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We show that in an array of magnetic nanocontacts driven by spin-polarized current a self-phase-locking
effect can lead to a regime in which all the contacts are generating microwave oscillations with the same
frequency and phase, and coherent addition of microwave power generated by individual nanocontacts is
possible. The mechanism of this self-phase-locking effect is strongly nonlinear, while the frequency band of
phase locking is an order of magnitude larger than in the usual coupled generators and depends on the direction
of the bias magnetic field applied to the nanocontacts.
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The theoretical prediction1–3 and experimental
observation4–9 of microwave generation in magnetic nano-
structures driven by spin-polarized current open the possibil-
ity for the development of a new class of tunable �by both
bias current and bias magnetic field� microwave generators
for nanoworld. Recently, it has been demonstrated
experimentally10 that the microwave oscillation generated in
a current-driven magnetic nanocontact can be phase locked
to the frequency of a small external sinusoidal current added
to the constant bias current passing through the nanocontact.
This phenomenon of phase locking, besides being interesting
fundamentally, is of substantial practical importance, espe-
cially in view of possible self-phase-locking of an array of
magnetic nanocontacts by self-induced magnetic dipolar
field or by common current passing through all the contacts.
The use of self-phase-locked arrays of nanocontacts can lead
to an increase in the resulting generated microwave power,
and also to the reduction of the linewidth of the generated
microwave signal, thus making this type of nanosized gen-
erator really practical.

In this paper we theoretically investigate the possibility of
self-phase-locking of an array of magnetic nanocontacts by a
self-induced dipolar magnetic field. First, we consider an iso-
lated nanocontact driven by a constant bias current and de-
termine the conditions of its phase locking to the frequency
of a small external microwave magnetic field. We show that
the mechanism of this phase-locking effect is strongly non-
linear in contrast with the case of the usual microwave
oscillator.11,12 We also show that the phase-locking band in a
nanocontact �typically 100–300 MHz� is substantially larger
than in the usual oscillator and larger than the typical line-
width �10–70 MHz� of the microwave generation in the
nanocontact itself. Then we use the results obtained for an
isolated nanocontact to determine the conditions for self-
phase-locking of an array of nanocontacts, assuming that the
coupling in the array takes place through the dipolar mag-
netic fields created by the individual generating nanocon-
tacts.

The dynamics of the magnetization vector M in a “free”
magnetic layer of a nanocontact is described by the modified
Landau-Lifshitz equation1,3

dM/dt = ��Heff � M� + TI �1�

with spin-transfer torque TI that describes the effect caused
by a spin-polarized current. In Eq. �1� �=g�B/� is the gy-
romagnetic ratio �g is the spectroscopic Landé factor, �B is
the Bohr magneton, �=h /2�, and h is the Planck constant�,
and Heff is the effective magnetic field:

Heff = H0 − 4��M · n̂�n̂ + h̃�t� . �2�

Here H0 is the external static magnetic field, the second term
describes the demagnetization field �n̂ is the unit vector in

the direction of the normal to the free layer�, and h̃�t�
=h�e−i�t+c.c.� is the external microwave magnetic field �� is
the external microwave frequency, and c.c. denotes a
complex-conjugated term�. For simplicity, we do not include
in Eq. �2� contributions from the exchange energy and from
the energy of crystallographic anisotropy. The spin-transfer
torque TI in Eq. �1� can be written in the form1,3

TI =
	0I

M0
�M � �M � p̂�� . �3�

Here I is the current, p̂ is the unit vector in the direction of
the spin polarization of the current, and 	0=
g�B/2eM0LS,
where 
 is the spin-polarization efficiency defined in Refs. 1
and 3, e is the modulus of the electron charge, L is the
thickness of the free magnetic layer, and S is the cross-
sectional area of the nanocontact.

