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We model the magnetization of quasi-two-dimensional systems with easy perpendicular �z� axis anisotropy
upon change of the external magnetic field along z. The model is a generalization of the scalar “phi-fourth”
model that considers only the z component of the magnetization, and includes magnetic exchange, dipolar
interactions, structural disorder, and an external z-oriented magnetic field. The phase diagram in the disorder/
interaction strength plane is presented, and the different qualitative regimes are analyzed, mainly focusing on
the existence or not of an abrupt nucleation step in the process of magnetization reversal. The results compare
very well with observed experimental hysteresis loops and spatial magnetization patterns, as for instance in the
case of Co-Pt multilayers.
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I. INTRODUCTION

The detailed understanding of the phenomena responsible
for magnetic hysteresis1,2 is of great importance in theoreti-
cal and applied considerations, as for instance in the mag-
netic recording technology.3 Magnetic hysteresis originates
in the existence of different metastable configurations com-
patible with the same value of the applied external field.
When the external field is changed, the system adapts by
finding the nearest metastable minimum in configuration
space. During this process energy is dissipated, and upon a
sweep of the external field this manifests in a nonvanishing
hysteresis loop, whose area is related to the energy dissipated
during the process. In this description of hysteresis the exter-
nal field is assumed to change infinitely slowly, in such a
way that the system adapts in every moment to the actual
value of the external field. However, in general this is not
enough to guarantee a smooth evolution of the microscopic
degrees of freedom of the system, and that is the origin of
dissipation and hysteresis.

Although the qualitative origin of hysteresis is well un-
derstood, a completely different issue is to reproduce in de-
tail the observed hysteretic behavior of real systems. This is
particularly true when competing interactions make the en-
ergy landscape of the system have many different metastable
minima. Typical competing interaction terms are the mag-
netic exchange favoring a parallel alignment of the magneti-
zation, and the dipolar term which favors an antiparallel ar-
rangement in a plane perpendicular to the magnetization.

In the present paper we model the hysteretic behavior of
thin magnetic films with perpendicular anisotropy. These
systems are promising as high density magnetic storage
media,4 and they are receiving a great deal of experimental
attention.5–8 In particular, the effect of the disorder on the
shape of the hysteresis loops and magnetization configura-
tions has started to be analyzed.6–8

The paper is divided as follows. In Sec. II we discuss the
scalar model we use, which is appropriate for the present
case where magnetization points almost everywhere in the
perpendicular direction. Section III contains the results of the
numerical simulations, and in Sec. IV we compare the results
with experimental data in Co-Pt multilayers and conclude.

II. DEFINITION OF THE MODEL

Magnetism originates in quantum effects occurring at the
atomic level. To model macroscopic hysteresis, however, it is
impossible in practice to start from these elemental building
blocks in order to arrive to the macroscopic description. The
micromagnetic approach1,2 starts from an intermediate scale
description, in which the magnetic moment m of an elemen-
tal piece of material is taken as the fundamental variable. m
is a vector field, which is a function of the spatial coordinates
and time, and it is assumed to satisfy at any position and time
the constrain �m�2=1, where a rescaling of the amplitude has
been assumed. A reasonably detailed description of magneti-
zation evolution is provided by the phenomenological
Landau-Lifshitz-Gilbert �LLG� equation,1,2,9 that can be writ-
ten as

�m

�t
= − am � B − bm � �m � B� , �1�

where B is the local effective magnetic field. The first term
on the right of Eq. �1� describes a precessional evolution of
m around B, and the second term is a phenomenological
damping term that tends to align m with B. Note that from
this equation we obtain immediately that ��m�2 /�t=0, i.e., it
automatically maintains the norm of m as fixed. In equilib-
rium ��m /�t=0�, this equation reduces to Brown’s
equation,1,2 namely m�B=0, stating that at any point the
local magnetization has to be aligned with the local field.
The local field B includes contributions from the external
applied field, from the interaction with all the rest of the
magnetic moments in the sample, and from structural
anisotropies in the sample.

