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The scalar-product cluster variation method �SP-CVM� for calculation of antiphase boundary �APB� ener-
gies has been extended for application to �001� APBs in the body-centered cubic lattice using the irregular
tetrahedron cluster approximation. In order to do so, the proof of the SP-CVM relation has been updated to
include the cases where the domain interface consists of more than one plane of atoms �i.e., it consists of a
layer of atoms�. The algorithm has been developed for the cases of thermal APBs with APB vectors a0

A2�100�
and a0

A2 /2�111�. It is then applied, as an illustration, to the determination of APB energies in isothermal
calculations in the Fe-Al system.
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I. INTRODUCTION

Domain interfaces, like antiphase boundaries �APBs� and
magnetic domain boundaries �MDBs�, are typical crystal de-
fects of ordered systems �alloy superlattices for the former
and ferro- or antiferromagnetic systems for the latter�. These
defects control important macroscopic properties of techno-
logical materials, e.g., plastic deformation behavior �both
strength and ductility� of iron aluminides1,2 and hysteretic
losses in electrical steels.3 The understanding of APB and
MDB energetics is, therefore, essential in the design of new
advanced ordered materials with optimized properties.

From the theoretical perspective, APBs may be handled
within two limit boundary conditions for the sake of studying
the defect’s energetics.4 Defects subjected to the first bound-
ary condition, denoted mechanical APBs, are formed under
the constraint that the configuration near the plane of the
defect remains the same as in a virtual nondefective crystal at
the same temperature and alloy composition �denoted the
“bulk” configuration�. In the second case the defects are de-
noted thermal APBs, and, contrary to the previous one, full
local equilibrium is assumed to be established at the interface
between the ordered domains, i.e., the configurations near
the APB plane differ from the bulk.

In the case of mechanical APBs, the constrained equilib-
rium allows one to treat the problem disregarding the varia-
tion of the configurational entropy produced in the system by
the introduction of the defect. The defect’s specific energy,
�� �i.e., the APB surface tension for the �th defect type,
where � is a short representation of both its plane and vector�
is, thus, simply calculated as the variation of the system’s
internal energy per unit area of defect. The internal energy of
ordered systems is usually treated by the Ising model, which
attributes a “bond” energy to pairs or other groups of atoms
�for a discussion on the theoretical background of the appli-
cability of the Ising model to configurational ordering in al-
loy systems, see, for example, Bieber and Gautier5�. In this
case the evaluation of the internal energy variation is deter-
mined by counting the bonds which are broken by the intro-

duction of the defect, subtracting them from those which are
restored in the same process. This procedure is called the
bond counting (BC) method, which has been successfully
applied to the evaluation of APB energies in a large number
of systems.4,6–9 Mechanical APBs are expected to be pro-
duced in alloys mainly as a consequence of plastic deforma-
tion and dislocation slip.9

The relaxation in the configurations near the plane of the
defect in thermal APBs, on the other hand, requires the
evaluation of the configurational entropy variation. The APB
surface tension is, thus, proportional to the variation of the
excess free energy produced by the introduction of the defect
in the system. This has to be minimized at the APB interface,
subject to asymptotic boundary values corresponding to fixed
bulk configurations at infinite distances from the APB
plane.10,11 The methods used for the calculation of thermal
APB energies are, therefore, considerably more complex in
comparison with the BC method, since at least one additional
minimization step is needed for the evaluation of this excess
free energy. Two of these methods will now be briefly re-
viewed.

A. Methods for the calculation of thermal APB energies

The use of flexible theoretical methods, capable of exten-
sion to multicomponent systems and of delivering results
within reasonable CPU times and using limited computation
resources, is imperative in the framework of computational
thermodynamics, since this discipline is, in principle, dedi-
cated to modeling technological materials for industrial pro-
cess control.12,13 One of the theoretical methods which pre-
sents this characteristics is the cluster variation method
�CVM�.14 Within the CVM two alternative formalisms have
been developed by one of the present authors to calculate the
excess free energy of thermal APBs in crystal systems:
the sum method �S-CVM�,10,15 and
the scalar product method �SP-CVM�.11,16–19

In the S-CVM the 3D crystal is subdivided into a set of
planes parallel to the APB, and the CVM equations are
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solved separately for each plane, subject to compatibility
constraints with the neighbors.10,15 This method allows the
detailed calculation of the configuration gradient of the sys-
tem as a function of the distance from the APB plane, but
requires the use of considerable computational resources. In
fact, the determination of the local equilibrium configuration
for each plane depends on the solution of a nonlinear equa-
tion system with dimensions of the same order as the one
used for a single equilibrium CVM calculations �denoted
here as a “bulk” calculation�. The S-CVM is also prone to
finite-size effects, since the number of planes considered in
the implementation of the algorithm must necessarily remain
finite. This requires that the asymptotic boundary conditions
�corresponding in principle to planes located at infinite dis-
tances from the APB� must be imposed both for the first and
for the last plane included in the particular implementation,
which becomes a better approximation as the size of the
system �i.e., the number of planes� increases.

