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Rigorous relations for Gutzwiller projected BCS states are derived. The obtained results do not depend on
the details of model systems, but solely on the wave functions. Based on the derived relations, physical
consequences are discussed for strongly correlated superconducting states such as high-TC cuprate super-
conductors.
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Right after the discovery of high-TC cuprate super-
conductors,1 Anderson has proposed a Gutzwiller projected
BCS wave function—a quantum many-body state incorpo-
rating strong on-site Coulomb repulsion—to describe the su-
perconducting state.2 Since then there have been extensive
studies in understanding the nature of this state and its
variants.3,4 In addition, several reports have shown that this
projected BCS wave function is indeed a good variational
ansatz state to describe the ground state of t-J-like models,5–8

which are believed to capture the low energy physics of the
cuprates.9 Although these projected BCS states were pro-
posed more than 15 years ago, very recently they have ac-
quired a revived interest.10–13 This is probably because recent
expensive numerical calculations based on the Gutzwiller
projected variational ansatz clearly indicate that many as-
pects of the physics of high-TC cuprate superconductors can
be understood within this framework.10

In this brief report some rigorous relations are derived for
the Gutzwiller projected BCS states. It is shown that, as a
consequence of the derived relations, the one-particle added
excitation spectrum tends to be more coherent than the one-
particle removed excitation spectrum does. It is further
shown numerically that this trend is still observed approxi-
mately for more involved Gutzwiller projected BCS states.
Possible experimental implications of the present results are
also discussed.

Here our general system consists of a single orbital per
unit cell on the two-dimensional �2D� square lattice with L
sites.14 The creation and annihilation operators of spin �
�=↑ , ↓ � particle at site i are denoted by ĉi�

† and ĉi�, respec-
tively. A Gutzwiller projected BCS state with N particles is
described by

��0
�N�� = P̂NP̂G�BCS� , �1�

where P̂N is the projection operator onto the fixed number N

of particles, P̂G=�i�1− n̂i↑n̂i↓� is the Gutzwiller projection
operator to restrict the Hilbert space with no double occu-
pancy on each site, and n̂i�= ĉi�

† ĉi�. �BCS�=�k,��̂k��0� is the
ground state of the BCS mean field Hamiltonian where

� �̂k↑

�̂−k↓
† � = �uk

* − vk
*

vk uk
�� ĉk↑

ĉ−k↓
† � �2�

are the standard Bogoliubov quasi-particle operators, ĉk�

=�ie
−ik·iĉi� /	L, �0� is the vacuum of particles, and the singlet

pairing is assumed.15 The nature of this state has been exten-
sively studied especially in the context of high-TC
cuprates.5–8,10

A one-particle added state with spin � and momentum k
is similarly defined by using �̂k�

†

��k�
�N+1�� = P̂N+1P̂G�̂k�

† �BCS� . �3�

This state was first proposed by Zhang et al.,3 followed by
several others.10,12,16 Hereafter the normalized wave func-
tions for the N- and �N+1�-particle states are denoted by
��0

�N�� and ��k�
�N+1��, respectively.

First it is useful to show that the following operator rela-
tion between ĉk� and ĉk�

† holds exactly

P̂Gĉk�ĉk�
† P̂G = ĉk�P̂Gĉk�

† +
1

L
N̂�̄P̂G. �4�

Here N̂�=�iĉi�
† ĉi� and �̄ stands for the opposite spin of �.

This is easily proved by using P̂Gĉi�
† P̂G= P̂Gĉi�

† .
Using Eq. �4�, it is readily shown that the momentum

distribution function n��k�= 
�0
�N��ĉk�

† ĉk���0
�N�� calculated for

the state ��0
�N�� is related to the state ��k�

�N+1�� through

n��k� = 1 −
N�̄

L
− �uk�2


�k�
�N+1���k�

�N+1��

�0

�N���0
�N��

, �5�

where N̂�P̂G= P̂GN̂� is used.
The quasi-particle weight for the one-particle added exci-

tation is defined by

Zk�
�+� = �
�k�

�N+1��ĉk�
† ��0

�N���2. �6�

Now we shall show that there exists a simple and exact re-
lation between Zk�

�+� and n��k�. To this end, it is important to
notice that since


�k�
�N+1��ĉk�

† ��0
�N�� = uk

*
�k�
�N+1���k�

�N+1�� , �7�

Zk�
�+� is simplified as

Zk�
�+� = �uk

2�

�k�

�N+1���k�
�N+1��


�0
�N���0

�N��
. �8�

From Eqs. �5� and �8�, we finally arrive at the desired rela-
tion,
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n��k� + Zk�
�+� = 1 −

N�̄

L
. �9�

It should be emphasized that to derive the above equation we
have not made either any approximations or any assumptions
except for the form of the wave functions for the N- and
�N+1�-particle states given by Eqs. �1� and �3�, respectively.

