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The interaction between an edge dislocation and a void in copper is investigated by means of a molecular
dynamics simulation. The depinning stresses of the leading partial and of the trailing partial show qualitatively
different behaviors. The depinning stress of the trailing partial increases logarithmically with the void radius,
while that of the leading partial behaves in a different manner due to the interaction between two partials. The
pinning angle, which characterizes the obstacle strength, approaches zero when the void radius exceeds 3 nm.
No temperature dependence is found in the critical stress and the critical angle. This is attributed to an absence
of climb motion. It is also found that the distance between the void center and a glide plane asymmetrically
affects the pinning strength.
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I. INTRODUCTION

Voids are ubiquitous in irradiated metals and act as ob-
stacles to dislocation motion as well as other radiation-
induced defects: e.g., stacking fault tetrahedra or helium
bubbles. Those obstacles result in the increase of the critical
stress and therefore play an important role in irradiation
hardening. To investigate the extent of hardening by those
obstacles, there has been a model in which a dislocation is
regarded as a continuum line with the constant line tension.
This is referred to as the uniform line tension model. In the
presence of obstacles, a dislocation is fixed at an obstacle to
form a cusp. The pinning angle � is defined as the angle
between two tangent vectors at a cusp. �See Fig. 1.� Then the
restoring force to make a dislocation straight is written as
2� cos�� /2�, where � denotes the line tension. We assume
that a dislocation can penetrate an obstacle when the restor-
ing force exceeds the critical value. Since � is a constant, this
condition is equivalent to ���c, which we call the critical
angle.

Note that stronger obstacles have smaller critical angles.
A dislocation bows out to form an arc between two obstacles
until the pinning angle reaches its critical value.

For a periodic array of obstacles whose spacing is L, the
critical resolved shear stress �CRSS� �c above which a dislo-
cation can penetrate the array of obstacles is represented by

�c =
2�

bL
cos

�c

2
, �1�

where b denotes the Burgers vector length of a dislocation.1

�The line tension � is given by the elasticity theory and is
often written as Gb2 /2, where G represents the shear modu-
lus.�

In more realistic situations, obstacles are distributed ran-
domly on glide planes and the randomness plays a crucial
role in dislocation dynamics. In order to incorporate this ef-
fect, Foreman and Makin performed a computer simulation
of the dislocation motion on a glide plane with randomly

distributed obstacles of the same critical angle.2 They found
that the dislocation propagation has two qualitatively differ-
ent modes depending on the critical angle. For obstacles of a
small critical angle �i.e., strong obstacles�, the dislocation
propagation resembles dendritic growth,3 while for a large
critical angle �i.e., weak obstacles� the global form does not
significantly deviate from the straight line. Also �c is well
described by4
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where L denotes the mean spacing: the inverse of the square
root of the areal density of obstacles on a glide plane.5

In this context, the critical angle �c, which characterizes
the obstacle strength, is an important parameter to discuss
the extent of hardening. However, estimation of the critical
angle is not an easy task, because it involves the core struc-
ture of dislocations. In this regard, extensive molecular dy-
namics �MD� simulations on interactions between a disloca-
tion and radiation-induced obstacles have been performed:
e.g., stacking fault tetrahedra,6 interstitial Frank loops,7

voids, and copper precipitates in bcc iron.8–10

On the other hand, there are some experimental attempts
to determine the critical angle utilizing transmission electron
microscopy �TEM�.11,12 They seem to be promising but still

FIG. 1. A cusp formed at an obstacle. The angle � between two
tangential vectors is called the pinning angle.
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should be complemented by MD simulations in terms of the
spatiotemporal resolution. For example, subnanometer ob-
stacles cannot be seen by TEM.

In this paper, along the line of the above computational
and experimental studies, we wish to estimate the critical
angle and the critical stress for voids in copper. Especially,
effects of the dissociation, temperature, and the distance
from the void center to a glide plane are studied in detail.
Note that we focus on an edge dislocation here. Results on a
screw dislocation will be presented elsewhere.