The second method, SP-CVM, is based on ideas devel-
oped by Woodbury and Clayton,20–22 and adapted by one of
the present authors for the application within the CVM
formalism.11,16–19 This method circumvents the evaluation of
the full configuration gradient of the system in the calcula-
tion of the excess free energy produced by the defect. It is,
thus, considerably simpler to apply, producing faster algo-
rithms compared with the analogous S-CVM formulation.
The asymptotic boundary conditions are explicitly used in
the SP-CVM theoretical framework as limits for infinite dis-
tances from the APB plane and no length scale perpendicular
to the APB plane is required in the calculation. The SP-
CVM, therefore, is not subject to finite-size effects.

Despite the technological importance of the problem of
determination of excess free energies for thermal APBs, only
considerably simple cluster approximations and lattice ge-
ometries have been investigated to date using either the
S-CVM or SP-CVM calculations.

The present work aims to apply the SP-CVM method to
the investigation of �001� APB energies in the body-centered
cubic �bcc� lattice using the irregular tetrahedron �IT� cluster
approximation. This approximation allows one to treat tech-
nological materials like iron aluminides23,24 and high-spin
ferromagnetic systems.25,26 The application of the method to
a more complex lattice and cluster approximation than those
used in previous investigations19 requires the generalization
of the formalism �Sec. II�, with a consequent need to update
the proof of the basic relation of the SP-CVM method. This
will also be discussed in the present work �Sec. II A�. The
use of the algorithm will be illustrated by calculations in the
Fe-Al system �Sec. III�, which has been chosen as a proto-
type system for the calculations due to the existence of reli-
able phenomenological parameters,23,24 which reproduce
both the phase diagram topology of iron-rich alloys and alu-
minum activity measurements at T=1000 K.27 For simplici-
ty’s sake, the present calculations will be limited to the so
called “nonmagnetic” Fe-Al system �i.e., the effect of the
spin orientations of the iron atoms will be neglected in build-
ing the thermodynamic model�. The formalism may be, how-
ever, immediately extended to treat magnetic cases and
mixed chemical-magnetic cases using the Ising model to de-
scribe the magnetic interactions.28 Finally the results will be
discussed in Sec. IV.

II. SCALAR PRODUCT–CLUSTER VARIATION METHOD
IN THE “LAYER” FORMULATION

The scalar product method receives its name from the
basic relation, derived by Clayton and Woodbury20–22

exp�−
A��

kBT
� = 	

�


pI���pII����1/2. �1�

In the expression above, A=N�a0
A2�2 represents the area of

the �001� interface with N atoms �with a0
A2 being the lattice

parameter of a disordered bcc lattice, A2�, kB
=8.3145 J mol−1 K−1 is Boltzmann’s constant, T the absolute
temperature, and �� the surface tension for the �th APB, to
be determined. The sum on the right-hand side runs over all
configurations of the interface �represented collectively by
the symbol �� and pI,II corresponds to the conditional prob-
ability of finding this particular configuration in the “bulk”
crystal at domains I and II, respectively. The right-hand side
of Eq. �1� resembles the definition of a scalar product in a
vector space �e.g., Rn�, hence the name of the method.

CVM-related concepts are used in the scalar product
method to evaluate probabilities pI and pII, based on equilib-
rium bulk CVM calculations, and to solve the nonlinear set
of equations corresponding to Eq. �1�.

Figure 1 shows the irregular tetrahedron cluster used to
model the thermodynamics of the bcc lattice. Analyzing this
figure, it becomes clear that the cluster depicted in it is built
by atoms belonging to three �001� atom planes, say at coor-
dinates 0.0, 0.5a0

A2 and 1.0a0
A2 along the 
001� axis. The con-

figuration corresponding to the interface thus cannot be de-
scribed by a single pair of atom planes, as in the previous
formulations of the SP-CVM.11,16–19 In the present case, it is
necessary to consider at least a layer composed by two con-
secutive 
001� atom planes to describe the interface configu-
ration. The existing proofs for the validity of Eq. �1� �see,
e.g., Cenedese and Kikuchi11� have been, however, derived
under the assumption that the interface is formed by a single
atomic plane. This proof must be, therefore, updated for the
present layer formulation. This will be done next, before re-
turning to the particular implementation of the algorithm for
the case of the IT cluster.

A. Proof for the validity of the scalar product relation in the
“layer” formulation

Figure 2 represents the 
010� projection of a bcc crystal
block, with the layer construction used for the evaluation of

FIG. 1. The irregular tetrahedron �IT� cluster in the bcc
lattice.
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the energy of a domain interface located at plane �001� in a
hypothetical S-CVM formulation of the problem. The do-
main interface is, by definition, located at the layer denoted
“m,” which is at the intersection of the layer pair centered at
m+h�h� 1

2
� and the one centered at m−h �both are also

shown in the figure�.
We introduce the variables p�m ,�� and q�m+h ,� ,�� as

the probability to find layer m with configuration � and of
finding the layer pair m+h with configuration � at m and � at
m+1. Since the configuration gradient must be continuous in
any case, these probabilities must be related by

p�m�,�� = 	
�

q�m� − h,�,�� = 	
�

q�m� + h,�,�� . �2�

Also, the layer pair probabilities must be normalized 
this
ensures, by Eq. �2�, that the layer probabilities are normal-
ized as well�

