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We present a theoretical study of the condensation of bosons in tight-binding bands corresponding to simple
cubic, body-centered cubic, and face-centered cubic lattices. We have analyzed noninteracting bosons, weakly
interacting bosons using the Bogoliubov method, and strongly interacting bosons through a renormalized
Hamiltonian approach valid for the number of bosons per site less than or equal to unity. In all the cases
studied, we find that bosons in a body-centered cubic lattice have the highest Bose condensation temperature.
The growth of the condensate fraction of noninteracting bosons is found to be very close to that of free bosons.
The interaction partially depletes the condensate at zero temperature and close to it, while enhancing it beyond
this range below the Bose-Einstein condensation temperature. Strong interaction enhances the boson effective
mass as the band-filling is increased and eventually localizes the bosons to form a Bose-Mott-Hubbard insu-
lator for integer filling.
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I. INTRODUCTION

In a many-boson system, when the thermal de Broglie
wavelength of a particle becomes comparable to the interpar-
ticle separation, a condensation in momentum space occurs
at a finite temperature and a macroscopic number of particles
occupy the lowest single-particle energy level and enter into
a phase-locked state. This phenomenon predicted by
Einstein1 by applying Bose statistics2 to a three-dimensional
homogeneous system of noninteracting atoms in the thermo-
dynamic limit is well known as the Bose-Einstein condensa-
tion. Although it took 70 years to eventually observe Bose-
Einstein condensation3–6 in metastable, inhomogeneous,
finite, and three-dimensional Bose atom vapors, progress
ever since has been tremendous. Extensive investigations of
various aspects of the condensate, a macroscopic quantum
coherent state of atoms, is now a rapidly expanding field of
research.7–11

One of the interesting recent developments in this field is
the observation,12 by Greiner and collaborators, of a transi-
tion between superfluid and Mott insulating phases of bosons
in an optical lattice. Researchers have explored this
superfluid-Mott transition and the excitation spectra in the
superfluid12,13 and Mott insulating phases.12 In these experi-
ments, the condensate is adiabatically transferred to a
simple-cubic optical lattice produced by counterpropagating
laser beams. By changing the characteristics of the laser
beams, it has been possible to achieve great control over t /U,
where t is the intersite hopping energy and U the on-site
boson-boson interaction energy. It has been shown that
bosons in optical lattices can be adequately modeled by em-
ploying a clean Bose-Hubbard model.14 That a bandwidth-
controlled transition from a superfluid state to a Bose-Mott-
Hubbard �BMH� insulating state is possible at a critical value
of t /U for integer number of bosons per site was predicted in
theoretical studies14–19 on the Bose-Hubbard model. In the
BMH insulator, the bosons are site localized and the single-
particle excitation spectrum acquires a gap. Recently, super-
fluid to Mott insulator transition was observed20 in finite one-
dimensional optical lattices as well.

The experimental realization of bosons in optical lattices
provides a microscopic laboratory for the exploration of the
collective behavior of quantum many-particle systems in nar-
row energy bands with great control on t , U, and the number
of boson per site �n�. There are already theoretical
studies21,22 on the possibility of creating different types of
two-dimensional lattices �triangular, square, and hexagonal,
for example�. It has been proposed23 recently that a trimer-
ized optical Kagome lattice can be achieved experimentally
and that a superfluid-Mott transition at fractional filling is
possible for bosons in this lattice. It is reasonable to expect
that three- and two-dimensional optical lattices of different
symmetries will be created in the near future. Many experi-
mental groups have produced three-dimensional optical lat-
tices, and experimental studies of Bose condensates in these
lattices will surely receive increasing attention. Motivated by
such possibilities, we present a theoretical study of Bose-
Einstein condensation in tight-binding bands corresponding
to simple cubic �sc�, body-centered cubic �bcc�, and face-
centered cubic �fcc� lattices. We have analyzed noninteract-
ing, weakly interacting, and strongly interacting bosons. The
weakly interacting bosons were analyzed using a Bogoliubov
type theory.24 For the strongly interacting bosons, we use a
renormalized Hamiltonian valid for n�1 obtained by pro-
jecting out on-site multiple occupancies. This analysis is pre-
sented in the next section, and the conclusions are given in
Sec. III.