This paper is organized as follows. In Sec. II, we intro-
duce the computational model: fcc copper including an edge
dislocation and a void. In Sec. III, the nature of the critical
stress is investigated. Especially, the void size dependence
and the temperature dependence is discussed. Section IV
deals with the critical angle, which is often measured by
experiments �TEM observations� to determine the obstacle
strength. The discussion enables us to compare the MD
simulation with the experiments. In Sec. V, the effect of the
distance between the void center and a glide plane is inves-
tigated. In Sec. VI, we discuss the pinning strength of de-
formed voids in the context of dislocation channeling and
plastic flow localization. The last section, Sec. VII, is de-
voted to discussions and the conclusion.

II. THE MODEL

A. The geometry

We treat fcc copper in this paper. As for the interatomic
potential, we adopt the embedded-atom method of Finnis-
Sinclair type13 and choose the parameters according to Ack-
land et al.14 The lattice constant a=3.615 Å.

The schematic of our system is shown in Fig. 2.

The x , y, and z axes are taken as the �112̄� , �11̄0�, and
�111� directions, respectively. The length of each dimension
is 23, 23, and 15 nm. Periodic boundary conditions are em-
ployed in the x and the y directions. That is, dislocations of
infinite length in the x direction are periodically located in
the y direction.

Note that we have the surface only in the z direction, both
for z�0 and for z�0. Following the procedure described in
Ref. 15, three atomic layers of �111� next to the lowest sur-
face �z�0� are “the fixed layers” where velocities of the
atoms always vanish. Similarly, three atomic layers of �111�
next to the upper surface �z�0� are “the moving layers”

where velocities of the atoms are given as a constant; not
given by the integration of force acting on them. The con-
stant velocity of the moving layers causes the shear stress.
Namely, the strain rate is the control parameter: not the
stress. The moving layers are displaced towards the −y di-

rection: i.e., �1̄10�.
In order to introduce a void, atoms whose barycentric

positions satisfy �x±L /2�2+y2+z2�r2 are removed, where r
denotes the void radius. To introduce an edge dislocation,

atoms that belong to one �11̄0� half plane �z�0� are re-
moved and the rest of atoms are displaced by the strain field
calculated from the elasticity theory. This procedure pro-
duces a perfect edge dislocation whose Burgers vector is

a /2�11̄0�. However, a perfect dislocation in a fcc crystal is
energetically unstable to split into two partial dislocations
whose Burgers vector length b is a /	6=1.48 Å,

a

2
�1̄10� →

a

6
�2̄11� +

a

6
�1̄21̄� . �3�

Since we wish to prepare two partial dislocations and a void
for the initial system, atoms are shifted by the steepest de-
scent method in order to realize the dissociation. In addition,
since our system consists of the periodic array of dislocations
in the x directions due to the periodic boundary conditions,
this procedure also incorporates the strain field caused by the
next dislocations. After a certain relaxation time �larger than
100 ps�, a perfect dislocation dissociates to yield two partial
dislocations, which are separated by approximately 4 nm.

The temperature is fixed to be 300 K in this paper, except
for Sec. III C where the temperature effect on the CRSS is
investigated. Velocities of atoms are given by random num-
bers which obey the Maxwell-Boltzmann distribution. After
a relatively short time required for phonon relaxation, the
moving layer, which is explained above, begins to be shifted
to cause the shear strain.

B. The strain rate

The strain rate 	̇ is an important parameter in dislocation
dynamics. In this paper, we set 	̇=8
106 �s−1�. Although it
seems an unrealistically fast deformation, the strain rate in
the MD simulation should not be directly compared with the
macroscopic �or experimental� strain rate because the mac-
roscopic strain rate involves only the average dislocation ve-
locity. Namely, both spatial and temporal fluctuations in the
dislocation velocity are neglected. The correspondence of the
microscopic dislocation velocity to the macroscopic strain
rate is not clear at all unless we know the statistical property
of spatiotemporal fluctuations in dislocation dynamics.

