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We consider the scaling arguments in the adiabatic limit for materials in which one-dimensional �1D�
electronic behavior is influenced by a higher-dimensional vibrational system. The system under consideration
consists of a collection of widely separated parallel molecular chains, perfectly one dimensional in respect to
their electronic characteristics, embedded in a three-dimensional �3D� lattice. We found that dimensional
mismatch between electronic subsystem and lattice may seriously affect polaron stability. For the realistic
systems with anisotropic phonon spectrum large polaron stability requires that polaron radius cannot exceed
some critical value which is of the order of the interchain spacing. Finally, large polaron stability criterion is
formulated in dependence of the values of the basic system parameters.
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I. INTRODUCTION

Investigation of the phenomenon of self-trapping, or po-
laron formation, has attracted renewed interest recently due
to some recent investigations which indicate the existence of
polaron carriers in strongly correlated electron-phonon mate-
rials such as high-Tc superconductors,1 colossal magnetore-
sistance manganites,2 and organic and quasi-one-dimensional
materials.3,4

One-dimensional �1D� systems with short-ranged elec-
tron-phonon interaction play a special role in polaron theory,
since it proves possible to show, on the basis of quite general
theoretical arguments5–7 that, in the adiabatic limit �electron
bandwidth large with respect to the maximal phonon energy�,
they support the existence of stable, mobile, pulse shaped
solitonlike large polaron states. Of particular and historical
importance in this regard are the scaling arguments of Emin
and Holstein,6 which clearly show that this is not the case in
two and three dimensions, which under similar conditions
appear to be dominated by states of infinite radius �free
states� or states of negligible radius �self-trapped states�.

The possibility of realizing solitonlike excitations in one-
dimensional systems has naturally generated widespread in-
terest in quasi-1D electron �exciton-� phonon systems.8–14 It
was mainly motivated by the assumed relevance of the po-
laron �soliton� mechanism in the charge �electron, hole,…�
and energy �intramolecular vibrational energy� transfer in
quasi-1D conductors �some organic salts and conjugated
polymers� and molecular chains such as � helix, acetanilide
�ACN� and DNA macromolecules.3,4,14 Most of the studies
on the subject were based upon the idealized 1D models.
Such an approach has been very successful in the study of
polarons and solitons in conjugated polymers. However,
some time ago it was argued that the inevitable small inter-
chain coupling in conducting polymers is large enough to

destabilize polaron.8,9 In particular, Emin9 established, on the
basis of the calculations within the Holstein molecular crys-
tal model, the large polaron stability criterion, which requires
at least a third order-of-magnitude anisotropy of transfer in-
tegrals. However, according to available data,15 the ratio of
intrachain to interchain transfer integrals is estimated to be of
the order of 10 to 102 only. These values are considerably
lower than that required by Emin’s criterion, which means
that the acceptance of those estimates would lead to a con-
clusion that the large polaron cannot be formed in those
quasi-1D solids. Nevertheless, experiments including the in-
frared absorption,16 charge carrier mobility measurements17

and resonant Raman spectra18 of conjugated polymers
strongly support polaron presence in these materials. Mizes
and Conwell19 showed that the existence of chain endings
and other conjugation breaks can stabilize polarons. Further-
more, Gogolin20 pointed out that the small-polaron effect
causes an additional anisotropy of electron bands so that Em-
in’s criterion may be satisfied. For these reasons, electronic
subsystem, in the first approximation at least, may be treated
as perfectly one dimensional. On the contrary, the above ar-
guments are not valid for the vibrational subsystem. Namely,
in the realistic substances in general, we encounter highly
anisotropic electronic subsystems embedded in 3D lattice.
The vibrational characteristics of such system cannot be per-
fectly one dimensional, however, and so we address the di-
mensional mismatch which must exist between the electronic
and vibrational characteristics of any “quasi-one-dimen-
sional” material. In this paper we wish to broaden the scope
of the Emin-Holstein scaling arguments in order to consider
what effect, if any, three-dimensional character of the host
solid may have on polaron properties in 1D chains imbedded
in it; that is, we examine the solids built up from molecular
chains that are perfectly one dimensional in their electronic
characteristics.
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We shall use the scaling arguments in the adiabatic limit
and regard all real space variables as continuous coordinates.
To review the salient features of previous works, we note
that the adiabatic theory, based upon the applying the varia-
tional method5 in combination with scaling approach,6–9,21

leads to the construction of the adiabatic energy functional
�Hamiltonian� from which the main features of the self-
trapped states may be determined.