	
�

	
�

q�m� + h,�,�� = 1. �3�

We denote the interaction energy of a layer pair as
��� ,��. This quantity is composed of layer self-energies
�i.e., the energy of the bonds contained in a single layer�,
�1���, and a layer interaction energy, �2�� ,�� �i.e., due to the
bonds which belong to both layers�

���,�� = �2��,�� +
�1��� + �1���

2
. �4�

The internal energy of the entire system is expressed as

U = 	
m

	
�

	
�

���,��q�m + h,�,�� . �5�

The entropy of the system is written in terms of the layer
pair probabilities as

S = − kB
	
m

	
�

	
�

q�m + h,�,��ln q�m + h,�,��

− 1
2�	

�

p�m,��ln p�m,��

+ 	
�

p�m + 1,��ln p�m + 1,���� . �6�

The expression above can be obtained considering that the
problem is topologically equivalent to the unidimensional
lattice in the pair approximation, whose solution is found, for
example, in Kikuchi �1951�.14

The Helmholtz free energy, F, of the crystal is written as

F = U − TS + C� + C�, �7�

where C� and C� are the constraint terms introduced to en-
sure the validity of Eqs. �2� and �3�. These are defined in
terms of the layer pair probabilities as

C� � kBT	
m

	
�

��m,����	
�

q�m − h,�,���
− �	

�

q�m + h,�,����
= 	

m
	
�

	
�


��m + 1,��

− ��m,���q�m + h,�,�� , �8�

and

C� � 	
m

��m + h��1 − �	
�

	
�

q�m + h,�,���� , �9�

with ��m� ,�� and ��m�+h� being the corresponding
Lagrange multipliers.

Differentiating Eq. �7� relative to q�m+h ,� ,��, equating
to zero, and rearranging the terms, one obtains

q�m + h,�,�� = exp���m + h� − ���,��
kBT

�
p�m,��p�m

+ 1,���1/2exp
��m,�� − ��m + 1,��� .

�10�

This defines an implicit function for q�m+h ,� ,��, with the
Lagrange multipliers being determined using the respective
constraints. Equation �10� has a solution for a set of fixed
points in the q�m+h ,� ,�� space. These fixed points corre-
spond to local equilibrium values for the constrained equilib-
rium states for the inhomogeneous system, which can be
found by a simple self-consistent algorithm �the “natural it-
eration method,” NIM�, previously introduced by one of the
present authors.29 The NIM algorithm is very robust and, for
some cases �including the 1D lattice in the pair approxima-
tion�, it has been proved that it always converges to a solu-
tion in the form of a stable �or, at least metastable� fixed
point.30 After the convergence to a fixed point in the layer
pair probability space, F may be obtained from the Lagrange
multipliers by:

FIG. 2. Schematic 
010� projection of a bcc crystal showing the
layer construction for the evaluation of �001� APB energies using
the S-CVM. Small circles represent atoms which are located half a
lattice parameter below the plane of the figure. The APB is placed
in the layer denoted by “m,” which is the intersection of the layer
pairs centred at m+h and m−h�h= 1

2
�.
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F = 	
m

��m + h� . �11�

We introduce now the following auxiliary functions:

�
f�m,	� = p�m,	�1/2exp
+ ��m,	�� ,

g�m,	� = p�m,	�1/2exp
− ��m,	�� ,


�	,�� = exp�−
��	,��

kBT
� . � �12�

With their help we are able to rewrite Eq. �10� in a more
compact form

q�m + h,�,�� = exp���m + h�
kBT

� f�m,��
��,��g�m + 1,�� .

�13�

Substituting Eq. �13� into Eq. �2�, performing the summa-
tions, and using the identity p�m ,��� f�m ,��g�m ,��, we
obtain

f�m,�� = exp���m − h�
kBT

�	
�


��,��f�m − 1,�� , �14a�

g�m,�� = exp���m + h�
kBT

�	
�


��,��g�m + 1,�� . �14b�

We apply now Eq. �13� for two arbitrary layers, m� and
m�, and first sum over �, using Eq. �14b�, then over �, using
Eq. �14a�, obtaining

	
�

	
�

f�m�,��
��,��g�m� + 1,��

= 	
�

f�m�,��exp�−
��m� + h�

kBT
�g�m�,��

= 	
�

f�m� + 1,��exp�−
��m� + h�

kBT
�

�g�m� + 1,�� . �15�

Finally, we obtain the recursion relation

	
�

f�m�,��g�m�,��

= exp�− ��m� + h� + ��m� + h�
kBT

�	
�

f�m� + 1,��

�g�m� + 1,�� . �16�

We chose now m�=−k and m�=k, and iterate the recur-
sion relation M �2k times, obtaining