Equation �1� is a sufficiently detailed starting point to ob-
tain the time and space evolution of the magnetization. Un-
fortunately, it is frequently a too much detailed starting point.
In fact, except in simple cases, the vectorial nature of m and
the different temporal scales for precessional and relaxation
effects makes the numerical solution of Eq. �1� extremely
demanding.10

For the problem we want to study a much simpler formu-
lation is possible. The main point is to recognize that at every
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moment, the local magnetization in the sample points almost
everywhere in the z direction. The only exception are domain
walls, where the z component of magnetization changes sign
continuously. Experimental results show6–8 that in the sys-
tems we are trying to model, these domain walls have a
width which is much smaller than the size of the regions in
which magnetization remains uniform. We are interested in
the spatial distribution of magnetization, and not in the de-
tailed internal structure of domain walls, and this is what
makes it possible to work with a scalar model in terms of mz
only.

In fact, models of this type have been widely used in the
past. A convenient starting point is the “dipolar phi-fourth”
model, described by the dynamical equation11–13

���r�
�t

= h0 − A�− � + �3� − �� dr�
��r��

��r − r��3�
+ J�2� .

�2�

The scalar variable � �which may be assimilated to the z
component of the local magnetization� evolves in a local
two-well potential �the A-proportional term in Eq. �2�� which
mimics the existence of two privileged values �±1� for �. h0

is the external field and the last two terms are the dipolar and
exchange contributions, respectively. The form of the ex-
change term is just the simplest form that produces a finite
energy for a domain wall. Since in our description we do not
intend to describe domain walls in more detail, this form is
enough for our purposes. We have used this model
previously13 to study magnetization patterns in magnetic gar-
nets and ferrofluids. This is essentially the kind of model we
are going to use here, but some modification is necessary to
correct for some nonphysical feature of Eq. �2� concerning
the global magnetization: In Eq. �2�, ��� is not restricted to be
bounded, and, in fact, arbitrarily large values of � are ob-
tained if the external field is strong enough. This unrealistic
behavior has to be cured if we want to reproduce the form of
macroscopic hysteresis loops, where saturation does occur.
There is a very simple and natural modification of Eq. �2�
which provides magnetization saturation. In fact, consider an
isolated magnetic moment in the presence of a field pointing
in the z direction of amplitude B �which may even be time
dependent�. According to the complete equation �1�, the z
component of the magnetization evolves according to

dmz

dt
= b�1 − mz

2�B �3�

and this equation, of course, predicts that �mz� will never
overpass the value 1. It is immediate to implement this pre-
scription in a model like that of Eq. �2�, by modifying it to
the form

���r�
�t

= �1 − �2�B + J�2� �4�

with

B = h0 + A� − �� dr�
��r��

��r − r��3�
. �5�

Note that we have set the constant b to 1 by appropriately
redefining J and the time unit. Different terms on the right
hand side of Eq. �5� represent, respectively, the external field,
the local anisotropy �taken to lowest order�1,2 and the dipolar
interaction.

We also want to take into account in the model the exis-
tence of structural disorder, which can nowadays be intro-
duced in a controlled manner in the experiments.6,7 In this
respect, it is worth mentioning the previous work on the
random field Ising model �RFIM� introduced by Sethna et
al.14 This is a generalization of the Ising model �with nearest
neighbor couplings, no dipolar interactions� where a
quenched random field is assumed to be present at every site.
This is an important model system, where the effect of dis-
order on the existence or not of an abrupt nucleation step in
the process of magnetization reversal was analyzed in detail.
The RFIM is a good prototypical model, but from an experi-
mental point of view, the existence of quenched random
fields in different positions of the sample is difficult to jus-
tify, as it implies a breaking of the time reversal symmetry.
Other people15 suggested that it would be more physical to
introduce disorder in the strength of the bonds of the Ising
model �random bond�, in the direction of the easy axis for
the magnetization �random anisotropy�, or in the value of the
coercive field that has to be applied to revert a single spin
�random coercivity Ising model�. In our model given by Eqs.
�4� and �5�, it is very simple to introduce disorder in the
parameter A. As we said, this parameter controls the strength
of the anisotropy energy in the system. Note also that it is a
measure of the coercive field necessary to revert an isolated
spin: a spin will be locally in equilibrium if it points in the
direction of the local field. We see that mz= +1 �mz=−1� is
an equilibrium configuration of that spin if h0+A�0 �h0

−A�0�. Then A represents the value of the local coercive
field that is necessary to apply in order to invert the orienta-
tion of the spin. We will choose the value of A to vary spa-
tially according to

A�r� = A0�1 + D��r�� , �6�

where � is a spatially random and uncorrelated Gaussian
variable, with zero mean and unitary variance �� is cut off at
large negative values, namely ��−1/D, to guarantee A�0�.
D controls the overall intensity of disorder.