II. MODEL HAMILTONIAN AND VARIATIONAL
METHOD

We adopt the usual approach and base our analysis on a
Fröhlich Hamiltonian of the form

H = − J�
n

Bn
†�Bn+1 + Bn−1� + �

q�s

��qsaq�s
† aq�s

+
1

�N
�
n,q�s

Fq�se
iq� ·e�xnR0Bn

†Bn�aq�s + a−q�s
† � . �1�

For a 1D electronic system interacting through the short-
range forces with the vibrational system of possibly higher
dimensionality, the electron-phonon coupling parameter is
given by22 Fq�s=2i��� /2M�qs�1/2�e�q�s ·e�x�sin�q� ·e�xR0� in
which e�q�s denote phonon modes polarization vectors, e�x is
the unit vector in the direction of the “chain,” which we take
to be the “x” axis. Remaining labels are as usual; operator Bn

†

�Bn� describes the presence �absence� of the excess electron
on the nth site of molecular chain, J is the nearest-neighbor
intrachain electronic transfer integral, interchain hopping is
neglected, aq�s

† and aq�s are creation and annihilation operators
of lattice modes ��qs ;q� ,s�, � denotes the strength of elec-
tron-phonon interaction, and finally R0 is the lattice constant
along the chain. We shall consider the case of an electron
coupling with longitudinal acoustic phonons for which polar-
ization vector is simply e�q� =q� /q�q= �q� �� and therefore the in-
dex s will be omitted hereafter. In purely 1D systems e�q� ·e�x
�1. It is possible to consider two qualitatively distinct
classes of phonon spectra �a� isotropic with �q�cq and �b�
anisotropic phonon spectrum �with cylindrical symmetry�
�q=�c�

2q�
2+c�

2 q�
2 , where q� denotes the component of the

phonon quasimomentum directed along the chain, q�
2 is the

sum of the squares of the transverse components of phonon
quasimomentum, while c� and c� denote the longitudinal and
transverse speed of sound, respectively.

We now proceed by applying adiabatic variational
method5,14 in combination with the scaling approach. This
demands elimination of the phonon variables from the evo-
lution equation for polaron wave function. It is possible if
one uses a trial state assuming total separability of electron
and phonon parts of the trial state ��	= ��	 � ��	. This is
feasible in the adiabatic limit when vibrational subsystem
may be treated essentially classically so that the phonon part
of trial state may be chosen as multimode coherent state of
phonon operators ��	=
q��q	; �aq��q	=�q��q	�, while ��	
=�n�nBn

†�0	 ; ��n��n�2=1� denotes the electron part of trial
state. Functions �n and �q may be treated as dynamical vari-
ables satisfying the set of coupled evolution equations de-

rived by means of time-dependent variational principle.
Equation of motion for �q may be solved easily; substituting
the so-obtained result in the equation of motion for �n and
adopting the continuum approximation we obtain

�i�
�

�t
+ JR0

2 �2

�x2 + G� dx�

R0
K�x − x�����x�,t��2��x,t� = 0.

�2�

Here G=4�2R0
2 /Mc�

2�2EB, where EB denotes binding en-
ergy of the 1D small polaron which, together with the elec-
tron bandwidth �2J� and maximal phonon frequency ��B�,
determine the main features of electron-phonon systems. It is
understood that c� =c in the isotropic case. Kernel K�x� has
the form