In the following we assume that the bias current I only
slightly exceeds the threshold current Ic for microwave gen-
eration, so the transverse part of the magnetization m��M
−Mzẑ �where ẑ is the direction of equilibrium magnetization�
is small. We also assume that the angle �p between the equi-
librium magnetization and the current polarization direction
p̂ �i.e., p̂=cos �pẑ+sin �px̂� is small, so we can approxi-
mately write the spin-transfer torque �3� in the form13

TI � 	0I cos �p
Mz

M0
m� − 	0I sin �px̂ , �4�

The first term in Eq. �4� gives the current-induced negative
damping and is essential to the phenomenon of microwave
generation. The second term in Eq. �4� for a constant bias
current I can be neglected, because it only describes small
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changes in the equilibrium orientation of M. If, however, the
bias current has a microwave component with the frequency
close to the frequency of generated precession, the second
term plays the role of a resonant external signal in exactly
the same way as the external microwave magnetic field of a
similar frequency.

Using the approximate perturbative analysis described in
detail in Refs. 13 and 14, one can derive an equation for the
dimensionless complex amplitude15 b�t���mx− imy� /M0 of
the magnetization precession in the same way as it was done
in Ref. 13 �see also Eq. �11� in Ref. 14 and Eq. �25� in Ref.
13�:

db

dt
= − i��0 + N�b�2�b − �b + 	I�1 − �b�2�b + �e−i�t, �5�

where 	=	0 cos �p, �H=�H, �M =4��M0,

�0 = ��H��H + �M cos2 � , �6a�

N = �M�H�3�H
2 sin2 /�0

2 − 1�/2�0. �6b�

Here H and  are the magnitude and the out-of-plane angle
of the internal bias magnetic field, which are connected with
the magnitude H0 and the out-of-plane angle 0 of the exter-
nal bias magnetic field by the usual electrodynamic bound-
ary conditions:

H0 cos 0 = H cos , H0 sin 0 = �H + 4�Mz�sin  . �7�

In Eq. �5� we phenomenologically added a dissipation term
	� that accounts for both the internal damping in the layer
and energy drift from the excitation region.13

The external signal amplitude � in Eq. �5� depends on the
type of the external microwave signal. If the phase locking is
achieved by addition of a microwave magnetic field, then

� = ��hy + ihx�/�2 � �h0. �8a�

If, on the other hand, the external signal is supplied in the
form of a microwave modulation of the bias current, I�t�
→ I+�I cos �t, then � arises from the second term in Eq.
�4� and is given by

� = − 	 tan �p�I/2�2. �8b�

It is clear that the phase locking by a microwave modulation
of current is impossible for collinear orientations of equilib-
rium magnetization and spin polarization of the current, i.e.,
for �p=0.

Note that Eq. �5� is the usual equation describing dynam-
ics of an auto-oscillator with nonlinear frequency shift under
the action of an external signal. Therefore, our results are
valid for any such auto-oscillator.

The “unforced” �i.e., for �=0� equation �5� admits a sta-
tionary solution that describes a free autogeneration and has
the form13,14 b�t�=B0e−i�̃0t, where

�B0�2 = �� − 1�/�, �̃0 = �0 + N�B0�2, �9�

and the supercriticality � is defined as �� I / Ic�	I /�, where
Ic is the critical bias current at which microwave generation
starts.

The forced Eq. �5� has a stationary phase-locked solution
in the form b�t�=Be−i�t, where the amplitude B is implicitly
determined from the equation

B = −
�

��� − 1 − ��B�2� + i�� − �0 − N�B�2�
. �10�

One can significantly simplify this equation, using the defi-
nitions

P0 � �B0�2, P � �B�2, � � � − �0 − NP0, �11a�

and introducing the following dimensionless variables:

x �
P

P0
, �2 � 
 ���

��

1

P0
�2 1

P0
, �11b�

� �
N

��
, � �

�

��

1

P0
. �11c�

Here x is the normalized power of forced generation, � is the
normalized amplitude of the external signal, and � and � are,
respectively, the normalized nonlinear frequency shift and
frequency detuning of the external signal.

In these dimensionless variables one can rewrite �10� as a
third-order equation for x:

�x − 1�2x + �� − ��x − 1��2x = �2. �12�

This equation always has at least one positive root, i.e., for
any amplitude � and frequency � of the external microwave
field there exists a forced phase-locked solution. This solu-
tion, however, is not always stable. At the same time, only
the stable solutions correspond to a real phase locking of the
autogenerator.

