett. **90**, 135505 (2003).
- ²⁷K. Takegahara, H. Harima, and A. Yanase, J. Phys. Soc. Jpn. **70**, 1190 (2001).
- ²⁸ K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
- ²⁹ P. Fulde, Handbook on the Physics and Chemistry of rare earths 2, 304 (1979).
- ³⁰N. H. Andersen, *Crystalline Electric Field and Structural Effects in f-Electron Systems*, edited by J. E. Crow, R. P. Guertin, and T. W. Mihalisin (Plenum, New York, 1980), p. 373.
- ³¹A. Ślebarski and D. Wohlleben, Z. Phys. B: Condens. Matter 60, 449 (1985).
- ³²M. B. Maple, Ph.D. thesis, University of California, San Diego (1969).
- ³³W. M. Yuhasz, N. A. Frederick, P.-C. Ho, N. P. Butch, B. J. Taylor, T. A. Sayles, M. B. Maple, J. B. Betts, A. H. Lacerda, P. Rogl, and G. Giester, Phys. Rev. B **71**, 104402 (2005).
- ³⁴R. Elliott, Phys. Rev. **94**, 564 (1954).
- ³⁵P. Fulde and I. Peschel, Adv. Phys. **21**, 1 (1972).
- ³⁶N. A. Frederick and M. B. Maple, J. Phys.: Condens. Matter 15, 4789 (2003).
- ³⁷K. D. Schotte and U. Schotte, Phys. Lett. **55A**, 38 (1975).
- ³⁸E. V. Sampathkumaran and I. Das, Phys. Rev. B **51**, 8178 (1995).
- ³⁹M. Bouvier, P. Lethuillier, and D. Schmitt, Phys. Rev. B 43, 13137 (1991).
- ⁴⁰R. Mallik, E. V. Sampathkumaran, J. Dumschat, and G. Wortmann, Solid State Commun. **102**, 59 (1997).
- ⁴¹M. B. Maple, P.-C. Ho, N. A. Frederick, V. S. Zapf, W. M. Yuhasz, E. D. Bauer, A. D. Christianson, and A. H. Lacerda, J. Phys.: Condens. Matter **15**, S2071 (2003).
- ⁴² H. Sugawara, Y. Abe, Y. Aoki, H. Sato, M. Hedo, R. Settai, Y. Onuki, and H. Harima, J. Phys. Soc. Jpn. **69**, 2938 (2000).
- ⁴³T. Goto, Y. Nemoto, K. Sakai, T. Yamaguchi, M. Akatsu, T. Yanagisawa, H. Hazama, K. Onuki, H. Sugawara, and H. Sato, Phys. Rev. B **69**, 180511(R) (2004).
- ⁴⁴A. R. Mackintosh, Phys. Lett. 4, 140 (1963).