K�x� =
1

N
�

q�

c�
2�q� · e�x�4eiq� ·e�xx

q2��q
2 − �q� · v��2�

. �3�

Here v denotes the polaron velocity which appears due to the
assumption ���x , t��2= ���x−vt��2. This implies that the par-
ticular solution for the evolution equation for phonon coher-
ent amplitudes has a simple form �q�t�=eiq� ·v�t�q�0���q�0�
= �Fq /���q−q� ·v����dxeiq� ·e�xx���x��2�. In pure one-dimensional
systems kernel approaches a 	-function form K�x�= �1/ �1
− �v /c�2��R0	�x�, and the above nonlinear equation becomes
the known nonlinear Schrödinger equation with local
nonlinearity whose properties are well known. In the present
case, however, it cannot be solved and is of no use in the
examination of polaron properties. Fortunately, its explicit
solution is not always necessary since the majority of the
questions on the subject may be answered on the basis of
simple qualitative analysis: the scaling method in analogy
with the virial theorem. This method may be applied to a
wide class of nonlinear partial equations which are of the
Hamiltonian type6–9,21 �i.e., they can be derived by demon-
strating the stationarity of a certain nonlinear functional—the
Hamiltonian�. In general, Hamiltonian can be expressed as a
sum of a few integrals, which are usually called kinetic en-
ergy, potential energy, total momentum, etc., in analogy with
the classical mechanics. Scaling method enables one to find
the relations between these integrals, which must be satisfied
to ensure the stability of solutions.

In the adiabatic polaron theories this functional is simply
the expectation value of model Hamiltonian �1� taken in the
aforementioned trial state. After elimination of phonon vari-
ables it becomes

H = JR0
2� dx

R0
� ���x�

�x
�2

−
G

2
� dx

R0

dx�

R0
K�x − x��


���x��2���x���2. �4�

The first and second integrals in the above expressions are
usually called kinetic and potential energy, respectively.

Let us now consider functions ��x�, which are stationary
solutions of Eq. �2� and which satisfy the following scaling
law: ��x�→�1/2���x� when x→�x. Then, by virtue of the
fact that stable solutions must satisfy conditions 	H=0 and
	2H�0, it follows that ��H /����=1=0 and ��2H /��2��=1
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�0. The first of these relations represents the condition that
must be satisfied if � represents the stationary point of H.
Substitution of this relation into the second one gives a fur-
ther condition that must be satisfied by the kinetic and po-
tential energy in order for such stationary solutions to be
stable. It is a necessary condition for the applicability of the
above method that these integrals must converge when the
integration is taken over all space. Localized, pulse-shaped
functions characterized by some finite radius satisfy this cri-
terion and are good candidates for variational treatment of
the present problem when exact solutions of the relevant
nonlinear partial differential equations are not known. Scal-
ing arguments are still valid for such approximate treatments,
where the scaling parameter may be related to the polaron
radius.

III. DIMENSIONALITY OF PHONON SPECTRUM AND
POLARON STABILITY

Let us now concentrate on the systems with 1D electronic
spectrum embedded in realistic three-dimensional lattice.
Two qualitatively distinct classes of phonon spectra, isotro-
pic and anisotropic, will be analyzed.

�a� Isotropic phonon spectrum. In this case the sum over
the phonon quasimomenta may be replaced by momentum
space integration in accordance with the rule �1/N��q�

→�0
 sin �d��3/2Q3��0

Qq2dq. Here Q denotes phonon quasi-
momentum cutoff. In such a way, adiabatic functional, by

virtue of auxiliary relation K�x−x��= ��2 /�x�x��K̃�x−x�� in

which K̃�x�= �3/2Q3��−1
1 ��2d� / �1−v2 /c2�2���0

Qeiq�xdq ��
=sin ��, may be written as

H = JR0
2� dx

R0
� ���x�

�x
�2

−
G

2
� � dx

R0

dx�

R0


K̃�x − x��
����x��2

�x

����x���2

�x�
. �5�

After the aforementioned norm-preserving scale change it
becomes the function of scaling parameter H���=�2Ek

−�2Ep���. Here Ep��� corresponds to the second term in the

last equation in which K̃�x� is replaced by K̃�x /��. In accor-
dance with the continuum approximation, the upper limit of
the “q” integration should be understood to be essentially
infinite �Q→��, in the sense that the basic assumption of the
continuum approximation is that the phenomena of interest
are insensitive to a structure on the scale of Q−1. Conse-
quently, after the variable change q /�= q̃ and after extending
the integration over “q” towards the infinity we have

K̃�−�3c2 /2Q3v2�ln�1−v2 /c2�	�x�. This means that

K̃�x /��→�K̃�x� so that the adiabatic functional attains the
following form:

H��� = �2Ek − �3Ep. �6�

This is precisely the same relation as the one found previ-
ously by Emin and Holstein6 for truly 3D systems. Thus,
even if the electronic subsystem is truly 1D, stable finite
radius large polaron solution fails to exist if the host lattice is
three dimensional and isotropic.