We want to make a comment about the use of a continu-
ous variable to describe the z axis magnetization. It seems
that for our purposes a discrete ±1 variable would suffice.
This is true in principle, but there is a technical problem in
using a ±1 variable: if the fundamental variables take only
two values, domain walls are forced to be one lattice param-
eter thick. This produces domain walls that are artificially
pinned to the numerical lattice, and this makes realistic simu-
lations of homogeneous and isotropic systems very
difficult.16

To close this section, we want to comment about a subtle
point concerning the inversion symmetry in spin space of the
problem. The time evolution equations of our model �Eqs.
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�4� and �5�� do not change upon the inversion of all spins and
the external field ��� ,h0�→ �−� ,−h0��. However, the full
LLG Eq. �1� does not possess this symmetry. In a certain
sense, in passing from the full LLG equation to a scalar
description, we are averaging out the precession of spins, and
this may imply that we are not describing some dynamical
symmetry breaking effects that can in principle be present.
This point has been recently emphasized by Deutsch and
Mai.10 It seems that this kind of effect, if present, does not
show up at the level of the results we are going to present in
the rest of this paper.

III. RESULTS

The model simulated is thus given by Eqs. �4� and �5�,
with the disorder function A�r� given by Eq. �6�. The results
presented below correspond to zero temperature. Thus the
evolution of the system is driven exclusively by the tendency
to minimize the energy. We will see that even this T=0 case
is very rich, and provides different macroscopic forms of the
hysteresis curve when the interaction strength between spins
and the amount of structural disorder are changed. The re-
sults obtained compare very well with experimental results.

The parameters of the model are A0 , D , �, and J, in ad-
dition to the external field h0. As explained in Ref. 9, the
ratio between J and � can be adjusted by appropriately res-
caling the spatial scale in the model. In the simulations be-
low we choose �=0.095 J, and give the results in term of
h0 /A0 , J /A0, and D. The mesh parameter is taken as the unit
of length.

For each set of parameters we start with a very high value
of h0, where the system is fully polarized, and start decreas-
ing h0 in small steps. At each step the simulation is run until
full convergence is achieved, and then the spatial distribution
of magnetization is examined, and the global magnetization
m is calculated as the spatial average of �. The main result
we are going to present is the disorder-exchange/anisotropy
ratio �D−J /A0� phase diagram of the model, and its descrip-
tion. The phase diagram is presented in Fig. 1. The form of
the hysteresis loop at different positions is shown in Fig. 2.

For large J /A0, �2.1�J /A0� the system shows no hyster-
esis at all. A closer examination of the magnetization distri-
bution shows that in this region the interaction is so strong
that effectively, the two minima of the local magnetization
disappear, and � remains almost uniform in the sample,
changing smoothly as a function of the applied field. This
regime is certainly outside the region in which the model is
justified, and then we will not consider it.

More interesting to us is the rest of the phase diagram,
where hysteresis occurs, and where �from the examination of
magnetization distribution� we observe well defined domains
with magnetization ±1. That is the part plotted in Fig. 1. Two
main regions can be defined here. They correspond to the
existence or not of a finite magnetization jump upon field
variation. On the basis of the results for the simulated points
in the phase diagram �some additional simulated points are
not shown�, we can infer the existence of a line �sketched by
the continuous line� separating a region in which a finite
magnetization jump occurs �at the left of this line� or does

not occur �at the right of this line�. In addition, if a jump
exists, it can lead directly to the fully inverted magnetization
state, or to a partial inversion, that requires a further change
of the external field to completely revert the magnetization.
These two possibilities are separated by a different line,

FIG. 1. Disorder-exchange/anisotropy ratio �D−J /A0� phase
diagram for the model described by Eq. �4�, in a system of size
384�384, with �=0.095 J. Numbers indicate the points for which
the hysteresis loops are shown in the next figure. The continuous
line is the main feature of the diagram, separating regions in which
an abrupt nucleation event occurs �to the left of this line� or not �to
the right�. In addition, the nucleation event produces complete mag-
netization reversal to the left of the dotted line, but only partial
magnetization reversal between this curve and the continuous line
�the location of the lines is only approximate, based on the results
for the indicated points, and some others not shown�.