	
�

f�− k,��g�+ k,��

= exp� 1

kBT� 	
m�=k

k+M

��m� + h� − 	
m�=−k

M−k

��m� + h���
� 	

�

f�M − k + 1,��g�M + k + 1,�� . �17�

We now place the APB between layers k and −k and
choose a large enough value for k such that the layer con-
figurations approach the asymptotic boundary values 
i.e.,
p�+k ,��� pII��� and p�−k ,��� pI����. We observe that, by
their definition, the summation limits are such that �M +k�

k and �M −k�
k, i.e., the summation on the left-hand side
of Eq. �17� is performed exclusively well inside domain II
�i.e., in the bulk crystal�, while the summation on the right-
hand side of Eq. �17� is performed across the interface. Tak-
ing the limits for large M and k, the terms which depend on
the probabilities reduce, therefore, to

lim
M
2k→�

	
�

f�− k,��g�+ k,�� = 	
�


pI���pII����1/2,

�18�

and

lim
M
2k→�

	
�

f�M − k + 1,��g�M + k + 1,��

= 	
�


pII���pII����1/2

� 1. �19�

In deducing Eq. �19�, use was made of the translational in-
variance of the bulk crystal to set ��m ,��=0. Considering
now the terms which depend on the Lagrange multipliers, we
observe that, by definition, ��P+h�=��0��∀P�k�, where ��0�

is the free energy per layer of the bulk crystal; therefore, we
can rewrite the term inside the square brackets as

	
m�=k

k+M

��m� + h� − 	
m�=−k

M−k

��m� + h� = 	
m�=−k

M−k


��0� − ��m� + h�� ,

�20�

and finally, taking the limits for k→� and remembering that
M 
2k �i.e., −k→−� and M −k→ +��

	
m�=−�

+�

��0� − ��m� + h� = − �F − F�0�� , �21�

where F�0� represents the free energy of the defect-free crys-
tal. From the definition of the defect’s surface tension, how-
ever, we have

��A � F − F�0�. �22�

Substituting Eqs. �18�–�22� into Eq. �17�, we obtain Eq.
�1�, which proves the SP-CVM fundamental relation.

B. Implementation of the SP-CVM layer formulation

The IT cluster partitions the basic bcc lattice into four
sublattices, labeled �, �, �, and �, respectively �see Fig. 1�.
The occupancies of these sublattices by the n different spe-
cies of the system define the ordered states in alloy
superlattices9 and in ferro- or antiferromagnetic systems.26 A
cluster configuration is defined by the set �i , j ,k , l�, which
corresponds to species i sitting on lattice position �, species
j sitting on lattice position �, and so on.40
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We define the tetrahedron cluster densities �i,j,k,l
���� by the

relation

�i,j,k,l
���� =

Ni,j,k,l
����

N���� , �23�

where Ni,j,k,l
���� and N���� correspond, respectively, to the num-

ber of tetrahedron clusters with configuration �i , j ,k , l� and
the total number of clusters in the system. In the thermody-
namic limit �N����→�� the set ��i,j,k,l

����� corresponds to a dis-
crete probability distribution, and, for simplicity’s sake, these
variables will be denominated “tetrahedron cluster probabili-
ties” from now on.

Subcluster probabilities may be defined similarly, but
these variables are linearly dependent on the tetrahedron
cluster probabilities by the so-called “reduction relations”.14

As an example of a reduction relation, the ��� triangle prob-
ability is given by

�ijl
��� = 	

k�=1

n

�ijk�l
����. �24�

As Inden and Pitsch demonstrated,31 the independent vari-
ables in a CVM calculation can be chosen as corresponding
to the tetrahedron cluster probabilities due to this linear de-
pendence.

Using the definition of the IT cluster and of its subclus-
ters, Eq. �1� may be rewritten as

exp�− A��

kBT
� = 	

ijkl

�ijkl���ijkl
������
pI���ijkl

������pII���ijkl
�������1/2,

�25�

where ��ijkl
����� refers to the local probability distribution of IT

clusters at the interface �i.e., at layer m in the notation of Sec.
II A� and �ijkl is a weight factor for configuration �i , j ,k , l�,
defined by the identity

����ijkl
������ � �

ijkl

�ijkl, �26�

with � representing the number of configurations of the
layer compatible with the probability distribution ��ijkl

�����.

Factor �ijkl may be expressed in terms of ��ijkl
����� using

the relation between � and the layer configurational entropy,
S�

exp�S�

kB
� =

�nn pair�N
4

�point�N
2 �IT�N

2 = � . �27�

In the previous expression, ���N represents a short notation
for the product of the factorials of the number of clusters � in
a bcc system of N lattice points

���N � �
�r�

Nr
� ! � �

�r�
�N�r

�� ! , �28�

where the symbol “�r�” represents, schematically, the set of
configurations of cluster �. The expression for S� may be
derived by different procedures, e.g., using the correlation
correction function �CCF� method, recently introduced by
one of the present authors �see the Appendix �.32

Finally, the expression for �ijkl is obtained by grouping
the product terms which correspond to the same set of indi-
ces in Eq. �27� and then comparing with Eq. �26�.

