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An analytic calculation of the surface current and selected mound angle is presented for the case of irre-
versible epitaxial growth on an fcc�111� surface with a finite Ehrlich-Schwoebel �ES� barrier. The special cases
of short terraces and combinations of short terraces with facets which lead to large mound slopes are also
discussed. We find that for both A and B steps the surface current and selected mound slope are determined by
two key parameters—the Ehrlich-Schwoebel barrier and the degree of uphill funneling due to short-range
attraction. However, the presence or absence of a small-slope instability is exclusively determined by the value
of the ES barrier. In particular there exists a critical value of the parameter � �where �= ��ES/�0�e−EES/kBT and
EES is the ES barrier� such that for ���c, the flat surface is unstable to mound formation while for ���c there
is no such instability. The critical value �c�0.21 is the same for both A and B steps and independent of the
degree of uphill funneling due to short-range attraction. When the uphill funneling is not too large, the selected
slope decreases continuously with increasing �, reaching zero at �c. However, in the presence of sufficiently
large uphill funneling, the selected slope is independent of � for ���c. In this case a new phenomenon which
we refer to as fluctuation-induced instability also occurs. In particular, while the surface remains stable for
���c for small slopes, for larger slopes the surface current may become positive due to uphill funneling. Thus,
even in the presence of a small ES barrier, mound formation may still occur. Finally, we present typical results
for the dependence of the mound slope on � for both A and B steps.
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I. INTRODUCTION

Recently there has been a great deal of interest in under-
standing the evolution of the surface morphology in epitaxial
growth.1 In particular, the formation of three-dimensional
mound structures which grow and coarsen with increasing
film thickness during homoepitaxial growth on singular
�low-miscut� surfaces, has been observed in a wide variety of
systems.2–14 While in some cases mounds have been ob-
served to form with a slowly increasing mound angle, in
many cases, especially in metals, mounds have been ob-
served to form with a clearly selected mound angle. Once
formed, the typical mound size increases with increasing film
thickness as mounds coalesce and coarsen to form new larger
mound structures.

The origin of mound formation in homoepitaxial growth
is the existence of a growth instability due to an uphill sur-
face current. While a variety of different mechanisms, such
as step-adatom attraction15–17 or step-edge diffusion18 may
lead to such a current, in many cases the primary cause is the
existence of a barrier to diffusion over descending steps, of-
ten called an Ehrlich-Schwoebel �ES� barrier.19,20 In contrast,
the “downward funneling” �DF�21,22 of atoms deposited near
steps typically leads to a stabilizing downhill surface current.
The selection of a stable mound slope23,24 is then determined
by a balance between the uphill and downhill currents.

Recent molecular dynamics simulations25,26 have shown
that for epitaxial growth on metal �100� and �111� surfaces,
the short-range attraction of depositing atoms to step edges
can lead to significant deviations from the DF picture. In
particular, short-range attraction can lead to significant “up-
hill funneling” for atoms deposited near step edges, thus de-
creasing the downhill current, enhancing the growth instabil-
ity and increasing the selected mound angle. As a result, the
selected mound slope depends not only on the strength of the

ES barrier but also on the degree of “uphill funneling” due to
short-range attraction.

For the case of irreversible growth on an fcc�100� surface,
a general calculation of the surface current and selected
mound slope as a function of the ES barrier and “degree of
uphill funneling” has previously been carried out.16,17 In ad-
dition, a general calculation of the surface current and se-
lected mound slope which includes the effects of short-range
attraction, has recently been carried out26 for the case of
arbitrary crystal geometry for the case of an infinite Ehrlich-
Schwoebel barrier. Combined with the results of molecular
dynamics simulations of the interaction of depositing atoms
with step edges, such a calculation26 has been used to esti-
mate the selected mound slopes in Ag/Ag�111� and
Cu/Cu�111� growth. However, there has been no calculation
of the surface currents and selected mound slopes for
fcc�111� surfaces for the more realistic case of a finite ES
barrier. Such a calculation should be useful in obtaining a
general understanding of the dependence of the selected
mound slope and mound morphology on growth temperature
and ES barrier in growth on fcc�111� surfaces.

Here we present the results of an analytic calculation of
the surface current and selected mound slope as a function of
the ES step barrier for the case of irreversible growth on
fcc�111� surfaces. Our calculation also takes into account the
effects of deviations from the standard downward funneling
picture including the effects of short-range attraction as well
as “knockout” for atoms deposited near step edges. We also
consider the case in which the selected mound slope is larger
than that corresponding to the narrowest “general” terrace
width, and thus corresponds to a mixture of facets and ter-
races. This both corrects previous “large-slope” results ob-
tained for the case of an infinite ES barrier26 and generalizes
them to account for the existence of a finite barrier. These
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results are particularly important since experimentally the
mound slope can be quite large, due to the combination of a
reasonably large ES barrier and significant “uphill funneling”
due to short-range attraction. Since there are two types of
close-packed step edges on the fcc�111� surface: A steps cor-
responding to �100� microfacets and B steps corresponding
to �111� microfacets, our calculations are carried out for both
A and B steps.

We note that since our calculation assumes irreversible
growth at step edges �i.e., no detachment� it applies at tem-
peratures which are not too high such that detachment from
steps can be neglected. In addition, it is based on the reason-
able assumption that atoms on a flat fcc�111� terrace diffuse
via nearest-neighbor hops between fcc and hcp sites. Due to
the symmetry of the honeycomb lattice, our results are not
affected by differences between the binding energies at fcc
and hcp sites.