Calculation of the shear stress is noteworthy. We define
the shear stress as follows. Let the forces acting on the
moving layers and on the fixed layers be F�1� and F�2�,
respectively. Then the shear stress � is defined as
�= �
Fy

�1�
+ 
Fy
�2�
� /2S, where S denotes the area of the surface

and the subscript y means the y component. However, this
microscopic definition of the shear stress shows a large ther-
mal fluctuation. In addition, the inertia of the dislocation
motion due to the high strain rate causes depinning at lower

FIG. 2. Schematic of the system. Periodic boundary conditions
are assigned to the x and the y directions. The system contains
approximately 0.55 million atoms.
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stress.8 In order to reduce these effects, the simulation is
performed twofold. Namely, the representative point in the
phase space �spanned by the positions and the momenta of
all atoms� are recorded every 4.6 ps.16 We then take the point
where depinning just begins and restart the simulation with
	̇=0. In this relaxation process, the inertial effect is ruled out
and the thermal fluctuation in the shear stress is averaged
out. Taking this relaxation process into account, the average
strain rate becomes approximately 106 �1/s�.

III. BEHAVIORS OF THE CRITICAL RESOLVED SHEAR
STRESS

A. Temporal behavior

First, we track the time evolution. Under the shear stress
caused by the boundary condition, two partial dislocations

glide towards the �1̄10� direction: the −y direction. The Bur-
gers vectors of the leading and the trailing partials are

a /6�2̄11� and a /6�1̄21̄�, respectively. Snapshots of a pin-
ning-depinning process are shown in Fig. 3.

Note that there are two depinning processes correspond-
ing to two partial dislocations, as is shown in the stress-strain
relation, Fig. 4. We can see two peaks which correspond to

each depinning process. We remark that the critical stress for
the leading partial is always larger than that of the trailing
partial. This is because the leading partial has already es-
caped from the void and keeps gliding while the trailing
partial is still pinned by the void. Then the width of the
stacking fault ribbon extends to cause an attractive force be-
tween the partials. Namely, depinning of the trailing partial is
assisted by the attractive force from the leading partial. Also,
note that the glide of the leading partial leads to the stress
relaxation, which appears in the change of modulus in the
stress-strain curve in Fig. 4. The modulus is 30 GPa when
the leading partial is pinned �0.002�	�0.006�, while it is
13 GPa during the depinning process of the trailing partial
�0.008�	�0.012�.

B. Void size dependence

Then the critical stress is calculated for various voids of
different radii �from 0.3 to 2.5 nm�. We measure the depin-
ning stresses both for the leading partial and for the trailing
partial. An interesting feature arises from the comparison of
both the stresses. In Fig. 5, we can see that they have differ-
ent tendencies with respect to the void radius r. The depin-
ning stress of the trailing partial shows the well-known loga-
rithmic dependence, while that of the leading partial
undergoes a crossover around r�1 nm. We will discuss the
difference more quantitatively in this subsection.

The depinning stress of the trailing partial can be de-
scribed by the following relation:

�c =
T

L
log�2r

B
�1 +

2r

L
�−1 , �4�

where T and B denote arbitrary constants. The best fit is
realized by letting T=0.85 N/m and B=0.14 nm. Note that
this logarithmic dependence has also been found in a con-
tinuum model by Scattergood and Bacon,17 and also in the
context of the Orowan mechanism.18 As to the leading par-
tial, the behavior of the critical stress cannot be explained in
the above context. It seems to be describable by piecewise
logarithmic behaviors

FIG. 3. Successive snapshots of a depinning process: �a� trap-
ping of the leading partial, �b� just before the depinning of the
leading partial, �c� just before depinning of the trailing partial, �d�
depinning of the trailing partial. The void radius is 1 nm. To visu-
alize the void and the dislocations, atoms that have 12 nearest
neighbors are omitted. �Atoms which form dislocations have 11 or
13 nearest neighbors, and the number of nearest neighbors of void
surface atoms is less than 12.�

FIG. 4. Stress-strain relation. Two arrows indicate the depinning
points of two partials. Two circles which indicate sudden stress
drops result from the attractive interaction between the dislocations
and the void.