The expressions of pI and pII are written in terms of the
tetrahedron cluster probabilities in a similar way, using the
superposition approximation11,17,19,33

pI���ijkl
������ = �

i

��̄i
�,I�N�i

�/2�
j

��̄ j
�,I�N�j

�/2�
k

��̄k
�,I�N�k

�/2

��
l

��̄l
�,I�N�l

�/2�
ijkl

��̄ijkl
����,I�2N�ijkl

�����
ik

��̄��,I�−N�ik
��

� �
jk

��̄ jk
��,I�−N�jk

���
il

��̄il
��,I�−N�il

���
jl

��̄ jl
��,I�−N�jl

��
,

�29�

where ��̄ijkl
����,I� represents the tetrahedron probability distri-

bution corresponding to the equilibrium state of a defect-free
bcc crystal �i.e., of the bulk configuration� which is equiva-
lent to domain I �the same for its counterpart belonging to
domain II, ��̄ijkl

����,II��. The corresponding subcluster prob-
abilities are obtained from ��̄ijkl

����,I� by the use of the reduc-
tion relations, already introduced.

With the definition of �ijkl, pI and pII, Eq. �25� may now
be rewritten as

��uvw��001�A

NkBT
= 2	

ijkl

�ijkl
���� ln �ijkl

���� +
1

2	
i

�i
� ln �i

� +
1

2	
j

� j
� ln � j

� +
1

2	
k

�k
� ln �k

� +
1

2	
l

�l
� ln �l

� − 	
ik

�ik
�� ln �ik

��

− 	
jk

� jk
�� ln � jk

�� − 	
il

�il
�� ln �il

�� − 	
jl

� jl
�� ln � jl

�� − 2	
ijkl

�ijkl
���� ln �̌ijkl

���� −
1

2	
i

�i
� ln �̌i

� −
1

2	
j

� j
� ln �̌ j

�

−
1

2	
k

�k
� ln �̌k

� −
1

2	
l

�l
� ln �̌l

� + 	
jk

� jk
�� ln �̌ jk

�� + 	
ik

�ik
�� ln �̌ik

��

+ 	
il

�il
�� ln �̌il

�� + 	
jl

� jl
�� ln �̌ jl

�� +
�

kBT�1 − 	
ijkl

�ijkl
����� , �30�
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where � is a new Lagrange multiplier introduced to take into
account the constraint of normalization of the tetrahedron
cluster probabilities in the layer, and �̌m

� ���̄r
�,I�̄r

�,II�1/2 is a
short notation for the square root of product of the bulk
probability for configuration “r” of cluster � in domains I
and II. Their particular expressions depend upon the choice
of the defect’s APB vector ��uvw��.

In the case of an a0
A2�100� �001� APB, for example, the

sublattices at both domains are related such that an � sublat-
tice at domain �I� corresponds to a � sublattice in domain II,
as well as a � sublattice at domain �I� corresponds to a �
sublattice in domain II, and vice versa �schematically written
as �↔� and �↔��. This leads to

�̌i�
� = �̌i�

� = ��i�
�

�i�
� �1/2, �31a�

�̌i�
� = �̌i�

� = ��i�
�

�i�
� �1/2, �31b�

�̌i�j�
�� = �̌i�j�

�� = ��i�j�
��

�i�j�
�� �1/2, �31c�

�̌i�j�
�� = �̌i�j�

�� = ��i�j�
��

�i�j�
�� �1/2, �31d�

�̌i�j�k�l�
���� = ��i�j�k�l�

����
� j�i�l�k�

���� �1/2. �31e�

For the �uvw�=a0
A2 /2�111� case, on the other hand, the

correspondence of sublattices at both domains can be sche-
matically written as �→�→�→�→�, leading to:

�̌i�
� = ��i�

�
�i�

� �1/2, �32a�

�̌ j�
� = �� j�

�
� j�

� �1/2, �32b�

�̌k�
� = ��k�

�
�k�

� �1/2, �32c�

�̌l�
� = ��l�

�
�l�

� �1/2, �32d�

�̌i�k�
�� = ��i�k�

��
�k�i�

�� �1/2, �32e�

�̌ j�k�
�� = �� j�k�

��
�k�j�

�� �1/2, �32f�

�̌i�l�
�� = ��i�l�

��
�l�i�

�� �1/2, �32g�

�̌ j�l�
�� = �� j�l�

��
�l�j�

�� �1/2, �32h�

�̌i�j�k�l�
���� = ��i�j�k�l�

����
�l�k�i�j�

���� �1/2. �32i�

Minimising Eq. �30� with respect to �ijkl
����, one obtains

A

NkBT

���uvw��001�

��ijkl
���� � exp
 �

2kBT
� + 2 ln��ijkl

�����

+
1

2
ln��i

�� j
��k

��l
�� − ln��ik

��� jk
���il

��� jl
���

− 2 ln��̌ijkl
����� −

1

2
ln��̌i

��̌ j
��̌k

��̌l
��

+ ln��̌ik
���̌ jk

���̌il
���̌ jl

���

= 0. �33�

C. Application of the NIM to the SP-CVM “layer”
formulation

We introduce the auxiliary variables �i,j,k,l
����

�ijkl
���� = �̌ijkl

���� ��̌i
��̌ j

��̌k
��̌l

��1/4

��̌ik
���̌ jk

���̌il
���̌ jl

���1/2

��ik
��� jk

���il
��� jl

���1/2

��i
�� j

��k
��l

��1/4 .