Before presenting the details of our calculations we first
briefly summarize some of our main results. We find that for
both A and B steps there are two key parameters—the ES
barrier and the degree of uphill funneling due to short-range
attraction—which determine the surface current and selected
mound slope. While both parameters determine the value of
the selected mound slope in the case of an instability, the
presence or absence of a small-slope instability is exclu-
sively determined by the ES barrier. In particular we find that
for both A and B steps there exists a critical value of the
Ehrlich-Schwoebel parameter �= ��ES/�0�e−EES/kBT corre-
sponding to �c�0.21, such that for ���c, the surface is
unstable to mound formation while for ���c there is no
instability. This result is qualitatively similar to that previ-
ously obtained16 for the case of growth on fcc�100� surfaces.
However, we also find that in the presence of sufficiently
large uphill funneling, a new phenomenon which we refer to
as fluctuation-induced instability occurs. In this case, while
the surface is stable for small slopes, for large slopes the
surface current becomes positive. Thus, mound formation
may still occur for ���c if fluctuations �due, for example, to
deposition noise� are sufficiently large for the local slope to
exceed the instability threshold. This is a feature which has
not been previously discussed and which occurs in the pres-
ence of a large uphill funneling probability. We also find that
for large uphill funneling the selected slope is independent of
� for ���c. Finally, we note that while the expressions for
the surface current of A and B steps are, in general, quite
similar, due to differences in the uphill funneling probabili-
ties at A and B steps, our results indicate that there is, in
general, a strong asymmetry in the mound shape.

The paper is organized as follows. In Sec. II we describe
our model. In Sec. III, we describe the calculation of the
surface current and selected mound slope for both A and B
steps. The cases of short terrace lengths and mixture of ter-
races with different lengths are discussed separately. In Sec.
IV we analyze and discuss our results. Finally, in Sec. V we
summarize our results.

II. MODEL

To calculate the surface current, we consider a regular
stepped fcc�111� surface with infinitely long straight steps

�either A or B steps, see Fig. 1� and terrace width L. As
shown in Fig. 1, the total surface current per particle J /F,
where J is the surface current and F is the deposition flux,
may be divided into four contributions due to deposition in
four different regions. Region I corresponds to atoms depos-
ited just beyond the step edge but close enough to feel the
effects of short-range attraction to the step. Region II corre-
sponds to the particles that land slightly farther away from
the step edge and is needed to connect to the terrace region.
Region III corresponds to atoms deposited on a terrace away
from a step. Finally region IV corresponds to atoms depos-
ited near a step edge on the upper side. In region III we apply
a discrete approach, while in regions I, II, and IV we apply a
continuous approach. To fix our notation, for convenience,
we define �=�3a1 /6 as the unit of length, where a1 is the
nearest-neighbor distance. The selected terrace width L0 and
corresponding selected slope m0=h /L0 �where the layer
height h=�6a1 /3� then correspond to those values for which
the surface current per particle J /F is equal to zero. Taking
into account that the unit of length was defined as �
=�3a1 /6, the selected slope m0 may be written as m0
=2�2/L0. In our units, regions I and IV are of width 3 while
the bridge region II is of width 2 �1�, and the terrace region
III is of width L−8 �L−7� for A�B� steps. This implies that
the minimum “general” terrace width is given by L=8 �L
=7� for A�B� steps.

For a given terrace length L, the surface current per par-
ticle may be calculated16 by multiplying the probability that
an atom will be deposited at a given site by the average
�signed� distance traveled before absorption at an ascending
or descending step.33 For simplicity, we assume irreversible

FIG. 1. Schematic diagram �top view� of A and B steps on
fcc�111� surface. Site labeled * corresponds to the last threefold
hollow site on the upper terrace �see text�.

V. BOROVIKOV AND J. G. AMAR PHYSICAL REVIEW B 72, 085460 �2005�

085460-2



attachment at ascending steps �sites 0 or c in Fig. 1� which is
appropriate for a variety of systems over a range of tempera-
tures, although at high temperatures detachment from step
edges may need to be taken into account. Atoms which are
deposited on a flat terrace away from a step edge are as-
sumed to first “cascade” to the nearest fcc or hcp site and
then hop alternately between fcc and hcp sites until reaching
the fcc attachment site at an ascending step edge �see Fig. 1�.
We note that very recent work27 indicates that for some sys-
tems, single-atom diffusion may occur via correlated long
jumps above a critical system-dependent temperature. How-
ever, here we assume that we are at low enough temperatures
that such correlated jumps do not occur.

We note that while there exists a difference between the
binding energies of adatoms at fcc and hcp sites,28 this dif-
ference does not affect the results of our calculations. For
example, if an atom is at a fcc �hcp� hollow site on a flat
terrace away from a step edge, it can hop with equal prob-
ability to each one of the three nearest hcp �fcc� sites �see
Fig. 1�. Accordingly, the probability of an atom to hop away
�towards� the ascending step alternates between the values of
1 /3 and 2/3 depending on whether or not the adatom is at an
fcc or an hcp site on the terrace. As a result, the diffusion
process can be mapped to a one-dimensional random walk
with alternating probabilites p and q=1− p between two ab-
sorbing barriers, one at site 0 corresponding to the ascending
step-edge and the other at site c corresponding to the de-
scending step �see Fig. 2�. For example, if an atom is at site
k, and k is odd, the probability of hopping to site k−1 is
given by p, where p=1/3 �2/3� for A steps �B steps�, while
the probability of hopping to site k+1 is given by q=1− p.
Similarly, if k is even, the probability of hopping to site
k−1 �k+1� is given by q �p=1−q�.

Due to the existence of the Ehrlich-Schwoebel
step-barrier,19,20 the rate for an atom at the edge of a step to
diffuse to the terrace below is typically different from the
rate for hopping on a flat terrace. For generality we assume
that adatoms may hop/exchange to the terrace below from
both the fcc and hcp sites closest to the step edge. In particu-
lar, we assume �see Fig. 3� that for an atom in the last fcc site
closest to the step edge, the probability to go over the step
�either via hopping or exchange� to the absorption site c is
given by �, where the value of � is in general different for A
and B steps. Similarly, the corresponding probabilities for
interlayer diffusion from the hcp site closest to the step edge
are given by ��. We note that for A steps the site closest to
the step edge is an hcp site, while for B steps it is an fcc site.
We also note that in Figs. 1 and 3 the last threefold hollow

site on the top terrace �site *� is not numbered even though
atoms can hop from site c−1 to this site. The reason is that,
as explained in more detail below and in the Appendix, one
can combine the probabilities for an atom to diffuse to the
lower step—either directly from site c−1 or after hopping
from site c−1 to site *—into a single overall probability �
for an atom at site c−1 to diffuse to the layer below. In order
to calculate the surface current J, we also need to take into
account the effects of short-range attraction16,17,25,26 of atoms
deposited near step edges and the effects of “knockout” of
step-edge atoms,29 as we discuss in more detail below.