FIG. 2. The hysteresis loops at different locations of the phase
diagram shown in the preceding figure. In the vertical axis we plot
the z-axis magnetization, which changes between ±1 as the field is
changed.
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sketched as a dotted line in Fig. 1. A magnetization jump
indicates an instability in the system, in which a finite frac-
tion of the spins change their orientations, upon an infinitesi-
mal change of the external field. This avalanche process in
magnetic systems was originally analyzed in the RFIM.14 It
was shown that if disorder in the system is lower than some
critical amount, then there is a magnetization jump, whereas
there is no jump for higher disorder. The same result is quali-
tatively obtained here, the amplitude of the magnetization
jump vanishes continuously when we approach the continu-
ous line from the left in Fig. 1. This line is a critical line, in
the same sense used in the RFIM. We expect that the van-
ishing of the abrupt jump follows a power law close to the
critical line. However, we have not attempted to determine
critical exponents since in the presence of the dipolar inter-
action we cannot go to system sizes large enough to get good
statistics. An interesting question that remains open is
whether the critical exponents are the same all along the
critical line or not.

The spatial distribution of magnetization shows character-
istic features for different forms of the hysteresis loops. Ex-
amples are shown in Figs. 3–7, corresponding to hysteresis
loops �1�, �4�, �9�, �7�, and �10� in Fig. 2. Figure 3 corre-
sponds to a case where there is an abrupt nucleation, leading
to a partially inverted magnetization state. Panel �a� in Fig. 3
is a nonequilibrium configuration after the nucleation. The
final state at this field corresponds to a configuration of mag-
netization 	0.3. Further decrease of the field �panels �c� and
�d�� is necessary to completely invert the magnetization. In
the presence of strong disorder, for approximately the same
value of J /A0 �Fig. 4� the nucleation step is smoothed, and
the whole evolution is continuous. Here disorder plays a fun-
damental role in preventing the spontaneous growth of the
nucleated domains, which in this case remain pinned by the

structural disorder, and need a further decrease of the field to
be able to grow.

Figure 5 displays a case in which the nucleation event
takes the sample in the opposite fully magnetized state. Note
how in this case, the domain that nucleates is a rather fea-
tureless, more or less circular object, and grows to take over
the whole sample. This case has to be compared with Fig. 3,
in which the domains nucleated maintain a striped internal
structure. An intermediate case is that of Fig. 6. Here the
inverted magnetization bubble almost invades the whole
sample at once. However, a small fraction of domains with
the original orientation remains. This is reflected in the form
of the magnetization loop, which in fact shows an abrupt
jump of the magnetization from +1 to about −0.5.

The last case �Fig. 7� corresponds to a weakly interacting
sample �lower value of J /A0�. However, the disorder is suf-
ficiently strong to avoid a sudden nucleation step. We see the

FIG. 3. Four snapshots of the spatial magnetization distribution
corresponding to hysteresis loop �1� in Fig 2. The values of the
magnetization at which the snapshot were taken are indicated. Note
that the first panel is an unstable configuration, which is spontane-
ously evolving toward a state with m
0.3 �in this and following
figures, the gray scale from black to white represents magnetization
values ranging from −1 to +1�.

FIG. 4. Same as Fig. 3, for hysteresis loop �4� in Fig 2.

FIG. 5. Same as Fig. 3, for hysteresis loop �9� in Fig. 2. None of
these configurations is stable, they are spontaneously evolving to
the completely inverted magnetization state.
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different configuration of the domains in this case, which do
not show the typical striped pattern of the other cases �origi-
nated in the dipolar interaction� but patterns mainly domi-
nated by the disorder. This case, in which the dipolar inter-
action plays a minor role, is qualitatively similar to that
studied in the RFIM.

One striking characteristic of the phase diagram we are
presenting is the re-entrance of the sector with continuous
hysteresis. This re-entrance tells that if D is not too high,
samples displaying continuous hysteresis can be classified in
two well different groups: weakly interacting ones for low
J /A0, and strongly interacting ones for large J /A0. For
strongly interacting samples, the width of the hysteresis loop
�measured as the distance between the two branches, at a
fixed magnetization� can be much smaller than the change of
magnetic field necessary for complete magnetization inver-
sion �see for instance loop �3� in Fig. 2�. In these samples the
coercive field is much lower than the saturation field, and
remanent magnetization is much lower than saturation mag-
netization.

