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We introduce a Josephson junction circuit for which quantum operations are realized by low-bandwidth,
nearly adiabatic magnetic-flux pulses. Coupling to the fundamental mode of a superconducting transmission
line permits a stabilization of the rotation angle of the quantum operation against flux noise. A complete
scheme for one-qubit rotations, and high-visibility Ramsey-fringe oscillations, is given. We show that high
visibility depends on passing through a portal in the space of applied fluxes, where the width of the portal is
proportional to the ramp-up rate of the flux pulse.
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Among the many candidates for the physical implemen-
tation of a quantum computer, Josephson junction circuits
have always been among the most promising. The quantum
behavior of these circuits is readily tailorable by the choice
of electrical topology and circuit parameters: There are vari-
ous regions of this parameter space in which a coherent,
controllable two-level quantum system, suitable for the real-
ization of a qubit, is possible. This same tailorability must
also be exploited to avoid strong coupling to the environment
and other decohering effects. The complexity of this
optimization1 is such that many distinct Josephson circuit
qubits are under active study, with successful single-qubit
control and two-qubit coupling achieved in a number of
cases.2,3 But further improvements in qubit performance are
unquestionably needed and continue to be sought. Recently,
another important degree of freedom has been added to this
search: strong, coherent coupling between a Josephson junc-
tion qubit and a quantized harmonic oscillator, realized by a
superconducting transmission line, has been achieved.4,5 This
exciting discovery raises the question of how best such a
coupled system may be exploited for quantum information
processing.

In this Brief Report, we report a class of Josephson flux
qubits that enter regions of the design space to achieve su-
perior qubit performance. Here are its features: First, our
qubit can be placed in a “frozen” state in which the barrier is
very high, which makes resetting and measuring the qubit
very reliable. Second, and more important, all qubit opera-
tions are realized by low-bandwidth, nearly adiabatic opera-
tions. Since the amount of environmental noise seen by the
qubit is proportional to this bandwidth, we gain significantly
by requiring only an approximately 1 GHz control band-
width rather than the many gigahertz that are necessary in
other control schemes, which require the transmission of mi-
crowave radiation to the qubit. Finally, within our adiabatic
operation scheme, the presence of a coupled quantum har-
monic oscillator plays a specific role in the qubit operation:
The qubit rotation angle, which is equal to the dynamical
phase difference accumulated between ground and excited
state energy surfaces, is stabilized by the adiabatic conver-
sion of the qubit states to the ground and excited states of the
quantum oscillator.

The resulting qubit with its associated control transmis-
sion lines is complex, but the advantages gained by our op-

eration strategy leads to a qubit for which a scale up to larger
systems will eventually be more feasible. Our experimental
realization of this qubit system is shown in Fig. 1. The de-
vice consists of three Al/Al2O3/Al Josephson junctions
grown using an in-house shadow mask process, arranged in a
gradiometer pattern. This design is a modification of a qubit
previously reported.6 The body of the gradiometer is alumi-
num and consists of three loops. The lower loop is threaded
by external flux �, the small left loop is threaded by the flux
�C; the upper loop, the “pickup” loop, is inductively coupled
to a high-Q niobium superconducting microstrip “pickup”
transmission line. There are no wires attached to the qubit.
Readout is done using a dc superconducting quantum inter-
ference device �SQUID� inductively coupled to the pickup
transmission line. The qubit is operated at 30 mK; however
the effective electrical temperature from the circuits that
drive the fluxes � and �C is about 1.3 K. These circuits are
not shown; however, these are coupled to the qubit with two
additional superconducting microstrip transmission lines.
The lines are shorted at the end that is not connected to the

FIG. 1. �a� Schematic layout of the qubit and the harmonic
oscillator equivalent of the transmission line. �b� Picture of the qu-
bit. The qubit is 500 �m long and each junction is 250�250 nm2

in size. On the upper loop the pickup transmission line is shown. �c�
Mask art of the three shadow type Josephson junctions �blow up of
dashed box in �b��.
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room temperature electronics. The length of the lines be-
tween the qubit and the shorted ends are such that at the
desired frequency of operation of the qubit, 1.54 GHz, there
will be a current node at the location of the qubit. Hence,
when we operate the qubit at the degenerate point, which we
can tune to have an operating frequency of 1.54 GHz, the
contributions from both the low-frequency noise and the
noise at the operating frequency are minimized.