III. SURFACE CURRENT AND SELECTED MOUND SLOPE

A. General expression for attachment probabilities Pi

Before calculating the surface current, we first obtain gen-
eral expressions for the absorption probability Pi that a par-
ticle at site i on a terrace will attach to the ascending step
�see Fig. 1�. The solution to this problem is equivalent �see
Appendix� to the solution of a simpler problem correspond-
ing to a random walk between two absorbing sites 0 and c in
which the particle hops directly from the last site c−1 to
absorbing site c with probability �, and from c−1 to site
c−2 with probability 1−� while the probability of hopping
on a flat terrace away from a step-edge alternates between
the values p and q=1− p. As shown in the Appendix, one
may map the process of interlayer diffusion from the fcc and
hcp sites closest to the step edge �site c−1 and the last site on
the terrace, see Fig. 3�, where � and �� are the corresponding
probabilities of interlayer diffusion, to a simplified problem
in which the overall probability that an atom at site c−1
arrives at the lower terrace �either directly from site c−1 or
after passing through the last site on the terrace� is given by
��� ,���, where the expression for ��� ,��� is different for A
and B steps. The probability Pi of absorption at site 0 may
then be found by solving the following set of difference
equations for this simplified problem30

P2k−1 = pP2k−2 + qP2k, 1 	 k 	
c − 1

2
, �1a�

P2k = qP2k−1 + pP2k+1, 1 	 k 	
c − 3

2
, �1b�

Pc−1 = �1 − ��Pc−2 + �Pc, �1c�

where p=2/3 �1/3� for A �B� steps with boundary conditions
P0=1 and Pc=0.

FIG. 2. Diagram showing random walk between absorbing sites
at 0 and c. � corresponds to overall probability that at an atom at
site c−1 will diffuse to the layer below �see text�.

FIG. 3. Diagram showing details of interlayer diffusion at A and
B steps.
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For odd c corresponding to A steps �where c=2K+3 and
K=0, 1, 2,…� the solution is given by30

P2k = 1 −
k

K + q + �p 
 �� , 0 	 k 	
c − 3

2
, �2a�

P2k+1 = 1 −
k + q

K + q + �p 
 �� , 0 	 k 	
c − 3

2
, �2b�

Pc−1 = 1 −
K + 1

K + q + �p 
 �� , �2c�

where K= �c−3� /2. For even c corresponding to B steps
�where c=2K+2 and K=0, 1, 2,…� the solution is given by

P2k = 1 −
k

K + �q 
 �� , 0 	 k 	
c − 2

2
, �3a�

P2k+1 = 1 −
k + q

K + �q 
 �� , 0 	 k �
c − 2

2
, �3b�

Pc−1 = 1 −
K + q

K + �q 
 �� , �3c�

where K= �c−2� /2.

B. Surface current for A steps „LÐ8…

We first consider the surface current for the case of A
steps with terrace width L�8. In this case p= 2

3 while the
relationship between the absorption site c in the 1D random-
walk picture �Fig. 2� and the terrace width L in our units
is L= �3c+7� /2, where c is an integer which satisfies c
=2K+3, where K=0, 1, 2, 3,… . As shown in Fig. 1, the total
surface current per particle J /F, may be divided into four
contributions due to deposition in four different regions. We
first consider the contribution J3 /F due to atoms deposited in
region III away from the step edges. Since this region is far
away from the steps, an atom deposited in this region will
first arrive at either the nearest fcc or hcp site. If an atom is
deposited at an even �fcc� site 2k, the probability of absorp-
tion at site 0 is given by P2k while the distance between the
deposition site and the attachment site is d2k=3k. However,
if an atom is deposited at an odd �hcp� site 2k+1, the prob-
ability of absorption at site 0 is given by P2k+1 while the
distance between the deposition site and attachment site is
given by d2k+1=3k+1. This leads to the following expression
for the surface current per particle:

J3

F
=

3

2L��
k=1

K

�3kP2k − �L − 3k��1 − P2k�� + �
k=1

K

��3k + 1�P2k+1

− �L − 3k − 1��1 − P2k+1��	 , �4�

where the first summation corresponds to even sites and the
second summation to odd sites. The first �second� term in
each of the summations corresponds to the product of the
signed distance a particle must travel from the initial landing

position to the absorption site at an ascending �descending�
step times the probability of arriving at that site. The factor
of 1 /L corresponds to the deposition probability per unit
interval � while the factor of 3

2 is a normalization factor
which takes into account the fact that in the sum we have
included two sites per three units of length � in discrete
region III. Taking into account that L= �3c+7� /2 and c
=2K+3 for A steps, we obtain

K =
L − 8

3
. �5�

Substituting Eqs. �2a�–�2c� for Pi along with Eq. �5� for K
into Eq. �4� and using the well-known formula for arithmetic
series, we obtain for the surface current in region III

J3

F
=

�2 − 7���32 − 12L + L2�
2L�2 + ��L − 7��

, �6�

where �= �3�+2��−2���� / �1+2�+2��−2���� �see Appen-
dix�.

The second contribution to the surface current corre-
sponds to atoms deposited within a distance �= ±3� from
the step edge �regions I and IV, see Fig. 1�. We first discuss
region I corresponding to atoms deposited beyond the step
edge. To take into account the effects of short-range attrac-
tion during deposition, we consider the local uphill funneling
probability PA�x�dx that an atom deposited above the lower
terrace at an initial distance between x and x+dx beyond the
step edge lands on the upper terrace �see Fig. 1�. We assume
that upon landing such an atom “cascades” to the last terrace
site �site *� with probability 
�x� and to the next-to-last ter-
race site �site c−1� with probability ��x�, where 
�x�
+��x�=1. This leads to the following expression for the cor-
responding surface current:

J1

F
=

1

L



L

L+3

�
�x��1 − ���Pc−1 + ��x�Pc−1�PA�x��x − 3�dx

−
1

L



L

L+3


�x���� + �1 − ����1 − Pc−1��

�PA�x��L + 3 − x�dx

−
1

L



L

L+3

��x��1 − Pc−1�PA�x��L + 3 − x�dx

−
1

L



L

L+3

�1 − PA�x���L + 3 − x�dx . �7�

The first integral corresponds to atoms which land on the
upper terrace and then diffuse to the ascending step’s attach-
ment site. �The second term corresponds to atoms which land
directly on site c−1 while the first term corresponds to atoms
which first land on the last terrace site and then hop to site
c−1 with probability 1−��.� Similarly, the second and third
integrals correspond to atoms which land on the upper ter-
race and then diffuse to the descending step’s attachment
site. The fourth integral corresponds to atoms which land on
the lower terrace after being deposited and then attach im-
mediately �without diffusing� to the descending step. The
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factor of 1 /L arises from the fact that the probability that the
particle lands in a particular interval dx is given by dx /L.