FIG. 5. �Color online� Void radius dependence of the depinning
stress for the leading partial �the red symbols, 
� and for the trail-
ing partial �the green symbols, +�. The blue dashed line denotes Eq.
�4� with T=0.85 N/m and B=0.14 nm. The pink dotted line de-
notes Eq. �6�, which is the result from a continuum model calcula-
tion �Ref. 17�.
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�c = �18 log� 2r

1.5 
 10−3�1 +
2r

L
�−1 MPa, �r � 1nm� ,

280 log� 2r

1.2
�1 +

2r

L
�−1 MPa, �r � 1nm� .�

�5�

Note that the extent of hardening becomes much greater
when the void radius exceeds 1 nm.

Although we cannot definitely explain this phenomenon, a
plausible reason lies in the interaction between two partials.
When the void radius is larger than 1 nm, two partials are
simultaneously trapped by the void. Then the depinning
stress of the leading partial is significantly affected by a be-
havior of the trailing partial. As we can see in Fig. 7, the
trailing partial is also bended to a certain degree as well as
the leading partial. This requires excess stress, which may be
responsible for the sudden increase of the critical stress for
r�1 nm. Meanwhile, as to r=0.3 and 0.5 nm, we remark
that depinning of the leading partial is followed by the pin-
ning of the trailing partial: i.e., they are not simultaneously
pinned by a void. Hence, for smaller voids, the depinning of
the leading partial is not affected by the trailing partial. The
above explanation describes a crossover of the critical stress
around r�1 nm. We also remark that a similar crossover due
to the interaction between the dislocations is observed in the
critical stress of the dislocation nucleation on the void
surface.19

On the other hand, regardless of the void radius, the de-
pinning of the trailing partial follows that of the leading par-
tial. The depinning of the trailing partial is not influenced by
the leading partial, since it glides far away from the void.
Therefore, no crossover is seen in the critical stress. It can be
described in the framework of Ref. 17, where a single dislo-
cation involves. This is due to the absence of the interaction
between the partials.

The critical stress of an edge dislocation, for which we are
originally concerned, should be interpreted as the maximum
stress during a pinning process. As we can see from Fig. 4, it
is the depinning stress of the leading partial. Then it is inter-
esting to compare the critical stress in the present simulation
with the one obtained by Scattergood and Bacon.17 It reads

�SB =
Gb

2�L
log� 2r

0.22b
�1 +

2r

L
�−1 , �6�

which is plotted in Fig. 5 together with the simulation result.
We can see that Eq. �6� considerably overestimates the criti-
cal stress where r�2.5 nm. The overestimation is attributed
to the effect of dissociation, which is not taken into account
in Ref. 17. Our simulation reveals the effect of dissociation
in the critical stress. Nevertheless, recalling that Eq. �6� ap-
plies to a perfect edge dislocation in bcc iron,8–10 it is plau-
sible that the critical stress is describable by Eq. �6� for larger
voids where the dissociation width is negligible compared
with the void radius. Also, a continuum model in which the
dissociation effect is appropriately incorporated might apply
to our result. �Unfortunately, we are unaware of such an at-
tempt at this point.�

C. Temperature dependence

In this section we investigate the temperature dependence
of the critical stress. We calculate the critical stress for four
different temperatures: 100, 200, 400, and 500 K. However,
we cannot find any difference regarding the critical stress
between these calculations. In Fig. 6, we show snapshots of
the dislocations just before depinning, where the tempera-
tures are 100 and 500 K, respectively. We can see no differ-
ence between the dislocation shapes. Also, the critical stress
is almost the same: 130±12 MPa for r=1 nm and
288±30 MPa for r=2.5 nm. Namely, the temperature plays
no role in the depinning processes.