�b� Anisotropic phonon spectrum. At this stage it could be
objected that the phonon isotropy is not to be expected in the
systems where quasi-one-dimensional electronic propagation
is found, since the most often quasi-one-dimensional nature
of the electronic system is due to a structural anisotropy that
should be reflected to some noticeable degree in the vibra-
tional system. For that reason, we now consider the case in
which the phonon system is three dimensional, but generally
has less than spherical symmetry. Since the crucial issue
hinges on the distinction between parallel and transverse
axes, it is sufficient to consider the vibrational system to
have cylindrical symmetry about the 1D electronic axes.
Thus we use the following transcription, �1/N��q�

→ �1/2Q���−Q�

Q� dq��2/Q�
2 ��0

Q�q�dq�, where Q� and Q� de-
note parallel and transverse phonon quasimomentum cutoff
wave vectors, respectively. The relevant energy functional is
substantially the same as Eq. �4�; the only exception is in the
form taken by the kernel K�x�

K�x� =
1

1 −
v2 + c�

2

c�
2

1

Q�Q�
2 �

−Q�

Q�

q�
2dq�eiq�x


��
0

Q� q�dq�

q�
2 + q�

2 − �
0

Q̃� q̃�dq̃�

q�
2 + q̃�

2 , q̃� =

c�

c�

q�

�1 −
v2

c�
2

.

�7�

In considering the effect of phonon anisotropy, we must pay
some attention to the different values which may be associ-
ated with the above introduced cut-off wave vectors. We
would like to have a result in which 3D isotropic case and
pure 1D case might be realized as limits. The natural way to
recover 1D result is to allow the interchain distance �b� to
become infinite relative to the lattice constant within the 1D
chains; in this limit Q�� /b would vanish with respect to
Q� � /R0. This limit, as can be seen from Eq. �7�, can be
meaningful in a final result only if the integration limit Q�

should be kept finite and only Q� is considered to be essen-
tially infinite. In such a way the integrals in the last expres-
sion may be evaluated easily and we have

K�x� �
1

1 −
v2

c�
2

R0	�x� −
1

1 −
v2 + c�

2

c�
2

R0

Q�
2

�2

��x�2
1

�x�


�e−Q̃��x� − e−Q��x�� . �8�

In the above expressions we use symbol “�” as a reminder
that in obtaining these results we have considered the inte-
gration limit Q� to be essentially infinite, which introduces no
significant errors since we are concerned with the regime in
which Q� �Q�.

The 	-function component produces potential energy
term having one-dimensional scaling properties �EP

l

��G /2��dz���z��4�; the non-	 component produces a nonlo-
cal potential energy term
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EP
nl =

G

2
� �


�2� � dzdz�

�2K̃�z − z��
���z − z���2 ���z��2���z���2. �9�

Here we have introduced, for convenience, dimensionless
variable z=x /R0 while

K̃�z� =
1

1 −
v2 + c�

2

c�
2

1

�z�
�e−�c�/c����z�/�� − e−��z�/��� . �10�

It accounts for the nonlocality of the electron-phonon inter-
action whose range is determined by the magnitude of cor-
relating length �=Q� /Q�������. Performing the norm
preserving scaling transformation we obtain

H��� = �2EK − �EP
l + �3EP

nl��� . �11�

Here EP
nl��� denotes nonlocal potential energy Eq. �9� with

scaled correlation length ����=��.
Consequences of this term to the large polaron properties

are determined by the behavior of K̃�z−z�� as a function of
distance �z−z��, which substantially depends on interaction
range ���. This function is not as singular as it may appear. It
has a fixed, finite area whose size is independent of the value
of � which, however, determines its height and width. For
large �, i.e., �� �z−z��, it is slowly varying and extended
over a large area. In the opposite case it is highly peaked and
very narrow rapidly decaying at large distances. Scale
change is equivalent to a contraction of correlation length

�0���1�, which results in shrinking of K̃�z ;�� and in the
increase of its height. This is especially expressed in the
short correlation length limit when even small scale change

significantly affects K̃�z ;��, which resembles a 	 function.
In this limit the last term in Eq. �11� scales as, approximately,
�3 and H��� has always stable minimum which, in respect to
the pure 1D case, moves toward smaller values of � and the
enlarging of polaron size arises. We are, however, concerned
with long-range limit ��→�� and therefore the above con-
clusion should be taken with some reserves. In this limit