II. BOSE CONDENSATION IN TIGHT-BINDING BANDS

A. Noninteracting bosons

In this section, we discuss the simplest of the three cases
studied. The Hamiltonian of the noninteracting bosons in a
tight-binding energy band is

H = �
k

���k� − ��ck
†ck, �1�

where ��k� is the band structure corresponding to sc, bcc,
and fcc lattices, � the chemical potential, and ck

† is the boson
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creation operator. Confining to nearest-neighbor Wannier
function overlaps, these band structures when lattice constant
is set to unity are

�sc�kx,ky,kz� = − 2t�
�=x

z

cos�k�� ,

�bcc�kx,ky,kz� = − 8t�
�=x

z

cos� k�

2
� , �2�

and

� fcc�kx,ky,kz� = − 2t �
�=x;���

z

�
�=x

z

cos� k�

2
�cos� k�

2
� , �3�

where t is the nearest-neighbor boson-hopping energy. The
condensation temperature �TB� for bosons in these bands can
be calculated from the boson number equation

n =
1

NxNyNz
�
kx

�
ky

�
kz

1

e���kx,ky,kz�−��/kBT − 1
, �4�

where Ns=NxNyNz is the total number of lattice sites, kB the
Boltzmann constant, and T the temperature. At high tempera-
ture, the chemical potential is large and negative. As the
temperature comes down, the chemical potential raises
gradually to eventually hit the bottom of the band. Below

this temperature, there is macroscopic occupation of the band
bottom, and we have a Bose condensate. On further reduc-
tion of temperature, the chemical potential is pinned to the
bottom of the band, and bosons are progressively transferred
from excited states into the condensate. All the particles are
in the condensate at absolute zero temperature. Fixing the
chemical potential at the bottom of the band, the solution of
the number equation gives the Bose condensation tempera-
ture �TB�. For T�TB, a lower value of � satisfies the number
equation, while for T�TB, the right-hand side of Eq. �4� is
less than the number of bosons �n�, the difference being the
number of condensate particles �n0�. We determined TB and
n0 for different lattices as a function of filling and tempera-
ture. Results of these calculations are shown in Figs. 1–5. We
find that bosons in the tight-binding band corresponding to
the bcc lattice have the highest Bose condensation tempera-
ture. Comparing the single boson density of states �DOS�, we
find that the band structure with smallest DOS near the bot-
tom of the band has the highest TB. The physical reason
behind it is that, as the temperature is lowered from above
the Bose condensation temperature, the bosons are trans-
ferred from the high-energy states to the low-energy states
following the Bose distribution function. To accommodate
these bosons, the chemical potential would touch the bottom
of the boson band at a higher temperature for a system with
smaller DOS near the bottom of the band compared to a
system that has larger DOS there. Consequently, the Bose
condensation temperature for the former system would be

FIG. 1. The variation of the condensate fraction with tempera-
ture for bosons in a sc lattice for n=0.8 �top�, n=0.6 �middle�, and
n=0.4 �bottom�. In this and later figures, W is the half-bandwidth.

FIG. 2. The same as in Fig. 1 for bosons in a bcc lattice for n
=0.8 �top�, n=0.6 �middle�, and n=0.4 �bottom�.

FIG. 3. The same as in Fig. 1 for bosons in a fcc lattice for n
=0.8 �top�, n=0.6 �middle�, and n=0.4 �bottom�.

FIG. 4. The variation of the condensate fraction �for n=0.6� for
bcc �top�, fcc �middle�, and sc �bottom� lattices. The dots are plots
of 1− �T /Tc�3/2.
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higher than that for the latter. The growth of the condensate
fraction for different lattices is shown in Figs. 1–3, and in
Fig. 4, we have compared condensate fraction growth for
different lattices. Also shown by dotted lines is the conden-
sate fraction for free bosons, which are found to be rather
close. The variation of TB with n is shown in Fig. 5, which
shows an initial fast growth and a monotonic increase for
higher values of n.

B. Weakly interacting bosons

To study Bose condensation of weakly interacting Bosons
in tight-binding bands, we employ the following Hamil-
tonian:

H = �
k

���k� − ��ck
†ck +

U

2Ns
�
k

�
k�

�
q

ck+q
† ck�−q

† ck�ck.