Note that this result is opposite to the simulation on bcc
iron with a copper precipitate.10 There, definite temperature
dependence was observed from 0 to 500 K. The reason for
the difference lies in the dissociation nature of the disloca-
tions. In bcc iron where a dislocation does not dissociate, a
perfect edge dislocation absorbs vacancies from a void �or
the precipitate surface� and undergoes climb motion. The ex-
tent of climb motion is remarkable for larger voids where
temperature dependence of the critical stress is observed.
Note that smaller voids show less temperature dependence
and the climb motion is weak there. It implies that the climb
motion is essential to the temperature dependence. On the
other hand, no climb motion is observed in the present simu-
lation. It is known that the climb motion is difficult in fcc
crystals due to dissociation. Therefore, no temperature de-
pendence is observed in the present simulation on fcc copper.

Another possible reason lies in the activation energy for
depinning. Although the precise estimation is difficult, it is at
least larger than the energy of a dislocation whose length is
equivalent to the void diameter. �We neglect the step forma-
tion energy on the void surface.� The dislocation energy is
calculated by the line tension multiplied by the length. The
effective line tension is estimated to be 0.4 nN by Eq. �12�.
�Please see the next section for details.� Therefore, for the
void of 2.0 nm radius, the activation energy is approximately
1.6
10−18 J. It is equivalent to 400 kBT, where kB denotes
the Boltzmann constant and T=300 K. Since this is much
larger than the thermal energy of involved atoms on the void
surface �less than a hundred�, it is plausible that thermal
fluctuations cannot assist dislocation depinning. In addition,

FIG. 6. �Color online� Snapshots of dislocations �the trailing
partials� just before depinning. The trailing partial dislocation at
100 K is represented by 
 �red�, and the one at 500 K is + �green�.
The subtle difference in the middle lies in the range of thermal
fluctuation at 500 K.
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please recall that the step formation energy is neglected and
the actual value is larger than that. �However, in the case of
precipitates, the number of involving atoms is larger than
that of voids.� The above two discussions may be good rea-
sons for the difference between fcc copper and bcc iron.

IV. THE DISLOCATION SHAPE AND THE CRITICAL
ANGLE

A. An orientation dependent line tension model

As can be seen in Fig. 3, the bowing dislocation is asym-
metric with respect to x=0. Since the uniform line tension
model predicts the symmetric form �an arc�, we have to in-
corporate an orientation dependent line tension in order to
explain the asymmetric dislocation shape. Indeed, de Wit and
Koehler20 obtained a solution for the dislocation shape

y = C1 +
1

�b
�E���cos  −

dE

d�
sin  , �7�

x = C2 +
1

�b
�E���sin  +

dE

d�
cos  , �8�

where  denotes the angle between the tangent line of a
dislocation and the x axis. An orientation dependent line ten-
sion is denoted by E���, where � represents the angle be-
tween the tangent line of the dislocation and the Burgers
vector. Note that Eqs. �7� and �8� are interpreted as paramet-
ric equations with respect to  and �. If the concrete form of
E��� is given, these equations can be numerically solved
with an appropriate choice of the integral constants C1 and
C2. Here, E��� is given as20

E��� =
b2

4�
log� R

r0
� f��� , �9�

f��� � 59.3 − 16 cos 2� − 0.8 cos 4� �GPa� , �10�

where r0 is the �arbitrary� core cutoff length. In Fig. 7, Eqs.
�7� and �8� are fitted with the simulation result. We can see
that the fittings are quite satisfactory.

B. Determination of the critical angle

In macroscopic materials, random configuration of the ob-
stacles plays an important role in the dislocation dynamics,
as was discussed in Sec. I. In order to apply Eq. �2� to prac-
tical situations, we wish to estimate the critical angle from
the simulation. Note that Eq. �2� is based on the uniform line
tension model, which should be regarded as the first approxi-
mation.

The critical angle �c is defined by the angle between the
two tangent lines of the dislocation at the void surface. Be-
cause the critical angles are slightly different for the two
partial dislocations, we measure both. The pinning strength
�=cos��c /2� with respect to the void radius is shown in Fig.
8.