Using our network graph theory,6 we have obtained a
comprehensive quantum mechanical model for this qubit.
The system Hamiltonian is equivalent to that of a massive
particle in a four-dimensional potential. The particle mass is
set by the system capacitances; the four degrees of freedom
are the three Josephson junction phases plus the phase �the
time integral of a voltage� across the capacitance of the trans-
mission line �LC� resonance. Other environmental degrees of
freedom, e.g., those associated with the control transmission
lines, are modeled as in Ref. 6 using an oscillator bath. We
calculate that for our device the intrinsic quantum lifetimes
associated with this bath T2 and T1 are much greater than
1 �s, more than long enough for our adiabatic control
scheme to successfully execute quantum operations. We will
describe below the control parameters used in this calcula-
tion: we assume operation near the degenerate point in flux,
and T=100 mK. In practice the coherence of our qubit is
further decreased by extrinsic noise in the control electron-
ics, an example of which will be analyzed below.

While the resulting potential function is complex, there is
a region of two-dimensional parameter space of applied
fluxes � and �C �see Fig. 1� in which the potential has a
simple, double-well structure. The lowest energy states of
this double well form the qubit; the qubit is also linearly
coupled to the transmission line harmonic oscillator, as we
will describe shortly.

In the vicinity of these double-well minima, the three de-
grees of freedom of the qubit can be linearly transformed
into two “fast” degrees of freedom transverse to the double-
well axis and one slow longitudinal phase which we will call
�. Using a Born-Oppenheimer approximation7 for the fast
degrees of freedom, we have numerically obtained an effec-
tive one-dimensional double-well potential VQ��� for the qu-
bit. While we use the full numerical form in our calculations,
it is useful for describing features of this potential to repre-
sent it using the following simple analytic anharmonic form:8

VQ��,t� = − h2�t��2 + h4�4 + a�t�� . �1�

We indicate here an explicit dependence on time t, as our
qubit control technique involves the pulsing of � and �C in
time. In our devices, to good approximation, � controls the
double-well asymmetry coefficient a and �C varies the
double-well barrier height h2. We find that h2 can be either
positive or negative; that is, the double-well structure can be
transformed into a single well.

Equation �1� is only one part of the description of the
system; coupling to the harmonic-oscillator phase � must
also be included. To good approximation, the full Hamil-
tonian of the system can be written

H =
e2Q2

2CQ
+ VQ��,t� +

e2q2

2CT
+ ��0

2�
�2�2

LT
+ ��0

2�
�2 M � · �

LQLT
.

�2�

Here the first two terms are the qubit Hamiltonian, the next
two terms are the harmonic oscillator Hamiltonian, and the
last term is the linear coupling between the two. Q and q, the
qubit and oscillator charge operators, act as momentum op-
erators in the Schrödinger equation: �� ,q�= �� ,Q�= i. CQ is
the capacitance associated with the Josephson junctions; in
our circuit all three have CQ�50fF �there is substantial ex-
cess capacitance in parallel with the intrinsic capacitance of
the oxide junctions�. CT�1fF and LT�10 nH are the
effective transmission line capacitance and inductance,
LQ�640pH is an effective qubit inductance �actually a com-
plicated function of the full inductance matrix of the qubit
circuit6�, M �50pH is the mutual inductance between the
qubit and the transmission line, and �0=h /2e is the super-
conducting flux quantum. In other studies4 the physics of this
situation has been described using a Jaynes-Cummings
Hamiltonian; we find that retaining the first-quantized form
of Eq. �2� has proved helpful in analyzing the details of our
control scheme.

In our device, the barrier height h2 in the model potential
Eq. �1�, at low values of the control flux �C, can easily be
made so high that the quantum tunneling rate � can be made
very small �� /� being many seconds at least�. In this regime
the qubit state is essentially frozen, with two degenerate
eigenstates �L	 and �R	 for “left” and “right” well, see Fig. 3,
point A. The device is hysteretic in this regime, so it can be
stably set in either �L	 or �R	 by a suitable quasistatic sweep-
ing of flux �. In addition, the state is easily read out by a
sensing SQUID inductively coupled to the transmission line
of Fig. 1.