Performing the standard stability analysis of Eq. �5�, one
can derive the critera for the stability of the phase-locked
solution. These criteria can be written as two simple condi-
tions for the normalized power of generation x. The first
condition, arising from the requirement of stability of the
solution with respect to small perturbations having the same
frequency � �“internal” stability� can be written as

dx

d�2 � 0, �13a�

i.e., it requires the increase of the power of the phase-locked
oscillation with the increase of the external signal power. The
condition of “external” stability �i.e., stability with respect to
small perturbations having different frequencies� for the
same solution has the following form:

x �
1

2
. �13b�

Thus, we are interested in large-amplitude solutions of Eq.
�12�. We note that the large amplitude of the normalized
power x does not necessarily mean the large absolute power
P of the forced oscillation. The condition �13b� simply
means that to be stable the forced oscillation should have
power that is comparable to the power of the free-running
oscillation in the same nanocontact.

It is clear from Eq. �12� that for small external signal �
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and, respectively, small frequency deviation �, the amplitude
of such a solution only slightly deviates from the amplitude
of the free-running oscillation, �x−1��1. Using the small-
ness of �x−1�, �, and �, we can reduce Eq. �12� to a second-
order equation for �x−1�, neglecting all third-order terms in
small quantities:

�1 + �2��x − 1�2 − 2���x − 1� + �2 − �2 = 0. �14�

The solution of this equation, which satisfies both stability
criteria �13� and represents a real experimentally observable
phase-locked solution, has the following form:

x = 1 +
�� + ��1 + �2��2 − �2

1 + �2 . �15�

This solution exists only when the expression under the
square root in Eq. �15� is positive, which immediately gives

the frequency interval of phase locking in the form �����̃
��1+�2�. In dimensional units the phase-locking interval
can be written as

� =
���
�P0

�1 + 
 N

��
�2

. �16�

Equation �16� in the limiting case �N���� is reduced to
the standard equation that determines the phase-locking
bandwidth for an autogenerator without nonlinear frequency
shift. The phase-locking bandwidth �0 in this case can be
written as

�0 �
���
�P0

= �M� h0

4�m�

� , �17a�

where m�=M0
�P0 is the characteristic amplitude of the free-

running oscillation. The locking interval written in this form
�characteristic frequency �M of the system times the ratio of
the amplitude h0 of the external signal to the amplitude
4�m� of the internal free-running oscillation� literally coin-
cides with the well-known classical result �see, e.g., Eq.
�19c� in Ref. 12�. If the external signal is supplied in the
form of the microwave modulation of the bias current, the
locking bandwidth can be written in a similar form:

�0 �
���
�P0

= �I� �I

I�

� , �17b�

where �I=	I is the characteristic frequency associated with
the bias current, �I=�I tan �p /2�2 is the effective micro-
wave signal current, and I�= I�P0 is the characteristic mi-
crowave current of the free-running oscillation.

We would like to stress that the classic expression �17�
obtained in the limit �N���� gives a qualitatively incorrect
result in the case of phase locking of an autogeneration in
magnetic nanocontacts: the nonlinear frequency shift in such
systems is of the order of the generated frequency, �N�	�0
�see Eq. �6b� and Ref. 13�, while the relaxation frequency
can be estimated as �	�G�0, where �G�0.01 is the Gilbert
damping parameter.16 Thus, for �	1 one gets �N� /��
	1/�G�100�1, and the phase-locking interval Eq. �16� is
dominated by the second term under the square root. In this
case the locking interval � is much larger �	100 times� than

the classical result �17�. The physical reason for such a sig-
nificant increase of the phase-locking interval is clear: in the
case of a strongly nonlinear oscillator even small changes in
the oscillation amplitude can result in matching of the non-
linear eigenfrequency of the auto-oscillator to the frequency
of the external sinusoidal signal. Thus, in this case the pri-
mary phase-locking mechanism is a nonlinear frequency
matching with the external signal, and this mechanism is
very different from the classical phase-locking mechanism.12

In Fig. 1 we show the phase-locking band �16� as a func-
tion of the external magnetization angle 0 calculated from
Eq. �16� using Eqs. �7� and �6b�. Following the angular de-
pendence of the nonlinear frequency shift coefficient N, the
phase-locking bandwidth has a pronounced minimum at
some critical angle for which N=0. At this minimum point
the bandwidth coincides exactly with the classical value
given by Eq. �17�.