Similarly, in region IV, we consider the local uphill fun-
neling probability P�A�x�dx that an atom deposited above the
upper terrace at an initial distance between x and x+dx from
a step edge lands on the upper terrace �see Fig. 1�. We as-
sume that upon landing such an atom arrives at the last ter-
race site �next-to-last terrace site c−1� site with probability

��x� ����x��, where 
��x�+���x�=1. This leads to the fol-
lowing expression for the corresponding surface current:

J4

F
=

1

L



L−3

L

�
��x��1 − ���Pc−1 + ���x�Pc−1�P�A�x��x − 3�dx

−
1

L



L−3

L


��x���� + �1 − ����1 − Pc−1��

�P�A�x��L + 3 − x�dx

−
1

L



L−3

L

���x��1 − Pc−1�P�A�x��L + 3 − x�dx

−
1

L



L−3

L

�1 − P�A�x���L + 3 − x�dx . �8�

Except for the range of integration and the uphill funneling
probabilities, the explanation of the integrals is the same as
for region I �Eq. �7��.

Combining both contributions, we obtain an expression
for the contribution from regions I and IV,

J1 + J4

F
=

6�P�

A + P


A + P��
A + P�

A − ���P�

A + P


A���1 − ��
2 + ��L − 7�

−
18

L
, �9�

where we have introduced the quantities

P�

A =

1

3



L−3

L


��x�P�A�x�dx , �10a�

P

A =

1

3



L

L+3


�x�PA�x�dx , �10b�

P��
A =

1

3



L−3

L

���x�P�A�x�dx , �10c�

P�
A =

1

3



L

L+3

��x�PA�x�dx �10d�

corresponding to the overall probabilities �P�

A , P


A�
��P��

A , P�
A�� that an atom uniformly deposited in regions I or

IV remains on the upper terrace at the last �next-to-last� site
immediately after deposition.

Finally, we consider the contribution from the “buffer”
region II which can be simply expressed as

J2

F
=

1

L



3

5 �1

3
�x − 3� +

2

3
�P1�x − 3� − �1 − P1��L − x + 3���dx

=
2�6 + ��L − 21��
3L�2 + ��L − 7��

. �11�

Here we have taken into account that an atom deposited in
region II arrives without diffusion at site 0 with probability
1
3 , while the probability of arriving at site 1 is 2

3 . From site 1
the atom can diffuse to the ascending-step attachment site 0
with probability P1, or to the lower-terrace attachment site c
with probability 1− P1.

Making two reasonable assumptions, we can simplify the
expressions that include uphill funneling probabilities. The
first assumption is that P�


A= P��
A= 1

2 P�up
A . This is consistent

with the fact that deposition in region IV is equally likely to
be above the last fcc site as above the last hcp site and is also
consistent with the results of recent molecular dynamics
simulations carried out for deposition near A steps on
Cu�111� and Ag�111�.26 The second assumption is that atoms
deposited beyond an A-step edge will arrive at the nearest
threefold hollow site, i.e., P


A= Pup
A and P�

A=0. Using these
assumptions, combining all four contributions and using the
expression �= �3�+2��−2���� / �1+2�+2��−2���� derived
in the Appendix, we obtain the following general expression
for the total surface current for a periodic sequence of ter-
races of width L separated by A steps:

JA

F
=

�6 − 51� − 30�� + 30� ���L − 72�1 − Pav
A �

DA
+

���152 − 18�P�up
A + 2Pup

A �� + ��300 − 72Pav
A � − � ���152 − 18�P�up

A + 2Pup
A ��

DA
,

�12�

where L�8, P�up
A = P�


A+ P��
A, Pup

A = P

A+ P�

A, Pav
A = �P�up

A

+ Pup
A � /2 and DA= �18�+12��−12� ���L+12−102�−60��

+60� ��.
We note that Eq. �12� is valid for arbitrary probabilities �

and �� of interlayer diffusion from the last fcc and hcp sites
as well as for arbitrary mechanisms �e.g., exchange or hop-

ping� of interlayer diffusion. On the other hand, recent ab
initio calculations for Pt�111� A and B steps,28 indicate that
the dominant diffusion mechanism responsible for downward
transport over both A and B steps on fcc�111� metal surfaces
is the exchange mechanism. If we consider the details of
such an exchange process for the case of Pt�111�,28 we note
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that during the exchange the diffusing adatom first moves
from an initial fcc site near the step edge to a saddle position
which is symmetrically located between the last fcc and hcp
sites. From this position it then “pushes” the nearest step
atom towards the absorption site on the lower terrace, taking
its place. This indicates that the processes of exchange from
the last fcc site �site c−1� and from the last �hcp� terrace site
should be almost equivalent. Thus, if we define the binding-
energy difference between an fcc site and an hcp site along
the step by �Eb then the rate of hopping from the last hcp site
to any of the nearby fcc sites is e�Eb/kBT times greater than the
rate of hopping from the last fcc site to any of the nearby hcp

sites. However, the barrier for exchange at a step edge is
correspondingly reduced by �Eb for the hcp site compared to
the fcc site. As a result, the difference in the binding energy
between fcc and hcp sites effectively cancels out. Using this
fact, we can see that the probabilities � and �� for interlayer
diffusion from the last fcc and hcp sites, respectively, depend
only on the ES parameter �= ��ES/�0�exp�−EES

A /kBT� where
EES

A corresponds to the ES barrier for exchange from the last
fcc site and �ES/�0 is the ratio of prefactors for exchange
versus terrace diffusion. In particular �see Appendix�, we find
�=� / �3+�� and ��=� / �2+��. Using these expressions for �
and �� in Eq. �12�, we obtain

JA

F
=

3�4 − 18� − 5�2�L − 144�1 − Pav
A � + 2�116 + 9P�up

A �� + 76�2

6�4 + �4L − 18�� + �L − 5��2�
, �13�

where L�8. From Eq. �13� we may obtain the selected slope
m0

A=h /L0=2�2/L0, corresponding to the value of the terrace
length for which the surface current J /F is zero:23,24

m0
A =

3�2�4 − 18� − 5�2�
72�1 − Pav

A � − �116 + 9P�up
A �� − 38�2 
m0

A 	
�2

4
� .