We remark that the pinning strength � again obeys a loga-
rithmic law

� = A log
2r

B�1 +
2r

L
� . �11�

The constants are A=0.24 and B=0.07 for the leading par-
tial, and A=0.28 and B=0.15 for the trailing partial. By ex-
trapolation, � reaches 1 when the void radius exceeds 3 nm,
as shown in Fig. 8. Note that the tendency has also been
observed in the previous simulations on bcc iron.8–10

Meanwhile, it should be remarked that a crossover is not
observed in the pinning strength �. From Eq. �1�, the cross-
over of �c should be attributed to that of �, which can be
written as

� =
b�cL

2�
. �12�

Note that all of the quantities on the right-hand side of Eq.
�12� are independently defined by the simulation results. The
critical stress �c is directly computed in Sec. III, and � is the
cosine of half the pinning angle, which is directly measured
from the dislocation shape. The calculated line tensions are
shown in Fig. 9, in which the line tension of the leading
partial shows the minimum at r=1.0 nm while that of the
trailing partial monotonically decreases. The explanation for
the decrease lies in the deformations �i.e., bowouts� of the
dislocations. As the void gets larger from r=0, the extent of

FIG. 7. �Color online� Bowing dislocations obtained by the
simulation for various voids ��a� r=1.0 nm, �b� r=1.5 nm, �c�
r=2.0 nm, �d� r=2.5 nm�. The green solid lines represent Eqs. �7�
and �8�, which are derived from an orientation dependent line ten-
sion model. Note that the trailing partials also deform to a certain
degree as the void becomes larger.

FIG. 8. �Color online� Void radius dependence of � for the
leading partial �the red symbols, 
� and for the trailing partial �the
green symbols, +�.
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the bowout becomes greater. This results in the prevalence of
the screw component, since the partial dislocation is initially
edgelike. The deformation lowers the effective line tension:
i.e., the energy per unit length. �However, the total energy
increases due to the elongation.� The above mechanism also
explains the decrease of the line tension of the leading partial
for r�1 nm.

On the other hand, the increase of the line tension of the
leading partial for r�1 nm results from the interaction with
the trailing partial. For larger voids, the trailing partial is also
pinned by the void and bends during the depinning process
of the leading partial, as can be seen in Fig. 7. That effec-
tively increases the line tension of the leading partial.

V. EFFECTS OF THE IMPACT PARAMETER

So far, we have limited ourselves to the situation where a
dislocation penetrates the void center. This is rather a special
case, because the relative position of a void to a glide plane
is arbitrary. In this section, we change the distance between
the void center and a glide plane. We call the distance “the
impact parameter,” which is denoted by d. �See Fig. 10.�

The pinning strength � is estimated for the various impact
parameters. The result is shown in Fig. 11, which shows
asymmetric dependence of � on d. Note that a dislocation is
pinned even when it is not in contact with a void. It implies
that, as well as the core energy, the elastic strain around a

dislocation plays an important role in the pinning phenom-
ena. In addition, the asymmetry regarding d=0 comes from
the nature of the strain field around an edge dislocation: i.e.,
the existence of hydrostatic pressure caused by an extra
atomic plane. Especially, the fact that the pinning strength
becomes considerably weak for d�0 suggests that the hy-
drostatic pressure is dominant over the shear stress.

Also, we remark that strong pinning ���0.5� occurs only
where −1.0r�d�0: i.e., the lower half of the void. This area
accounts for approximately 30% or 40% of the whole pin-
ning region, while the rest involves relatively weak pinning.
The large variance of the pinning strength distribution for a
single void suggests reconsideration of the same pinning
strength assumption in dislocation dynamics simulations. In
Sec. VII, we discuss how to incorporate this effect into the
estimation of the critical stress in the framework of Eq. �2�.