�34�

Before starting the first iteration of the algorithm, the ini-
tial value of �ijkl

���� is chosen by setting

�ijkl
���� � �̌ijkl

����. �35�

After the first iteration, the Lagrange multiplier and a new
set of probabilities are calculated using the normalization
constraint

� = kBT ln� 	
i,j,k,l

�i,j,k,l
����� , �36a�

�i,j,k,l
���� =

�����

	
i,j,k,l

�i,j,k,l
����

. �36b�

The subcluster probabilities are then calculated from this
new probability set using the reduction relations and substi-
tuted into Eq. �34�.

With the repeated application of the algorithm, the set
��i,j,k,l

����� converges to a fixed point in the tetrahedron prob-
ability space, which corresponds to a minimum of the sur-
face tension. After the minimum has been found, the surface
tension can be easily obtained through the Lagrange multi-
plier � as

��uvw��001�A = � . �37�

III. APPLICATION TO THE bcc FE-AL SYSTEM

The CVM formalism used in the present work for the bulk
calculations in the bcc Fe-Al system using the IT cluster
approximation has been throughly outlined in several previ-
ous publications by one of the present authors,23,24,34,35 and
shall not be reproduced here. For the sake of completeness
only the main aspects of the Bulk calculation will be briefly
described.

The internal energy �U�0�� of a bcc lattice with N�0� sites41

�containing N����=6N�0� irregular tetrahedra� is written as23

U�0� = 6N�0� 	
i,j,k,l=Fe,Al

�ijkl
�����̄ijkl

����. �38�

In this expression, �ijkl
���� represents the eigenenergy42 as-

sociated with this configuration.
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It has to be reminded that the eigenenergy matrix ��ijkl
�����

is highly degenerate due to crystal symmetry constraints.
Both configurations FeAlFeAl and AlFeAlFe, for example,
represent a B32 FeAl stoichiometric compound, differing
only by a translation of the origin of the lattice by lattice
vector a0 /2
111�. Since the energy of the compound cannot
depend on the choice of the origin for the reference lattice, it
follows that �AlFeAlFe

���� =�FeAlFeAl
���� . The same is true for the two

remaining degenerate configurations �FeAlAlFe and
AlFeFeAl�.

Set ��ijkl
����� �including the two reference values,

�FeFeFeFe
���� =�AlAlAlAl

���� =0� contains all information needed for
the description of the system. It is a common practice in the
literature, however, to further decompose the configuration
eigenenergies into pair interactions �nearest and next-nearest
neighbors�, completing the set with higher-order cluster in-
teractions. For the sake of compatibility with the literature
the same criterion has been adopted in the present work,
using

�ijkl
���� =

1

6
�wik

�1� + wil
�1� + wjk

�1� + wjl
�1�� +

1

4
�wij

�2� + wkl
�2�� + w̃ijkl.

�39�

In Eq. �39�, w
i�j�
�1� and w

i�j�
�2� represent, respectively, nearest and

next-nearest pair interactions, with fractions 1
6 and 1

4 correct-
ing for the right number of pair clusters in the set of 6N
tetrahedra. Term w̃ijkl represents an “excess” interaction, con-
taining the contributions to �ijkl

���� which cannot be ascribed
to pair interactions. Following Schön and Inden,23 the set
�ijkl

���� will be rewritten in terms of interactions wFeAl
�1� , wFeAl

�2� ,
w̃FeAlFeAl, and w̃FeAlAlAl. This choice of parameters is arbitrary
and other ways of decomposing �ijkl

���� are possible �see for
example Ref. 36�, but this is irrelevant for the present dis-
cussion and for the thermodynamic description of the sys-
tem.

The entropy, S�0�, of the bulk system will be given by35

S�0� = − N�0�kB�6	
ijkl

�̄ijkl
���� ln �̄ijkl

���� − 3	
ijk

��̄ijk
��� ln �̄ijk

���

+ �̄ijk
��� ln �̄ijk

��� + �̄ijk
��� ln �̄ijk

��� + �̄ijk
��� ln �̄ijk

����

+
3

2	
ij

��̄ij
�� ln �̄ij

�� + �̄ij
�� ln �̄ij

��� + 	
ij

��̄ij
�� ln �̄ij

��

+ �̄ij
�� ln �̄ij

�� + �̄ij
�� ln �̄ij

�� + �̄ij
�� ln �̄ij

���

−
1

4	
i

��̄i
� ln �̄i

� + �̄i
� ln �̄i

� + �̄i
� ln �̄i

� + �̄i
� ln �̄i

��� .

�40�

With the help of Eqs. �38� and �40�, we write the CVM free
energy functional, Z*

Z*�T,�i
*� = F�0� − 	

i=Fe,Al
�i

*xi = U�0� − TS�0� +

− 	
i,j,k,l=Fe,Al

��i
* + � j

* + �k
* + �l

*

4
��̄i,j,k,l

����,

�41�

where �i
* and xi represent the chemical potential in the “ba-

ricentric” reference state �see Eleno and Schön35� and the
molar fraction of component i in the alloy. The functional Z*

is then minimized with respect to �̄i,j,k,l
���� �e.g., using the NIM

algorithm, already introduced� for given values of T and �i
*.