�14�

As already noted, expressions �13� and �14� are only correct
for terrace length L�8 which corresponds to selected slopes
m0	�2/4, since for higher slopes �smaller terrace widths�
there is an overlap between the regions II and IV.

C. Surface current for A steps „L=5…

We now consider the surface current for the special case
of shorter terrace lengths L�8 for which there is an overlap
between regions II and IV and, as a result, Eqs. �13� and �14�
may break down. Since the possible terrace widths for A
steps are L=2, 5, 8…, the two possible special cases corre-
spond to L=2 and L=5. The first case �L=2� corresponds to
a �100� microfacet for which the surface current is negative
in our model. So we only need to consider the special case
L=5.

In this case the only sites on the terrace �see Fig. 4� where
deposited atoms can land correspond to the absorption fcc
site 0 and hcp site 1. We consider the contributions to the
surface current from two regions: region I �5	x�7.5� and
region IV �2.5	x�5�, which are similar to but slightly dif-
ferent from the regions I and IV considered in the general
case. We assume that there is no diffusion down the step
from these sites due to bonding to the ascending step edge.
Consequently, P1= P0=1. The resulting expressions for the
surface current have the following forms:

J̃1

F
=

1

L



L

L+2.5

�PA�x��x − 3� − �1 − PA�x���L + 3 − x��dx ,

�15�

J̃4

F
=

1

L



L−2.5

L

�P�A�x��x − 3� − �1 − P�A�x���L − x + 3��dx .

�16�

Simplifying, summing and substituting L=5 we obtain the

expression for the surface current per particle J̃A /F for the
case of short terrace length L=5,

J̃A

F
= 5P̃av

A − 3, �17�

where

P̃av
A =

P̃�up
A + P̃up

A

2
�18�

and

P̃�up
A =

1

2.5



2.5

5

P�A�x�dx , �19�

P̃up
A =

1

2.5



5

7.5

PA�x�dx . �20�

We can see that L0=5 is possible only if P̃av
A =0.6; for all

0� P̃av
A �0.6, the surface current is negative and the corre-

sponding selected terrace length will be longer than L0=5.

Here we note again that geometric DF corresponds to P̃av
A

=1/2 and thus implies a selected terrace length L0�5. For
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all P̃av
A �0.6, the surface current is positive and the corre-

sponding selected terrace length will be shorter than L0=5:
in between the L=5 and the value corresponding to the �100�
microfacet �L=2�, depending on the particular value of P̃av

A

�see Sec. III F 2�.

D. Surface current for B steps „LÐ7…

The calculation for B steps is similar to that for A steps,
except that, as already noted, in this case one has p= 1

3 and
q= 2

3 . The relationship between the absorption site c in the
1D random-walk picture �Fig. 2� and the terrace width L in
our units is L= �3c+8� /2, where c is an integer, which satis-
fies c=2K+2, where K=0, 1, 2, 3,… . In addition, the site
closest to the step edge is an fcc site. In this case, the prob-
ability for interlayer diffusion from the fcc site is again given
by � and the probability of diffusion down the step from the
last hcp site on the terrace is given by ��, while the � in Eqs.
�3a�–�3c� is given by �= �2�+3��−2���� / �1+2�+2��
−2����. Taking all these differences into account, we obtain
the following general expression for the total surface current
for B steps:

JB

F
=

�2 − 10� − 7�� + 10����L − 24�1 − Pav
B �

DB
+

��50 − 6�P�up
B + 2Pup

B �� + ���99 − 24Pav
B � − ����50 − 6�P�up

B + 2Pup
B ��

DB
, �21�

where L�7 and DB= �4�+6��−4����L+4−20�−34��
+20���.

As for A steps, we may use the assumption that the pro-
cesses of exchange from fcc and hcp sites are basically the
same, except for the binding energy difference in order to
obtain �see the Appendix� the expressions �=� / �2+�� and
��=� / �3+��, with �= ��ES/�0�exp�−EES

B /kBT�, where EES
B

corresponds to the Ehrlich-Schwoebel barrier for exchange
from the last fcc site and �ES/�0 is the ratio of prefactors for
exchange versus terrace diffusion. Substitution of these ex-
pressions into Eq. �21� yields

JB

F

=
�4 − 18� − 5�2�L − 48�1 − Pav

B � + 2�38 + 3P�up
B �� + 25�2

2�4 + 2�2L − 9�� + �L − 5��2�
,

�22�

where L�7, along with the corresponding expression for the
selected slope

m0
B =

2�2�4 − 18� − 5�2�
48�1 − Pav

B � − 2�38 + 3P�up
B �� − 25�2 
m0

B 	
2�2

7
� .

�23�

E. Surface current for B steps „L=4…

We now consider the surface current for the special case
of shorter terrace lengths L�7 for which there is an overlap
between regions II and IV and as a result Eqs. �22� and �23�
may break down. Since the possible terrace widths for B
steps are L=1, 4, 7,…, the two possible special cases corre-
spond to L=1 and L=4. The first case �L=1� corresponds to
a �111� microfacet, for which the surface current is negative
in our model. For the special case L=4 we obtain

J̃B

F
= 4P̃av

B − 3. �24�

Here P̃av
B = �P̃�up

B + P̃up
B � /2, where

P̃up
B =

1

2



4

6

PB�x�dx , �25�

P̃�up
B =

1

2



2

4

P�B�x�dx . �26�

We can see that L0=4 is possible only if P̃av
B =0.75; for all

0� P̃av
B �0.75, the surface current is negative and corre-

sponding selected terrace length will be longer then L=4.