So, for �C=�=0, corresponding to a ,��0, the qubit is
in a “resting condition” in which its dynamics are frozen.
Starting from this resting condition, conceptually there is a
simple prescription for adiabatically applying single-qubit
quantum gates to the qubit. A “Z rotation” �of the Bloch
sphere defined by the �L ,R	 basis� is simply obtained by
adiabatically varying a in Eq. �1� �by pulsing the main-loop
flux �� with � held equal to zero. In the adiabatic limit, the
Z rotation angle is given by 	=2
dt
�t� /�, where 2

���L�VQ�L	− �R�VQ�R	� is the difference in depths of the two
wells of VQ.

The “X rotation” scheme will require more discussion, as
it involves a stabilizing effect due to the harmonic oscillator
degree of freedom in Eq. �2�. If, starting from the resting
state, the control flux �C is pulsed, then the 
 defined in the
last paragraph will remain zero and h2 will be varied. Since
ideally the double-well potential Eq. �1� is symmetric
throughout this pulse, the lowest-lying eigenstates of
this potential will always be symmetric ��S	� and antisym-
metric ��A	� with respect to the qubit coordinate �. In the
resting state �S ,A	= ��L	± �R	� /2; these basis states lie at
right angles to the �L ,R	 states on the Bloch sphere, so that
adiabatic evolution along this coordinate and back results
in an X rotation by angle �=
dt��t� /�, where ��t�
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=E1��C�t��−E0��C�t��, and E0,1 are the first two instanta-
neous eigenenergies �see Fig. 2� of the qubit Hamiltonian Eq.
�2�.

In Fig. 3 we see that the first two eigenfunctions in the
potential of Eq. �2� change form in going from point A to
point B, from �L ,R	 to �S ,A	. This rapid change is actually
desirable for the operation of the qubit; numerical integra-
tions of the time-dependent Schrödinger equation show that
we obtain high-fidelity quantum operations if �C�t� is pulsed
with an overall rise time of 15 ns, with appropriate pulse
shaping �see the discussion of visibility-limiting mechanisms
below�.

Without the coupled harmonic oscillator, this X-rotation
scheme suffers from the problem that �, and thus �, is ex-
ponentially sensitive to the value of �C. This exponential
sensitivity to the barrier height is evident in Fig. 2 for values
of �C near B. However, the presence of the oscillator degree
of freedom changes several features of the spectrum in a
dramatic way. The essentially horizontal lines in Fig. 2 are
the equally spaced oscillator energy levels, which are insen-
sitive to the flux applied to the qubit. But because of the
mutual inductance M in the last term of Eq. �2�, there is an
avoided crossing between the oscillator and qubit eigenlev-
els. For the parameters of the device in Fig. 1, the “vacuum
Rabi splitting” 2g �in the notation of the Jaynes-Cummings
model, see Ref. 4� indicated in Fig. 2 is about 220 MHz. For
the 15 ns ramp-up time mentioned above, the time evolution
remains accurately adiabatic through this anticrossing as
well. Thus, after ramping up �C to point C in Fig. 2, the
system remains in a superposition of just two states, the
ground state, and the first excited state which now has almost

entirely the character of a single quantum of excitation in the
harmonic oscillator. � in this regime is almost completely
independent of �C, meaning that the execution of the X ro-
tation in this regime is almost entirely insensitive to noise in
�C.

While not of direct relevance to small-angle X rotations
that will be desired for quantum gates, this insensitivity is
very valuable for performing the analog of a Ramsey-fringe
experiment to characterize this qubit.3 The protocol for this
experiment is as follows: First, prepare the system in the
state �L	, which in the ideal case �
=0� is an equal superpo-
sition of the energy eigenstates �S	 and �A	. Second, ramp up
the control flux �C adiabatically, then hold it constant at a
value �hold past the anticrossing with the harmonic oscillator
state �i.e., to point C in Fig. 2�. After hold time T, ramp down
the control flux to the resting state, then measure the qubit in
the �L ,R	 basis. The measured L probability should
show Larmor oscillations of the form cos �TT, where
�T=1/CTLT

We believe that the inaccuracy in the setting of the resting
state, i.e., the inability to set 
 exactly equal to zero, is likely
to be the most important mechanism for reducing visibility in
our system. If the resting state is not exactly symmetric, then,
since � is exponentially small at point A, it is likely that �

. In this case �L	 is not an equal superposition of energy
eigenstates, but is an eigenstate itself, as Fig. 2 shows. Thus,
a completely adiabatic evolution will keep the system at all