The set ��̄i,j,k,l
����� which minimizes the functional corresponds

to the probability distribution of the equilibrium bulk con-
figuration, which is then used as a constant in Eqs. �31� and
�32� and substituted into the minimization algorithm of the
SP-CVM method 
Eq. �35��.

Table I presents the interaction parameters used in the
present calculation. These parameters have been derived in a
previous work by one of the authors23 by fitting experimental
data on the order-disorder equilibria obtained from the litera-
ture �see Inden and Pepperhof,37 and references therein�.

The “thermal” APB energy calculations are presented here
for two isotherms: T=1000 K �Fig. 3�, since at this tempera-
ture the agreement between calculated values of aluminum
activity and those obtained in an independent experimental
investigation27 is optimal �see Schön and Inden24�; and T
=623 K �Fig. 4�, which corresponds to the estimated tem-
perature for vacancy “freezing” in Fe-Al alloys.38 In both
cases the investigated composition range is limited to alloys
with xAl�0.5, since the bcc-based superlattices are no longer

TABLE I. Interaction parameters �in kB K=8.3145 J /mol
=8.617�10−5 eV/atom units� used for the thermodynamic descrip-
tion of the bcc Fe-Al system �Ref. 23�.

wFeAl
�1� wFeAl

�2� w̃FeAlFeAl w̃FeAlAlAl

−840 −370 +35.1 0.0

FIG. 3. “Thermal” APB energy for the a0
A2 /2�111� �001� defect

at the T=1000 K, as calculated by the SP-CVM “layer”
formulation.
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stable for Al-richer alloys. Both isotherms have also been
used in previous “mechanical” APB energy calculations us-
ing BC-CVM by the present authors.4,9

IV. DISCUSSION

The proof of Eq. �1�, here deduced for the case of �001�
APBs �with a layer composed of two atom planes� is, in fact,
valid for layers composed by any number of planes. To prove
this, we observe that the critical point in the deduction,
which defines the form of Eq. �1�, is the expression for the
system’s entropy in the layer pair approximation 
Eq. �6��.
This expression is deduced based on its topological equiva-
lence with the unidimensional �1D� lattice in the pair ap-
proximation, and this equivalence does not depend on the
number of atom planes composing the layer. An extension to
a cluster approximation beyond the layer pair in 1D lattices
is not necessary since the obtained entropy expression14 is
identical to the one derived from the exact solution of the
Ising model.39

The extension of the formalism also results in an unex-
pected advantage over the previous formulations of the SP-
CVM method. These formulations, when applied to 3D lat-
tices, were always based on the subdivision of the system
into atom planes, i.e., 2D clusters. Correlations of a 3D lat-
tice cannot be correctly described by a 2D cluster and this
leads to the introduction of additional constraint terms in the
free-energy expression to take into account the correlations
between two neighboring planes �the so-called “out-of-
plane” correlations�. The Lagrange multipliers corresponding
to these constraint terms have to be determined for each it-
eration of the NIM. This determination is done by a a sepa-
rate NIM-based self-consistent algorithm. This leads to the
introduction of the so-called minor iterations of the NIM
�see, for example, Kikuchi19 and Cenedese and Kikuchi11�.
The layers, being formed by two or more atom planes, are
necessarily 3D clusters and the interplanar correlations are
trivially taken care of by the constraint term defined in Eq.
�8�. This produces a more compact �and consequently faster�
algorithm. This is a property of the layer formalism, since the

layer can always be defined as a large enough set of atom
planes �see above� such that all relevant out-of-plane corre-
lations �defined by the basic cluster chosen for the imple-
mentation� are contained in the intersection of two neighbor-
ing layers.

Figure 3 shows the variation of the thermal APB energy
for the a0

A2 /2�100� �001� APB at the T=1000 K isotherm. At
this temperature and composition range only the B2 super-
lattice and the disordered bcc phases are stable. In both struc-
tures the � sublattices are crystallographically equivalent to
the � ones �as well as the � sublattices being equivalent to
the � ones�; thus, the a0

A2�100� vector does not produce an
APB. Comparing with the previous results on “mechanical”
APBs,4,9 one observes that in both cases the APB energy
presents a maximum at the ideal stoichiometric ratio of the
B2 FeAl phase �xAl=0.5�, but that its decrease, when ap-
proaching the second-order B2/A2 boundary, is much more
pronounced in the case of the thermal APBs. Mechanical
APBs are able to exist even in the disordered lattice 
in the
form of “diffuse” APBs �Refs. 1,8��, since the constrained
equilibrium imposes a discontinuity in the configuration gra-
dient at the interface even when the distinction between the
sublattices vanishes. This leads to nonzero values for the
mechanical APB energy at the second-order boundary, and
this variable tends toward zero only in the limit of infinite
dilution.4,9 In thermal APBs, on the contrary, local equilib-
rium is attained at the interface and the configuration gradi-
ent must be, therefore, continuous. The thermal APB energy
must thus tend towards zero at the second-order boundary,
where the distinction between the domains vanishes 
this can
be easily proven by setting pI���= pII��� in Eq. �1��.