FIG. 4. Schematic diagram �top view� of A and B steps on the
fcc�111� surface for the case of short terrace length.
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Here we note again that geometric DF corresponds to P̃av
B

=1/2 and thus implies a selected terrace length L0�4. For
all P̃av

B �0.75, the surface current is positive and the corre-
sponding selected terrace length will be shorter then L=4: in
between the L=4 and the value corresponding to �111� mi-
crofacet �L=1�, depending on the particular value of P̃av

B �see
Sec. III F 2�.

F. Calculation of selected slopes for intermediate cases

We note that for certain values of the uphill funneling
probabilities, the selected terrace length L0 will be interme-
diate between that for a short terrace �L=5�4�� and that for
the shortest terrace length that may be considered in general
case �L=8�7�� for A�B� steps. Then, the selected slope will
be determined by combining our results for the short terrace
as described in the previous section with the results corre-
sponding to the general case.

1. Intermediate case 1: �2/4Ïm0
AÏ2�2/5 and 2�2/7Ïm0

B

Ï�2/2

We first consider A steps. We suppose that P̃av
A �0.6 �see

Sec. III C� so that the surface current per particle J5
A /F cor-

responding to the short terrace L=5 is negative. We also
assume that the surface current per particle J8

A /F correspond-
ing to L=8 is positive. We are looking for values of N5 and
N8 such that the total surface current over N5 terraces of
length L=5 and N8 terraces of length L=8 is equal to zero

8
J8

A

F
N8 + 5

J5
A

F
N5 = 0. �27�

Here we have taken into account the fact, that the total num-
ber of atoms which land on a terrace of width L is propor-
tional to L. The intermediate value of selected slope, corre-
sponding to a mixture of N5 terraces of length L=5 and N8
terraces of length L=8 can then be expressed as

m0
A =

�N8 + N5�h
8N8 + 5N5

=
�5 − 8J8

A/J5
A�h

40�1 − J8
A/J5

A�
. �28�

Using Eq. �13� �with L=8� for J8
A and Eq. �17� for J̃A=J5

A

with h=2�2, we obtain

m0
A =

− �2�12 − 576Pav
A + 170� − 72P�up

A � + 41�2 + 75P̃av
A �4 + 14� + 3�2��

20�12 + 72Pav
A + 26� + 9P�up

A � + 5�2 − 15P̃av
A �4 + 14� + 3�2��

. �29�

Using the same approach, we can obtain the intermediate value of selected slope corresponding to a mixture of terraces with
terrace lengths L=4 and L=7 for B steps

m0
B =

− �2�22 − 168Pav
B + 55� − 21P�up

B � + 11�2 + 32P̃av
B �2 + 5� + �2��

14�2 + 24Pav
B + 5� + 3P�up

B � + �2 − 8P̃av
B �2 + 5� + �2��

. �30�

2. Intermediate case 2: mixture of short terraces and facets

For higher values of the uphill funneling probabilities,
such that the surface current is positive for short terraces, the
selected terrace length will be intermediate between that for
a microfacet �L=2 for A steps and L=1 for B steps� and the
short terrace �L=5 for A steps and L=4 for B steps�, e.g.
2�2/5	m0

A	�2 and �2/2	m0
B	2�2. We first consider the

case of A-steps �P̃av
A �0.6, see Sec. III C�. We assume that

there are nf regions with Ni
f microfacets in each region,

where 1	 i	nf and, similarly, there are nt regions with Ni
t

terraces in each region, where 1	 i	nt. The total number of

facets is Nf =�i=1
nf

Ni
f and the total number of terraces is Nt

=�i=1
nt

Ni
t. Once the values of Nf and Nt are determined, the

mound slope may be expressed as

�mA� =
Nt + Nf

5Nt + 2Nf h , �31�

where h=2�2.
Without loss of generality we can assume that nf =nt=n.

The surface current per particle corresponding to a region
composed of a sequence of Ni

f microfacets can be expressed
as �see Fig. 5�

FIG. 5. Details of facetted region composed of Ni
f

microfacets.
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Ji
f

F
=

1

L



0

2.5

�PA�x��2 + x� − �1 − PA�x���2Ni
f + 3 − x��dx

−
1

L



2.5

2Ni
f

�2Ni
f + �3 − x��dx , �32�

where L=2Nf +5Nt and we assume that any particle depos-
ited on a facet diffuses to the attachment site at the lower
terrace. This may be rewritten as

Ji
f

F
=

1

L
�12.5P̃up

A + 5P̃up
A Ni

f − 6Ni
f − 2�Ni

f�2� , �33�

where

P̃up
A =

1

2.5



5

7.5

PA�x�dx . �34�

The total contribution to the surface current per particle due
to the facetted regions can be expressed as

Jf

F
= �

i=1

n
Ji

f

F
=

1

L�12.5P̃up
A n − �6 − 5P̃up

A �Nf − 2�
i=1

n

�Ni
f�2� .

�35�

We now consider the surface current due to the regions
composed of short terraces, which include three contribu-
tions: J1 due to the topmost terrace in each region �Fig. 6�, J2
due to the bottom terrace in each region �Fig. 7�, and J3 due
to the interior terraces in each region. The surface current J3
may be calculated using the general expression for the sur-
face current of the short terrace. However, to calculate J1 and
J2 one must take into account the effect of the neighboring
facet.

The current J1 may be written as

J1
t

F
=

n

L



0

2.5

�x − 3�dx +
n

L



2.5

5

�P�A�x��x − 3� − �1 − P�A�x���8

− x��dx =
n

L
�12.5P̃�up

A − 15� , �36�

where

P̃�up
A �

1

2.5



2.5

5

P�A�x�dx . �37�

The current J2 may be written

J2
t

F
=

1

L
�
i=1

n �

0

2.5

�PA�x��2 + x� − �1 − PA�x���3 − x��dx

+ 

2.5

5

�P�A�x��x − 3� − �1 − P�A�x���2Ni
f + 8 − x��dx� ,

�38�

where the factor Ni
f takes into account the probability that an

atom deposited near the step edge lands on the facet and
diffuses to the bottom of the facetted region:

J2
t

F
=

1

L
�25P̃av

A n − 15n − 5�1 − P̃�up
A �Nf� . �39�

Using Eq. �17� for the surface current per particle due to a
single terrace, the contribution from all the other terraces can
be expressed as

J3
t

F
=

J̃A

F

5�Nt − 2n�
L

=
5

L
�5P̃av

A − 3��Nt − 2n� , �40�

where the factor of Nt−2n corresponds to the total number of
short terraces in this intermediate region. Combining all
three contributions and using the simplifying assumption that
Ni

f =Nf and Ni
t=Nt for all i, along with the requirement that

the total surface current is zero, yields

�Nf�2 + �11 − 10P̃av
A �Nf + 5�3 − 5P̃av

A �Nt = 0. �41�

Solving for Nf, we obtain for A steps

Nf =
− �11 − 10P̃av

A � + ��11 − 10P̃av
A �2 − 40�3 − 5P̃av

A �Nt

4
,

�42�
�0.6 � P̃av

A 	 1� .