�5�

Here ��k� is the boson band structure, � the chemical poten-
tial, ck

† the boson creation operator, U the boson-boson re-
pulsive interaction energy �taken to be a constant for simplic-
ity�, and Ns the number of lattice sites. In this section, we
will deal with a range of U such that U�2W, where W is the
half-bandwidth. Our aim is to get a boson number equation
in terms of ��k� , U , �, and temperature. One can then cal-
culate the condensate fraction and the transition temperature.
To this end we follow the Bogoliubov theory.24 In this
theory, one makes an assumption that the ground state of
interacting bosons is a Bose condensate. Since the lowest
single-particle state �which is k=0 in our case of simple
tight-binding bands� has macroscopic occupation �say, N0�,
we have 	c0

†c0
�	c0c0
†
. Then, the operators c0

† and c0 can be
treated as complex numbers, and one gets 	c0

†
= 	c0
=�N0.
This complex number substitution has been recently shown25

to be justified. Clearly, we have a two-fluid system consisting
of two subsystems of condensed and noncondensed bosons.
There are interactions between particles within each sub-
system and interactions between particles in the two sub-
systems. In the Bogoliubov approach, to obtain second-order
interaction terms, one makes the substitution: c0

†→�N0+c0
†.

In the ground state, the linear fluctuation terms must vanish,
and this fixes the chemical potential to �=Un0+�0, where �0

is the minimum of the single-particle energy spectrum
�which is equal to −zt for a bipartite lattice with coordination
number z�, and n0=N0 /Ns. After a mean-field factorization of
the interaction term, we obtain for lattices with inversion
symmetry the following mean-field Hamiltonian:

HBMF = − E0 + �
k

� ��k� + Un0

2
�ck

†ck + c−k
† c−k�

+
Un0

2 �
k

�
�ck

†c−k
† + c−kck� , �6�

where E0−Un0N0 /2 and ��k���k�−�0. As mentioned
earlier, our aim is to get an equation for the number of par-
ticles. This can be obtained from the Green’s function26

G�k ,	�		ck ;ck
†

	 using the relation

nk = lim

→0

�
−�

�

�G�k,	 + i
� − G�k,	 − i
��f�	�d	 , �7�

where f�	�=1/ �exp�	 /kBT�−1�. The Heisenberg equation
of motion for G�k ,	� is

	G�k,	� = �ck,ck
†� + 		�ck,H�;ck

†

	, �8�

where H is the Hamiltonian of the system. Using HBMF, we
obtain

	G�k,	� = 1 + ���k� + Un0�G�k,	� + Un0F�k,	� , �9�

and the Green’s function to which G�k ,	� is coupled,
F�k ,	�		c−k

† ;ck
†

	, obeys the equation of motion

	F�k,	� = − ���k� + Un0�F�k,	� − Un0G�k,	� . �10�

Solving the preceding two equations, one obtains

G�k,	� = �−
	 + ��k� + Un0

2E�k� �� 1

	 + E�k�
−

1

	 − E�k�� ,

�11�

where the Bogoliubov quasiparticle energy Ek is

E�k� = ��2�k� + 2Un0��k� . �12�

Note that for the tight-binding band dispersions used, E�k� is
linear in k in the long wave-length limit. Now, the number of
particles per site �n� is readily obtained using Eqs. �7� and
�11� to be

n = n0 +
1

2Ns
�
k

� ��1 +
��k� + Un0

Ek
� 1

e�E�k�/kBT − 1
�

+
1

2Ns
�
k

� ��1 −
��k� + Un0

Ek
� 1

e−�E�k�/kBT − 1
� . �13�

It is useful to look at some limits of the preceding equa-
tion. When U=0 and T=0, we have n0=n, which means that
all the particles are in the condensate at absolute zero in the
noninteracting limit. When U=0 and T�0, one obtains

FIG. 5. The variation of the Bose condensation temperature �of
noninteracting or weakly interacting bosons� with n for bcc �top�,
fcc �middle�, and sc �bottom� lattices.
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n0 = n −
1

Ns
�
k

� 1

e��k�/kBT − 1
. �14�

The second term on the right-hand side of the preceding
equation is the thermal depletion of the condensate. Further,
when U�0 and T=0, we get

n0 = n −
1

Ns
�
k

� � ��k� + Un0 − E�k�
2E�k� � , �15�

in which the second term on the right-hand side is the
interaction-induced depletion of the condensate. The interac-
tion has twin effects of leading to a modified excitation spec-
trum and to a partial depletion of the condensate. The gapless
and linear long-wavelength excitation spectrum is consistent
with experimental measurements12 on interacting bosons in
their bose-condensed state in optical lattices. In Fig. 6, we
have shown the numerical solution of Eq. �13� for bcc, fcc,
and sc lattices. The condensate fraction �n0 /n� is seen to be
gradually suppressed with increasing U /W. Note also that at
U=0, all the particles are in the condensate. Finally, we con-
sider the case U�0 and T�0. In Fig. 7, we have displayed
the variation of the condensate fraction as a function of tem-
perature for various values of U /W. The interaction partially
depletes the condensate at zero temperature and close to it,
while enhancing it beyond this range below the Bose-
Einstein condensation temperature. We have not plotted