FIG. 2. Instantaneous eigenvalues of H, Eq. �2�, as a function of
control flux �C, for main flux ��0. The exponentially rising tun-
nel splitting �, and the �C-independent oscillator frequency �T, are
indicated. At A, the “resting state,” the double-well barrier is very
high and the two lowest eigenstates are nearly degenerate; here the
resting state is not quite symmetric, with 
�15 MHz. For this non-
ideal case successful quantum operation requires that the system
pass through the “portal” as described in the text. At point B, be-
yond the portal, quantum tunneling dominates the dynamics and the
system is effectively symmetric. Beyond B the qubit comes into
resonance with the transmission line oscillator, with a splitting of
2g�220 MHz. At point C, the lowest lying states have purely har-
monic oscillator character.

FIG. 3. �Color� Color density plot of first three first energy
eigenstates of H at points A, B, and C of Fig. 2. � is the horizontal
axis, and � the vertical axis �see Eq. �2��. For A the first two eigen-
states, localized in the left and right wells, are not quite degenerate
because 
�0 �see Fig. 2�. In going from A to B, on account of
strong quantum tunneling, the first two eigenstates change rapidly
in character, becoming symmetric and antisymmetric combinations
of the well states. For both A and B, the third state has one quantum
of excitation of the harmonic oscillator. The states at C have purely
harmonic-oscillator character. In going from A to C, the steady
decrease of the well-well separation is evident.
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times in an instantaneous eigenstate, and no Larmor oscilla-
tions will take place — the visibility will be zero.

The resolution to this dilemma is that, for the realistic
case in which 
�0, the time evolution in the Ramsey ex-
periment we have discussed is at a crucial moment actually
nonadiabatic, in a way that permits the experiment to suc-
ceed as described. There is a “portal” in the 
-� parameter
space, which, if passed through at a finite rate, results in a
successful X rotation �Ramsey-fringe visibility near 100%�.
The idea is that since � rises exponentially, ��t�=�0et/�,
there is a brief interval of time during which ��t��
; this
sets the location of the portal in the parameter space. This is
the critical time because here the form of the eigenstates of H
changes quite rapidly from nearly �L ,R	 to very nearly �S ,A	,
as Fig. 3 shows. The evolution here will be nonadiabatic if

� /� is not too large. That is, −1�
� /��1 approximately
defines the width of the portal. If the time evolution passes
through the portal, then nearly half of the state amplitude is
transferred from the ground state to the excited state, result-
ing in essentially 100% visibility.

This picture has been confirmed in detail by numerical
simulations, and also emerges from an exact solution of
the two-state problem in which 
 is time indepen-
dent and � increases exponentially;9 then the exact
solution of the time-dependent Schrödinger equation is
proportional to c+�t��L	+ ic−�t��R	, where c±�t�=exp�t /2��
�J±1/2+i
�/���0� /� exp�t /���, and J��x� is a Bessel function.
With this exact solution the visibility for finite 
 can be cal-
culated to be sech2��
� /2��. Our numerical simulations con-
firm this dependence: Given the existing precision of pulsed

magnetic-flux control �a few ��0�, a nonzero 
 in the mega-
hertz range will typically be present. This implies that the
portal will typically be located near �C=0.35�0 as in Fig. 2.
We numerically find a Ramsey-fringe visibility in excess of
90% if �C�t� is initially ramped rapidly through the portal
�from A to B in 0.8 ns�, and then brought slowly up to its
final value �from B to C in 15 ns�. The necessary time de-
pendent flux control is demanding, but can be achieved in
our lab.

We believe that our qubit and its control schemes show
good promise for scalability to larger systems. The relatively
large size of the main loops �Fig. 1� means that establishing
strong inductive couplings between qubits is straightforward,
permitting fast two-qubit gates to be done. As we have al-
ready demonstrated, its large size also makes reliable, and
potentially fast, readout of the qubit state quite simple. The
strong coupling to a transmission line degree of freedom
permits X rotations to be done that are very insensitive to
flux noise, and, as other workers have recently shown, the
presence of a controllable harmonic-oscillator quantum also
offers possibilities for quantum computing architectures, in-
cluding easy motion of qubits and long-distance coupling of
stationary qubits. Our control schemes now considerably en-
rich this picture.
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