For simplicity we have made the reasonable assumption that
the uphill funneling probability for atoms deposited above
the facetted region adjacent to the upper terrace within a
distance �=2.5 from the step edge has the same distribution
PA�x� �P�A�x�� as in the case of the deposition near step-edge
between two short terraces �see Sec. III A�.

Using the same approach, we can obtain the intermediate
value of the selected slope corresponding to a mixture of
short terraces �L=4� and �111� microfacets �L=1� for B steps

FIG. 6. Details of deposition over the topmost terrace in a se-
quence of short terraces.

FIG. 7. Details of deposition over the bottom terrace in a se-
quence of short terraces.
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�mB� =
Nt + Nf

4Nt + Nf h , �43�

where again h=2�2 and

Nf =
− 2�5 − 4P̃av

B � + �4�5 − 4P̃av
B �2 + 32�4P̃av

B − 3�Nt

2
,

�44�
�0.75 � P̃av

B 	 1� .

We note that Eqs. �31� and �42�–�44� indicate that the se-
lected slope depends on the values of Nt. However, for real-
istic values of uphill funneling probabilities, we find that,
except for small Nt, this dependence is relatively weak.

IV. DISCUSSION

Our results indicate that there are two key parameters
which determine the surface current and selected mound
slope. The first parameter �= ��ES/�0�exp�−EES/kBT� corre-
sponds to the Ehrlich-Schwoebel barrier and is typically dif-
ferent for A and B steps. The second set of parameters P�up
and Pup corresponds to the interaction of a depositing atom
with a step edge, and as recent molecular dynamics simula-
tions have shown,26 can also be very different for A and B
steps. We note that for the case of an infinite ES barrier
corresponding to �=0, our general expressions for the se-
lected slope �Eq. �14� and Eq. �23� for A and B steps, respec-
tively� reproduce the results previously derived for this
case26 which are valid when the selected slope is not too
high, i.e.,

m0 =
�2

6�1 − Pav�
, m0 � mc, �45�

where Pav= �Pup+ P�up� /2 and mc=�2/4 �2�2/7� for A �B�
steps. We now discuss in more detail our results for the case
of a finite ES barrier ���0�.

We first note that Eqs. �13�, �14�, �22�, and �23� for the
surface current and mound slopes for A and B steps can be
written in the following general form:

J

F
=

�A − B� − C�2�L − �D − E� − F�2�
X

, �46�

m0 =
A − B� − C�2

D − E� − F�2 , �47�

where the constants A ,B ,C ,D ,E ,F�0 and the denominator
X�0 for all terrace widths L for which they are valid. Since
the criterion for a mound instability is that the surface cur-
rent is positive for small slopes, while the selected slope m0
is determined by the zero of the surface current, this implies
that there exists a critical value �=�c, corresponding to the
positive root of the numerator of Eq. �47�, e.g., A−B�
−C�2=0. Since the numerators in Eqs. �14� and �23� are
independent of the uphill funneling probabilities, the critical
value of � is also independent, i.e.,

�c =
− 9 + �101

5
� 0.21 �48�

for both A and B steps. For ���c the surface is unstable to
mound formation since the surface current is positive for
small slopes �large L�. In contrast, for ���c there is no
mound instability for small slopes. We note that similar be-
havior in which the critical ES barrier for mound formation
is independent of the upward funneling probability has pre-
viously been observed in calculations of surface current and
selected slope for the case of irreversible growth on �100�
metal surfaces.16,17

We may also define �0 as the positive root of the denomi-
nator of Eq. �47�, e.g., D−E�−F�2=0. Using Eqs. �13� and
�22� we obtain

�0
A =

1

76
��− 116 − 9P�up

A �

+ �24400 − 10944Pav
A + 2088P�up

A + 81�P�up
A �2� ,

�49a�

�0
B =

1

50
�− 2�38 + 3P�up

B � + �4800�1 − Pav
B � + 4�38 + 3P�up

B �2� .

�49b�

Depending on the values of Pav and P�up, there are then two
different possible scenarios for the dependence of the se-
lected mound slope on the parameter �.

Scenario 1: �c	�0. This scenario applies when the uphill
funneling probabilities Pup and P�up are not too high. For
example, the usual downward funneling assumption21,22

�Pup=0, P�up=1, Pav=1/2� falls into this scenario. Scenario
1 may be further divided into two cases.

�a� Surface current is negative for short terraces �P̃av
A

�0.6 for A steps and P̃av
B �0.75 for B steps �see Sec. III C��.

In this case, as � approaches the critical value �c from below,
the selected mound slope decreases continuously to zero �see
Fig. 8�a��. However, for ���c, the surface current is nega-
tive for all slopes and there is no instability.

�b� Surface current is positive for short terraces �P̃av
A

�0.6 for A steps and P̃av
B �0.75 for B steps �see Sec. III C��.

In this case the behavior of the selected slope is similar to
�a� for small slopes and � slightly less than �c. However, for
small � the selected slope corresponds to a mixture of short
terraces and facets and is typically independent of �. In ad-
dition, for ���c, while the surface current is negative for
small slopes, for m�m*��� (where m*��� may be calculated
for A steps �B steps� using Eqs. �29� and �30�—see dashed
curves in Figs. 9�b� and 11�b�) it becomes positive due to the
contribution from short terraces. As a result, if a fluctuation,
due for example to deposition noise, leads to a local slope
mloc�m*���, then fluctuation-induced mound formation will
occur with a selected slope which is the same as for small �.
Such a fluctuation-induced instability may occur even for a
small or negative ES barrier.