these curves all the way to TB, since the Bogoliubov approxi-
mation breaks down close to TB. The variation of TB with n
is the same as in the case of noninteracting bosons, as can be
seen by setting n0=0 in Eq. �13�. At very low temperature,
thermal depletion is negligible, and correlation-induced
depletion causes a reduction of n0 with increasing U. At
higher temperatures when thermal depletion is important, U
plays another role. The energies of the excited states shift to
larger values with increasing U; consequently, the population
in the excited states decreases and an enhancement of n0
occurs with increasing U.

The analysis presented in this section is reasonable pro-
vided the effect of interaction is perturbative. When the in-
teraction strength increases, there is a possibility for a
correlation-induced localization transition for interacting
bosons in a narrow band. In the next section, we analyze this
strongly interacting bosons case.

C. Strongly interacting bosons

We first write the Hamiltonian, Eq. �5�, in real space.
Then we have

H = �
ij

�− t − �ij�ci
†cj +

U

2 �
i

ni�ni − 1� , �16�

where ni=ci
†ci. For simplicity, let us confine to the case of

n�1. The effect of increasing interaction �U� is to make the
motion of the bosons in the lattice correlated so as to avoid
multiple occupancy of the sites. In the dilute limit, the effect
of U is not serious since there are enough vacant sites. The
effect of U then is prominent when n is close to unity or to
an integer value in the general case. In the large U limit, it
becomes favorable for the bosons to localize on the sites to
avoid the energy penalty of multiple-site occupancy. Quali-
tatively then, one can see that increasing U increases the
effective mass �or decreases the bandwidth� of the bosons
and eventually drives them, for integer filling, to a BMH
insulator state. For large U, when the double or multiple
occupancy is forbidden, one can calculate the bandwidth re-
duction factor ��B�n�� approximately following the spirit of
the renormalized Hamiltonian approach �RHA� to the fer-
mion Hubbard model27,28 based on the Gutzwiller
approximation.29,30 Within the RHA, the effect of projecting
out double or multiple occupancies on a noninteracting bo-
son wave function is taken into account by a classical renor-
malization factor that is the ratio of the probabilities of the
corresponding physical process in the projected and un-
projected spaces. The probability of a hopping process in the
projected space is given by n�1−n� for n�1. This simply
implies that the site from which hopping takes place must be
occupied, and the target site must be empty in the projected
space. In the unprojected space, the probability of hopping is
just equal to the probability of the site from which hopping
takes place being occupied. The hopping takes place for non-
interacting bosons irrespective of the target site being empty
or occupied by any number of bosons. This probability may
be found out by calculating the number of ways a given
number of noninteracting bosons is distributed in NS number
of lattice sites and �NS−1� number of lattice sites. The dif-

FIG. 6. The variation of the condensate fraction �for T=0 and
n=0.4� with U /W for bcc �top�, fcc �middle�, and sc �bottom�
lattices.

FIG. 7. Condensate fraction �for n=0.4� vs temperature for vari-
ous values of U /W �shown on the curves� and for the sc lattice.
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ference would give the number of configurations where a
particular site is occupied. Following this route, the probabil-
ity that a site is occupied is obtained as:

p�N;Ns� = 1 −
�N + Ns − 2�!�Ns − 1�!
�Ns − 2�!�N + Ns − 1�!

, �17�

where N and Ns are the total number of bosons and lattice
sites, respectively. In the thermodynamic limit

p�n� =
n

1 + n
. �18�

So, the hopping probability is just p�n�. The preceding equa-
tion is valid for any n. Now, in the strongly correlated state
�large U limit�, confining to the case of n�1, the hopping
probability is n�1−n�. Hence, the �B�n� is obtained to be

�B�n� = 1 − n2. �19�

The preceding equation is valid only for n�1 and in the
large U limit. It may be interesting to note that, in the fer-
mion case, �F�n�=2�1−n� / �2−n�, which has been used in
the studies31 of superconductivity in the strong-coupling fer-
mion Hubbard model of high-temperature superconductors.
Since in the large U limit, double or higher site occupancies
are forbidden, one can write a renormalized Hamiltonian,
valid for n�1, for strongly correlated bosons as