K̃�z� is broad, practically flat, and independent on �. In this
case we may perform an approximate calculation expanding
the exponentials in Eq. �10� in powers of “small parameter”
��z−z�� ; ��= �c� /c�� /� ;1 /��. In such a way in a static limit
�v=0� we found

H��� � �2EK − �EP
l +

G

6

Q�

Q�

1 +
c�

c�

+ � c�

c�
�2

1 +
c�

c�

. �12�

Thus, the correction due to the transverse dimensions
amounts to only a structureless shift increase in the ground
state energy �Eg.s.�, which does not scale but may violate
polaron stability if this shift exceeds the ground state energy
of pure 1D systems.

Requiring Eg.s.�0 we found the stability condition for
large polarons in these media

EB

2J
� 2

Q�

Q�

1 +
c�

c�

+ � c�

c�
�2

1 +
c�

c�

. �13�

In approaching this result we have evaluated the integrals in
Eq. �12� taking the polaron wave function in the form ��z�
=��� /2�sech �z, which minimizes functional �12� for �=1
and �=EB /2J. The ratio on the left-hand side of Eq. �13� is
proportional to the reciprocal large polaron radius measured
in units of lattice constant along the chain and, consequently,
the last relation implies that the polaron size cannot exceed
some critical value determined by the ratio Q� /Q��b /R0.
Introducing dimensionless polaron radius l= lpol /R0, where
lpol�R0 /� �Ref. 14� denotes radius of 1D soliton �po-
laron�, we estimate this critical size as lc�b /2R0 and now
large polaron stability condition reads l�b / �2R0�. On the
other hand, applicability of the continuum approximation re-
quires polaron spacing to be much larger than the intrachain
lattice constant which, together with the above established
criterion, imposes 1� l�b / �2R0�. Having in mind the con-
nection of the soliton radius and physical parameters of sys-
tem, from this criterion we conclude that the large polaron
existence in these systems imposes the following restriction
on the values of basic system parameters: 1�2J /EB
�b /2R0.

We finally emphasize that a very similar result has been
obtained by Schüttler and Holstein,23 who found that, due to
the interchain coupling, polaron would become unstable if its
size exceeds critical limit Lc= �c� /c��b. In contrast to the
present model they have considered both transverse elec-
tronic transfer and elastic interchain coupling.

IV. CONCLUDING REMARKS

In summary we underline that our aim in this paper has
been to address the conflict between the theoretical ideal of
one-dimensional behavior and the physical reality of three-
dimensional solids. We have dismissed from consideration
the inevitable presence of small transverse hopping
integrals8,9,23 in order to focus on the manner in which the
dimensionality of the host solid affects the electron
�exciton�-phonon interaction; we found that even when the
direct electron-phonon interaction is confined to a single
chain, indirect effects due to the disturbances transverse to
the chain have a considerable impact on the adiabatic state of
the excitation within the chain.

Our major result is that the transition from one-
dimensional to three-dimensional behavior occurs as a func-
tion of the ratio Q� /Q�. In the isotropic solids, this ratio is
unity, implying that there is no meaningful length scale on
which one-dimensional polaron can exist. In anisotropic sol-
ids, this ratio may be greater than unity, allowing one-
dimensional correlations to persist over a few lattice sites,
but there is no real solid in which this ratio can be exces-
sively large. We must conclude from this behavior that the
large polaron radius, even in solids argued to be quasi-one-
dimensional in their electronic structure, must be limited and
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can extend over a few lattice sites only. In that respect our
results are similar to those of Emin,9 and Schüttler and
Holstein,23 who found that the interchain coupling, in the
systems with short-ranged interaction of an electron with dis-
persionless optical9 and longitudinal acoustic modes,23 en-
forces the analogous restrictions on the upper bound for large
polaron spatial extent. However, having in mind that the
present analysis concerns ideal 1D electronic systems, our
criterion imposes even stronger restrictions on large polaron
existence since it emphasizes that, even when transverse

electron transfer may be neglected, dimensionality of phonon
spectra may seriously affect large polaron stability.
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