One can see that for reasonable values of the parameters
the frequency range of phase locking can be around
100–300 MHz. Taking into account that the linewidth of the
microwave generation in a nanocontact is of the same order
of magnitude or smaller,7 it is possible to predict with a large
degree of confidence that the effect of self-phase-locking in
an array of magnetic contacts coupled either by means of the
dipole-dipole interaction or by means of the common bias
current can be observed experimentally.

Let us make an approximate estimation of the maximum
distance between the nanocontacts in an array that still al-
lows the possibility of self-phase-locking of the array. We
shall assume that individual nanocontacts are coupled by the
dipole-dipole interaction, while the bias currents passing
through the contacts are independent. In this approximate
estimation we shall ignore the vectorial properties of the di-
polar field and details of the geometry of the considered ar-
ray of nanocontacts.

FIG. 1. �Color online� Dependence �16� of the phase-locking
bandwidth � on the direction of the external bias magnetic field 0

for different values of the supercriticality �: solid line, �=2; dashed
line, �=1.5; dotted line, �=1.25. Saturation magnetization 4�M0

=9 kOe, external magnetic field H0=7 kOe, Gilbert damping pa-
rameter �G=0.01, amplitude of the external microwave magnetic
field �h0�=2 Oe �equivalent to a microwave current �I=1 mA for
�p=5°�.
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In a real array of magnetic nanocontacts a distribution of
contact parameters �such as contact radius Rc� will lead to
the situation when with the increase of bias current I one of
the contacts will start to generate first at a certain frequency
�*�0. The variable magnetization of this contact precess-
ing with the frequency �* will create a variable dipolar field
with amplitude that can be approximately estimated as hdip
�m�Vc /a3, where Vc=�Rc

2L is the volume of the nanocon-
tact �Rc is the nanocontact radius, and L is the thickness of
the free magnetic layer�. This field will play the role of an
external forcing signal ���hdip for all the neighboring
nanocontacts, and if this signal has a sufficient amplitude to
guarantee that the phase-locking band Eq. �16� larger than
the frequency mismatch between different nanocontacts �i.e.,
inhomogeneous broadening of the generation linewidth� ��,
other nanocontacts �which start to generate with the increas-
ing bias current� will be phase locked to the first one. Thus,
due to this mutual dipole-dipole interaction a single genera-
tion frequency will be imposed on all the generating nano-
contacts.

With the help of Eq. �16�, the condition ���� of such
self-phase-locking can be written in the form

�M� hdip

4�m�

� �N�
��

� �� . �18�

Using the estimation for the dipolar field hdip, one can find
the restriction for the distance a between the neighboring
contacts:

a3 � amax
3 �

�M

4���

�N�
��

Vc. �19�

In the particular case of the in-plane �0=0� magnetization
by a moderate bias field �H0�4�M� the expression for the

maximum distance between the contacts can be written in an
especially simple form:

amax = 
G
�0

��

1

�G
Vc�1/3

, �20�

where G is the coefficient of the order of unity that accounts
for the vectorial properties of the dipolar magnetic field and
the details of the array geometry. We note that since the
dependence of amax in Eq. �20� on both the coefficient G and
the bias magnetic field is rather weak �cubic root�, Eq. �20�
with G	1 can be used for approximate estimations of the
maximum distance between the contacts in most cases. In
particular, Eq. �20� shows that for typical values of param-
eters ��G=0.01, Rc=15 nm, L=5 nm�, even for a relatively
large inhomogeneous broadening �� /�0=0.1, the maximum
distance between the contacts at which self-phase-locking is
still possible is quite large: amax�150 nm=10Rc.

In conclusion, we have shown that the mechanism of
phase locking in generating current-driven magnetic nano-
contacts is strongly nonlinear and the frequency band of
phase locking is much larger than the natural linewidth of
generation. We also demonstrated that in an array of gener-
ating nanocontacts, even in the case when the inhomoge-
neous distribution of generation frequencies is about 10%,
the self-phase-locking of all the contacts is possible if the
spatial separation between them significantly exceeds the
contact radius �a	10Rc�.
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