Figure 4 shows the variation of the APB energies for de-
fects with APB vectors a0

A2 /2�111� and aA2�100� at the 623
K isotherm. As expected, the APB energy of the aA2�100�
defect is positive inside the stability field of the D03 phase,
vanishing at the D03/B2 second-order boundary as the alu-
minum content of the alloy is increased. This defect presents
a maximum point at the ideal stoichiometric ratio of the D03
phase �xAl=0.25� and presents a nonzero value at the border
of the two-phase field for the A2+D03 heterogeneous equi-
librium, in agreement with the first-order character of this
transformation. The composition dependence of the APB en-
ergy for the a0

A2 /2�111� defect is more complex when com-
pared with the 1000 K isotherm: the maximum at the ideal
stoichiometric ratio of the B2 phase is more pronounced and
a contribution of the ordering in the D03 field �which is due
to an increase in the number of unlike bonds in the ��, i.e.,
next-nearest neighbor pairs� counteracts the decrease ten-
dency due to loss of unlike bonds between nearest-neighbor
pairs, leading to an almost constant value for the APB energy
in the composition range 0.27�xAl�0.36.

V. CONCLUSIONS

The scalar product-cluster variation method for the calcu-
lations of thermal antiphase boundary energies has been ap-
plied to the case of �001� APBs in body-centered cubic lat-
tices in two different cases, corresponding to APB vectors

FIG. 4. “Thermal” APB energy for the a0
A2�100� �001� and

a0
A2 /2�111� �001� defects at the T=623 K, as calculated by the SP-

CVM “layer” formulation.
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a0
A2�100� and a0

A2 /2�111�, respectively. This required the in-
troduction of the concept of “layer”and the corresponding
extension of the proof for the SP-CVM to address this case.
As a consequence, two major conclusions can be drawn from
the structure of the proof:
The present proof is valid for layers containing an arbitrary
number of atom planes, and
The new formalism does not require additional minimization
steps �minor iterations� to obtain the defect’s surface tension.
The formalism has been applied to the case of nonmagnetic
bcc Fe-Al alloys at two isotherms, 1000 and 623 K. The
variation of the thermal APB surface tensions with composi-
tion in this system shows that, unlike the case of the me-
chanical APBs, the thermal APBs vanish at second-order
boundaries.
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APPENDIX: DERIVATION OF THE LAYER
CONFIGURATIONAL ENTROPY

Figure 5 presents a projection of the single �001� layer

along lattice vector 
01̄0�. We define here the multiplicity of

a subcluster �, q�, as the number of subclusters sharing a
common lattice point of the bcc lattice. The multiplicities of
the IT cluster and of its subclusters �triangle, next-nearest
neighbor pair, nearest-neighbor pair, and point� are obtained
by inspection of Fig. 5 and are presented in Table II.

Using these multiplicities, the configurational entropy of
the layer, S�, may be expressed as32

exp�S�

kB
� = �Wpoint�2�Gnn pair�4�Gnnn pair�4�Gtriangle�8�GIT�2,

�A1�

where Wpoint represents the number of configurations of a
disjoint set of N points

Wpoint =
N!

�point�N
�

N!

���N
1/4���N

1/4���N
1/4���N

1/4 . �A2�

In the expression above, use was made of the simplified
notation for products of factorials of numbers of clusters,
introduced in Sec. II 
Eq. �28��.

Variables G� in Eq. �A1� represent the correlation correc-
tion functions �CCF� for subcluster �, previously introduced
by one of the present authors.32 The CCFs for the subclusters
of the tetrahedron are reproduced below

GnnPair =
�point�N

2

N ! �nn pair�N
, �A3a�

GnnnPair =
�point�N

2

N ! �nnn pair�N
, �A3b�

GTriangle =
N ! �nn pair�N

2 �nnn pair�N

�point�N
3 �triangle�N

, �A3c�

GIT =
�point�N

4 �triangle�N
4

N ! �nn pair�N
4 �nnn pair�N

2 �IT�N

. �A3d�

Substituting Eqs. �A2� and �A3a�–�A3d� into Eq. �A1�,
one obtains Eq. �27�.

FIG. 5. Projection of a �001� layer of a bcc crystal along lattice

direction 
01̄0�. Large circles represent atoms located at cube ver-
tices and small circles to atoms located at cube centers �or vice
versa�. Two adjacent IT clusters are represented in the figure, where
thin lines correspond to nearest neighbors �nn� and thick lines to
next-nearest neighbors �nnn�. Symbol “+” corresponds to a nnn
bond along lattice direction a0
010� and “�” to a nnn bond along

lattice direction a0
01̄0� �i.e., both are perpendicular to the plane of
the figure�.

TABLE II. Multiplicities of the basic cluster and of its subclus-
ters in a �001� layer of a bcc crystal containing N atoms.

Subcluster ��� q�N

Point 2N

nn Pair 4N

nnn Pair 4N

Triangle 8N

IT 2N
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