Hsc = �
k

��B�n���k� − ��ck
†ck. �20�

The preceding Hsc is clearly the Hamiltonian of noninter-
acting bosons in a narrow band that has undergone a strong
correlation-induced, filling-dependent band narrowing. One
can see that as n increases from 0 to 1, the boson effective
mass increases to eventually diverge at n=1, and a BMH
insulator obtains. We do admit that there are limitations to
this renormalized Hamiltonian approach. While it has the
advantage that detailed band structure information can be
incorporated in the Bose condensation temperature calcula-
tion, it has the disadvantage that we have to restrict ourselves
to large U and n�1. The preceding Hamiltonian is valid for
U /W� �U /W�c, where �U /W�c is the critical value for tran-
sition into the Mott insulating phase for n=1. Fixing a pre-
cise lower limit on �U /W� is not possible in the absence of
either exact analytical or numerical solution of the three-
dimensional Bose-Hubbard model. It should be mentioned
that in this large U limit and for n�1, the Bose-Hubbard
model is reduced to the lattice Tonks �hard-core boson� gas,
which is different from the classical gas of elastic hard
spheres investigated by Tonks.32 Our results imply then that
the effective mass of bosons in a lattice Tonks gas in a nar-
row energy band is strongly band-filling dependent. The
variation of bose condensation temperatures with n for
bosons with correlation-induced renormalized energy bands
corresponding to sc, bcc, and fcc lattices are displayed in
Fig. 8. In the region between each curve and the n axis, the
bosons are in their bose-condensed state, and above each
curve, they are in their normal state �except at n=1 and be-
low kBT�U. The variation of TB is a result of the combined
effects of increasing density and increasing effective mass,

since TB is proportional to n /m*. Beyond around 20% filling,
the increasing effective mass overcompensates the effect of
increasing n and pulls down the growth of TB, eventually
driving it to zero at n=1, at which density one has a BMH
insulator.

It is of some interest to make a comparison between Mott-
Hubbard �MH� metal-insulator transitions observed in fer-
mion systems in condensed-matter physics. For a half-filled
narrow band of fermions, one way to induce a MH insulator
to metal transition is by reducing the ratio of Coulomb re-
pulsion �U� to the bandwidth �2W�. This was experimentally
achieved33 in V2O3 by application of pressure. This then is a
bandwidth-controlled MH transition.34 Another way to in-
duce a MH insulator to metal transition is to start with a Mott
insulator and reduce the band filling, which would then be a
filling-controlled MH transition. This was achieved35 in
LaxSr1−xTiO3. For a simple Gutzwiller approximation-based
analysis of the properties of this material, see Ref. 36. Now,
the Mott transition observed12 in boson systems in optical
lattices is the bandwidth-controlled one. It would be interest-
ing to look for filling-controlled Mott transitions in boson
systems in optical lattices that may be possible by starting
with the BMH insulator and flipping a few atoms out of the
trap.

III. CONCLUSIONS

In this paper, we presented a theoretical study of conden-
sation of bosons in tight-binding bands corresponding to sc,
bcc, and fcc lattices. We analyzed condensation temperature
and condensate fraction of noninteracting bosons, weakly in-
teracting bosons using the Bogoliubov method, and strongly
interacting bosons through a renormalized Hamiltonian ap-
proach �limited to n�1� capable of incorporating the de-
tailed boson band structures. In all the cases studied, we find
that bosons in a tight-binding band corresponding to a bcc
lattice have the highest Bose condensation temperature. The
growth of the condensate fraction of noninteracting bosons is
found to be very close to that of free bosons. In the case of
weakly interacting bosons, the interaction partially depletes
the condensate at zero temperature and close to it, while
enhancing it beyond this range below the Bose-Einstein con-
densation temperature. Strong interaction enhances the boson
effective mass as the band filling is increased and eventually

FIG. 8. Bose condensation temperature �of strongly interacting
bosons� vs n for bcc �top�, fcc �middle�, and sc �bottom� lattices.
The dots represent noninteracting bosons in a bcc lattice.
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localizes the bosons to form a Bose-Mott-Hubbard insulator
for n=1. In the strongly interacting bosons case, we found
that all bosons are in the condensate at absolute zero tem-
perature. We also pointed out a possibility of a filling-
controlled BMH transition for bosons in optical lattices.
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