In weakly interacting samples the range of external field
on which the complete magnetization inversion occurs is
small compared with the width of the hysteresis loop �as for
instance in loop �10� in Fig. 2�. As a consequence, these
samples possess a coercive field which is of the order of the
saturation field. In addition, the remanent magnetization is
essentially the saturation magnetization.

The case of what we have called “weakly interacting
samples” allows yet a further distinction, which however
cannot be inferred from the results shown up to now only. In
fact, weakly interacting samples are examples of “permanent
magnets.” A usual distinction among permanent magnets is
made between nucleation type magnets and pinning type
magnets.2 They are phenomenologically distinguished by the
form of the virgin magnetization curve. Pinning type mag-
nets display a small initial permeability at the demagnetized
state, whereas for nucleation type magnets the initial perme-
ability is very large. The two different behaviors can be ob-
tained with the present model. An example is shown in Fig.
8 �for simplicity in the simulation, we obtain a demagnetized
system by quenching from a high temperature configuration,
instead of the annealing process usually invoked�. Pinning
type magnets are modeled through a very low value of the
interaction. The system behaves essentially as a collection of
isolated magnetic moments, that switch in the presence of
the external field at the particular value of the local coercive
field. The transition is seen to be smoothed because of broad
distribution of local coercive fields. For larger values of the
interaction strength �but still in the region corresponding to
weakly interacting samples� we can see how the initial per-
meability increases noticeable. Here, domain walls �which
are abundant in the demagnetized state� have some freedom

FIG. 6. Same as Fig. 3, for hysteresis loop �7� in Fig. 2. The first
two panels show the spontaneous growth of the nucleated domain.

FIG. 7. Same as Fig. 3, for hysteresis loop �10� in Fig. 2.

FIG. 8. Hysteresis loops and virgin curves, obtained from a
demagnetized sate, showing two different qualitative cases: a
“nucleation dominated” magnet �a� in which the initial permeability
of the sample is rather large, and a “pinning dominated” magnet �b�,
with a small initial permeability �the parameters in both cases cor-
respond to those of points labeled “a”and “b” in Fig. 1�. Note that
the two cases correspond to what we have called weakly interacting
samples.
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to move in the presence of the external field, and this pro-
duces a high permeability. However, once fully magnetized
and upon inversion of the external field, domains with oppo-
site magnetization have to be nucleated, and this requires
much larger fields. Note how the difference in the two virgin
curves occur in two samples that have a very similar shape of
the full hysteresis loop.

IV. COMPARISON WITH EXPERIMENTS AND
CONCLUSIONS

There has been in recent years much interest in the behav-
ior of thin multilayer magnetic films,5–8 mainly as potential
high density magnetic storage media. Particular attention is
being paid to Co-Pt multilayers. The influence of disorder on
these materials has only recently started to be studied sys-
tematically. An example of the evolution of hysteresis loops
upon change of the structural disordered in the sample is
contained in Ref. 12. There, Co-Pt multilayers were grown
under different values of argon sputtering pressure, what al-
lows for the introduction of disorder in a controlled way. We
can compare the plots in Fig. 1 of Ref. 12 with the hysteresis
loops of the present model for a value J /A0
2 �see panels
�1� to �5� in Fig. 2� in which the disordered is progressively
increased. The qualitative agreement between the model and
the experiment is very good, taking into account the simpli-
fications in the model. Comparison of our results with im-
ages from magnetic scattering techniques �Fig. 2 in Ref. 12,

for instance� reveals also that even the real space configura-
tions are quite realistic. We see that the samples analyzed in
Refs. 11 and 12 fit very well in the strong interaction region
of our phase diagram.

The relevance of the present results to experiments is two-
fold. On one side, it gives insight on the main physical in-
gredients that have to be considered to obtain a thorough
description of the phenomena. On the other side, it is also
important in the following sense. In many cases, experimen-
tal information of the real space patterns is inferred from
observation of the x-ray diffraction patterns, in which only
the amplitude information is conserved. Then the conclu-
sions drawn from the experiments depend on the possibility
of extracting information of the real space patterns from the
x-ray patterns, and this is not a trivial issue. The present
model, providing directly the configuration in real space
�which can of course be transformed to get the x-ray pat-
terns� is an ideal benchmark in which the x-ray reconstruc-
tion techniques can be tested. A more detailed statistical
comparison between simulated and measured patterns along
these lines will be published elsewhere.
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