Equation �9� is also simply verified numerically on small
clusters using a Monte Carlo technique. Typical results are
presented in Fig. 1. As seen in Fig. 1 and for all other cases
studied, Eq. �9� is satisfied within the statistical errors.

In order to discuss a physical consequence of Eq. �9� on
the one-particle excitation spectrum, let us first derive a
simple same rule. The one-particle excitation spectra for re-
moving one particle �A�

PES�k ,��� and for adding one particle
�A�

IPES�k ,��� are defined respectively by

A�
PES�k,�� = −

1

�
Im ĉk�

† 1

� + �Ĥ − E0� + i0+
ĉk�� ,

A�
IPES�k,�� = −

1

�
Im ĉk�

1

� − �Ĥ − E0� + i0+
ĉk�

† � ,

where 
Ô� is the expectation value of Ô for the exact ground

state of the system described by Hamiltonian Ĥ with its ei-
genvalue E0. It is generally proved that for any model sys-
tems defined within the restricted Hilbert space with no
double occupancy on any sites by particles, such as the t-J
model, the 0th moment of the spectral function satisfies the
following sum rules:

�
−�

�

A�
PES�k,��d� = 
ĉk�

† ĉk�� �10�

�
−�

�

A�
total�k,��d� = 1 − N�̄/L , �11�

where A�
total�k ,��=A�

PES�k ,��+A�
IPES�k ,��. The latter equa-

tion is easily proved by using Eq. �4�. Equation �10� is a
rather standard sum rule, while Eq. �11� is due to the reduc-

tion of the Hilbert space by P̂G and it is indeed satisfied for,
e.g., the t-J model.18

Let us now discuss what physical consequences would be
expected. First we assume that there exists a system for

which the ground state and the low-lying excited states are
approximately described by the wave functions, Eqs. �1� and
�3�, introduced above. Then it follows immediately from
Eqs. �9�–�11� that

�
−�

�

A�
IPES�k,��d� = Zk�

�+�. �12�

This relation implies that the one-particle added excitation
spectrum is all coherent since only one state contributes to
A�

IPES�k ,��. It should be noted here that while several studies
have recently reached the similar conclusions,12,13 the argu-
ment presented here is more rigorous and transparent.

Next we shall discuss to what extent Eq. �9� holds and
therefore Eq. �12� remains approximately true for more in-
volved wave functions. A natural and important extension of
the simplest Gutzwiller projected BCS states described by
Eqs. �1� and �3� can be achieved by including charge Jastrow

factors ĴC, i.e.,

�	0
�N�� = P̂NP̂GĴC�BCS� , �13�

�	k�
�N+1�� = P̂N+1P̂GĴC�̂k�

† �BCS� , �14�

for the ground state and the one-particle excited states, re-
spectively. Here

ĴC = exp�− �
i,j

vijn̂in̂j� , �15�

n̂i= n̂i↑+ n̂i↓, and the sum runs over all the independent pairs

of sites i and j. The importance of ĴC has been already re-
ported for various lattice models.7,19 A typical example of vij
is presented in Fig. 2�a� where all the independent vij are
optimized for the 2D t-t�-J model with J / t=0.3, t� / t=−0.2,
and N↑=N↓=115 on L=16
16.16 Certainly the inclusion of

ĴC improves, e.g., the variational energy. Besides such quan-

titative changes, ĴC can also make a qualitative difference.
One of these examples is shown in Fig. 2�b�, where the
charge structure factor N�q�=�l exp�−iq · l�
n̂in̂i+l� for small
wave numbers are calculated using the wave functions with

and without ĴC. As seen in Fig. 2�b�, N�q�→0 as �q�→0 for

FIG. 1. �Color online� n��k� �circles� and Zk�
�+� �squares� calcu-

lated using a Monte Carlo technique for L=16
16 and N↑=N↓
=115 �Ref. 17�. The sum of the two quantities �n��k�+Zk�

�+�� is also
plotted by crosses, which are 1−N�̄ /L=0.551 within the statistical
error bars �smaller than the size of the symbols�.