VI. EFFECTS OF VOID DEFORMATION AFTER THE
PASSAGE OF SEVERAL DISLOCATIONS

When a void is sheared by a dislocation, two parts which
are divided by the glide plane are displaced to each other by
the Burgers vector. After the passages of several dislocations,
it may collapse and lose the pinning ability. For example, the
collapse of the stacking fault tetrahedra by the passage of
dislocations is both experimentally22 and computationally6

observed. This phenomenon is believed to be responsible for
the formation of the dislocation channel and the localization
of plastic flow, which recently invokes attention including
some computational studies.21 In this section, the effect of
the void deformation on the pinning strength is discussed
based on the motivation described above.

We remark that another possible mechanism of the void
deformation is vacancy absorption by �and the climb motion
of� an edge dislocation, as was discussed in Sec. III C. How-
ever, no climb motion was seen in our simulations, because
the climb is difficult in fcc metals due to dissociation. Hence,
we do not consider the void contraction by the climb of
dislocations. We concentrate on the effect of the relative de-
formation with respect to a glide plane.

We prepare the deformed void as shown in Fig. 12. First
we prepare a spherical void. Then, instead of iterating the
pinning simulations, atoms located above the glide plane are

FIG. 9. �Color online� Effective line tensions estimated via Eq.
�12�. Those of the leading partial and of the trailing partial are
represented by the red symbols �
� and the green symbols �+�,
respectively. Note that the void radius dependence results from the
difference in the configuration of dislocations: the degree of bowing
and the interactions of two partials.

FIG. 10. The impact parameter d is defined by the distance from
the void center to the glide plane. Note that the lower part of the
void corresponds to the negative values of d.

FIG. 11. Impact parameter dependence of the pinning strength �
for the trailing partial. Void radius is 1.0 nm �indicated by the
dashed lines�.
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displaced by the Burgers vector a /2�1̄10�. Iterating this pro-
cedure for N times is equivalent to the passage of N edge
dislocations.

We set two configurations. In case �a�, a glide plane on
which a dislocation moves is assumed to be at the void cen-
ter, whereas glide planes are uniformly distributed in case
�b�.

In case �a�, we set N=5 and N=10. Namely, a void is
assumed to be penetrated by the dislocations on the same
glide plane five times or ten times. The pinning strength � is
found to be 0.7 for both cases, which is almost the same
value as the one for the spherical void. This is consistent
with the result obtained in the last section that the upper part
of the void is dominant in the pinning of the edge disloca-
tions because of the hydrostatic pressure. In case �b�, we test
N=2 and cannot find any difference from the nondeformed
case regarding the critical angle. Thus, as far as the vacancy
absorption mechanism �i.e., climb� is absent, the pinning
strength is not seriously altered by the passage of disloca-
tions.

VII. DISCUSSIONS AND CONCLUDING REMARKS

A. Practical applications

Let us estimate the critical stress of copper in which voids
are randomly distributed. First, we determine the average
spacing L between obstacles on a glide plane. The areal den-
sity is represented as 2r�, where � denotes the number den-
sity of voids per unit volume. Then the average spacing on a
glide plane is written as L=1/	2r�. Since the expression
includes all the voids which intersect a glide plane, their
impact parameters are randomly distributed from −r to r.
Since we have seen that the pinning strength � considerably
changes with the impact parameter d in Sec. V, we wish to
incorporate this result. However, at this point, there is no
simulation which considers this effect. Therefore, we have to
resort a rough approximation here. From Fig. 11, strong pin-
ning ���0.4� occurs only where −1.2r�d�0.2r. We ne-
glect the rest. Namely, it is assumed that only this region is
responsible for pinning. We use 1.4r instead of the diameter

2r; then L�1/	1.4r�. We can rewrite Eq. �2� as

�c =
1.6��

b
	1.4r� , �13�

where the line tension � should be interpreted as the effec-
tive one that is determined by the present simulation, Fig. 9.

For example, an irradiated copper specimen includes
voids whose average diameter 2r=4.1 nm, and the number
density � is 2.9
1022 m−3.23 From the present simulation,
the line tension � and the pinning strength � are estimated as
0.42 nN and 0.9, respectively. The effective areal density is
then calculated as 8.4
10−5 nm−2 �i.e., the average spacing
is 110 nm�. This yields �c=21 MPa, which is a reasonable
value. In order to give more precise predictions, Eq. �2�
should be modified to include the effect of the impact param-
eter and an orientation dependent line tension.