FIG. 2. �Color online� �a� Charge Jastrow factor v�r�=vij as a
function of distances r= �i− j�. These quantities are optimized in
such a way that the variational energy of �	0

�N�� is minimized for the
2D t-t�-J model with J / t=0.3, t� / t=−0.2, and N↑=N↓=115 on L
=16
16 �Refs. 16 and 17�. �b� Charge structure factor N�q� calcu-
lated using ��0

�N�� �circles� and �	0
�N�� �crosses� for the 2D t-t�-J

model with the same model parameters as in �a�. The variational
parameters are optimized for both states. The statistical error bars
are smaller than the size of the symbols.
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�	0
�N�� as expected, whereas N�q�→ finite as �q�→0 for

��0
�N��.20 This is because �BCS� does not conserve the number

of particles, which is instead a conserved quantity for the
t-t�-J model.21,22

It is now interesting to examine if the exact relation Eq.
�9� proved for the states ��0

�N�� and ��k�
�N+1��, and thus Eq.

�12�, can still hold for these more involved wave functions
�	0

�N�� and �	k�
�N+1��. The numerical results on small clusters

are presented in Fig. 3 for the 2D t-t�-J model with the same
model parameters as in Fig. 2. As seen in Fig. 3, surprisingly
Eq. �9� remains satisfied, at least approximately. Thus it can
be still argued that, because of the sum rule for the one-
particle excitation spectrum �Eqs. �10� and �11��, Eq. �12� is
approximately satisfied, and therefore most of the one-
particle added excitation spectrum consists of a coherent
part. Further numerical calculations have been carried out for
the 2D t-t�-J model with different model parameters, and it
was found that Eq. �9� is still satisfied within 10–15%.23

So far we have only considered the one-particle added
excitations. Let us briefly discuss the one-particle removed
excitations. A one-particle removed state is analogously con-
structed by

��k�
�N−1�� = P̂N−1P̂G�̂k�

† �BCS� . �16�

Although ��k�
�N−1�� and ��k�

�N+1�� are of very like form, the
similar conclusion about the coherence of the one-particle
excitations cannot be drawn for the one-particle removed ex-

citations. A simple reason for this is the following:12,13 for
the one-particle added excitations,

P̂Gĉk�
† ��0

�N�� = P̂N+1P̂Gĉk�
† �BCS� � ��k�

�N+1�� ,

i.e., P̂Gĉk�
† ��0

�N�� consists of only one state, while for the

one-particle removed excitations P̂Gĉk���0
�N��= ĉk���0

�N��,
which is not described by ��−k�̄

�N−1�� alone. It is also checked
numerically on small clusters that the quasi-particle weight
for the one-particle removed excitation, Zk�

�−�

= �
�−k�̄
�N−1��ĉk���0

�N���2, is substantially different from n��k�.
Finally we shall discuss experimental implications of the

present results. A most relevant experiment is angle-resolved
inverse photoemission spectroscopy on the superconducting
state for the hole-doped cuprates. If we assume that the
Gutzwiller projected BCS states discussed here present a
faithful description of the superconducting state in the cu-
prates, it is expected that the inverse photoemission spectros-
copy spectrum has more coherent characteristics than the di-
rect photoemission spectroscopy spectrum does.24 A similar
trend is also expected in the superconducting state for the
electron-doped cuprates except now that the direct photo-
emission spectroscopy spectrum has more coherent charac-
teristics. This is because the t-J-like models can also describe
the electron-doped cuprates only after the particle-hole trans-

formation: ĉk�→ ĥk+Q�
† �Q= �� ,���,25 and the same argument

presented here is still true for ĥk�
† .

To summarize, we have derived some rigorous relations
for the Gutzwiller projected BCS states. Using a sum rule for
the one-particle excitation spectrum, it was shown that the
one-particle added excitation spectrum tends to be more co-
herent than the one-particle removed excitation does. Pos-
sible experimental implications were also discussed. Finally,
it should be noted that all the results presented here are based
on the Gutzwiller projected BCS states studied, and a ques-
tion of whether these states can represent the exact eigen-
states of some particular model Hamiltonians is beyond the
scope of the present study.
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