B. Comparison with a continuum model with self-interaction

Scattergood et al. have presented a model calculation on
the dislocation pinning by a void, based on the framework of
Bacon et al.18 It is a continuum model that incorporates the
self-interaction of a dislocation. Since their system also con-
sists of the periodic array of voids, we wish to compare their
result to ours.

Let us briefly review their discussion. They have specu-
lated that dislocation pinning concerns the line tension near
the pinning point. Since a dislocation rotates by almost � /2
there, we regard the effective line tension as that of its coun-
terpart. For example, as for an edge dislocation, the effective
line tension near the void surface is that of a screw disloca-
tion. Then the depinning stress for an edge dislocation is
expressed by

� =
2�eff

Lb
, �14�

�eff =
Gb2

4�
logR̄ , �15�

1

R̄
=

B

L − 2r
+

B

2r
, �16�

where R̄ should be interpreted as the effective outer cutoff
divided by the core cutoff. Note that B itself is not the core
cutoff but an unknown function of the core cutoff. The above
equations yield Eq. �6�.

Their discussion can be extended to a dislocation of arbi-
trary orientation

�eff =
Gb2

4��1 − ���1 − � cos2��

2
− ��logR̄ , �17�

where � and � denote Poisson’s ratio and the angle between
the dislocation line and the Burgers vector, respectively. In
the present case, substituting �=� /3 �for the partials� into

Eq. �17� yields �=30 logR̄ MPa. Recall that Eq. �17� is an
expression for the resolved shear stress with respect to the

FIG. 12. Schematic of the void deformation by the passages of
N edge dislocations. �a� There is a single glide plane which cuts the
void center. �b� Glide planes are uniformly distributed. Each plane
has N dislocations which penetrate the void.
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Burgers vector of a partial dislocation. It is equivalent to

�=35 logR̄ MPa with respect to the Burgers vector of an
original perfect dislocation. Indeed, it shows an excellent
agreement with the critical stress of the trailing partial.
Therefore, we confirm that the extended form of the effective
line tension, Eq. �17�, agrees with the present simulation, if
there is no strong interaction between the partials. Note that
the arbitrary parameter B is inevitable as long as continuum
models for dislocations are involved.

C. Conclusion

We calculated the critical stress and the critical pinning
angle for the interaction between an edge dislocation and a
void in fcc copper. Dissociation of a dislocation plays an
important role in the behaviors of the critical stress: �i� It is
much lower than the estimation of Scattergood and Bacon,
which does not consider dissociation. �ii� It suddenly in-
creases at a certain void radius where two partials are simul-
taneously trapped. �iii� The depinning stress of the trailing
partial does agree with that of Scattergood and Bacon, since
the leading partial moves far from the void.

We also found that there is no temperature dependence in
the critical stress and the pinning angle. This is opposite to
the previous simulation on bcc iron.8–10 The difference
comes from the presence �bcc� or the absence �fcc� of the
climb motion.

The pinning strength cos��c /2� obeys the empirical loga-
rithmic law which has been found in Refs. 17 and 18. The
distance between the void center and the glide plane �the
impact parameter� is found to affect the pinning strength in
asymmetric manner. This is due to the hydrostatic pressure
around an edge dislocation. Hence, it is interesting to com-
pare the result with that of a screw dislocation, which is a
work in progress.

The impact parameter dependence of the critical angle
also suggests the importance of randomness in the pinning
strength. Even if a system contains voids of the same radius,
the cross section on a glide plane is randomly distributed.
Hence, we have to incorporate the randomness in the pinning
strength. It is not straightforward to deduce this effect from
the existing simulations which treat only two kinds of
obstacles.24 The investigation of a continuum model with
random pinning angles will be interesting to see how the
impact parameter dependence affects the macroscopic dislo-
cation motion.
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