Scenario 2: �c��0. This scenario applies when the uphill
funneling probabilities Pup and P�up are relatively high. As �
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increases, the general expression for the selected slope �47�
diverges at �=�0 �see Fig. 8�b��. In addition for �0����c,
the general expression predicts a negative selected slope. As
a result, the values of the selected slope predicted by the
general Eqs. �14� and �23� for 0����c are outside the lim-
its of their validity, e.g., m0

A��2/4�0.35 and m0
B�2�2/7

�0.40 which correspond to the minimum terrace lengths that
may be considered in our general calculations of the surface
current and selected mound slope. Accordingly, the selected
slopes need to be calculated by considering the special cases
corresponding to either a mixture of short terraces and the
shortest terraces that may be considered in the general case
�Sec. III F 1�, or of facets and short terraces �Sec. III F 2�. In
contrast while the surface is stable for small slopes for �
��c, due to the large uphill funneling probabilities the sur-
face becomes again unstable for large slopes m�m*���. As
for the case of scenario 1�b� this leads to the possibility of
fluctuation-induced mound formation for large � �small ES
barrier�.

Figures 9–12 show the range of possible behaviors for the
selected slope as a function of � for both scenarios for A and
B steps. We note that while results are shown for ��1 cor-
responding to EES�0, the fluctuation-induced instability re-
gime also extends to ��1 corresponding to a negative ES
barrier. The results shown correspond to values of Pav rang-
ing from zero �maximum downhill funneling� to very strong
uphill funneling �Pav close to 1�. As shown in Figs. 9�a� and
11�a�, for small uphill funneling the first scenario holds for
both A and B steps. In particular, for ���c the surface is
stable, while for ���c the mound slope decreases with in-
creasing �. In addition, as the uphill funneling probability
increases, the selected mound slope m0 increases more rap-
idly with decreasing �. In contrast, Figs. 9�b� and 11�b� cor-

respond to case �b� of the first scenario when the uphill fun-
neling is not too large, but large enough so that the surface
current is positive on the “short” terraces �P̃av

A �0.6 for A
steps and P̃av

B �0.75 for B steps—see Sec. III C�. As can be
seen, the selected slope is large and constant for small � and
decreases for intermediate � ����c�. For ���c there is no
instability for small slopes. However, for large enough slopes
a fluctuation-induced instability is possible.

In contrast, for larger uphill funneling, the second sce-
nario holds as shown in Figs. 10 and 12. In this case the
selected mound slope corresponds to a mixture of facets and
short terraces and depends on the uphill funneling probabil-
ity, but does not depend on � for ���c. For ���c the sur-
face is stable to small fluctuations in the slope. However, for
slopes m�m*��� there is an instability and the value of the
selected slope �dashed horizontal lines in Figs. 10 and 12�
corresponds to a mixture of facets and short terraces, just as
for ���c.

We note that in recent molecular dynamics simulations of
deposition near steps on fcc�111� metal surfaces,26 the uphill
funneling probabilities were found to be much stronger for A
steps than for B steps, due to the differences in step geom-
etry. In particular it was found that for A steps, due to the
short-range attraction of depositing atoms to the step-edge,
the overall uphill funneling probability Pav

A is significantly
larger than predicted by downward funneling. This corre-
sponds to the second scenario �see Fig. 10�. In particular, the
parameters used in Fig. 10 correspond to the uphill funneling
values obtained in molecular dynamics simulations of depo-

sition at Ag�111� A steps26 along with an estimate for P̃av
A for

short terraces. In contrast, due to the high probability of
“knockout” or exchange at B steps, the overall uphill funnel-
ing probability Pav

B is significantly lower which leads to the

FIG. 8. �a� Corresponds to scenario 1 and �b�
corresponds to scenario 2. The solid curve indi-
cates the branch which includes valid general so-
lutions, while dashed curves correspond to gen-
eral solutions which are either outside the valid
range or do not correspond to an instability �see
text�.

FIG. 9. Selected mound slope of A steps as
function of � �scenario 1� for several different

values of Pav and P̃av. �a� Pav and P̃av are not too

large �P̃av�0.6�. Case 1 corresponds to Pav=0,
case 2 to Pav=1/2 �DF�, case 3 to Pav=0.57,

P̃av=0.59. �b� Discontinuity in slope �Pav=0.57,

P�up=1, P̃av=0.65�. The dashed curve indicates
critical slope for fluctuation-induced mound
formation.
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first scenario. In particular, case 3 of Fig. 11�a� corresponds
to the uphill funneling values obtained in molecular dynam-
ics simulations of deposition at Ag�111� B steps26 along with

an estimate for P̃av
B for short terraces. We note that these

results imply a significant mound-slope anisotropy in agree-
ment with the scanning-tunneling microscopy pictures of the
large-scale mounds formed during room-temperature growth
of Ag/Ag�111�.2

V. CONCLUSIONS

We have obtained general expressions for the surface cur-
rent and selected mound slope for irreversible growth on a
regular stepped fcc�111� surface with two types of close-
packed step edges �A and B steps�. In our calculations we
have taken into account the effects of the interaction between
depositing atoms and steps, as well as the effects of a finite
ES barrier to interlayer diffusion of atoms at the last fcc and
hcp sites near the step edge. The resulting expressions for the
surface current and selected mound slope depend sensitively
on the values of the uphill funneling probabilities as well as
on the value of the parameter �= ��ES/�0�exp�−EES/kBT�.

In our calculations we have also considered the case of
short terrace lengths �L=4 for B steps and L=5 for A steps�
for which our general expressions for the surface current and
selected mound slope may break down. In particular, it was

shown that for enhanced uphill funneling with P̃av� P̃av
c

�where P̃av
c =0.6 for A steps and P̃av

c =0.75 for B steps� short
terraces must be considered when calculating the selected
mound slope. In particular, we have considered the case
when the slope is intermediate between that corresponding to
the shortest possible terrace in the general case �LB=7 and
LA=8� and the “short” terrace �LB=4 and LA=5� correspond-
ing to a terrace with one empty row of fcc adsorption sites,
e.g., �2/4	m0

A	2�2/5 and 2�2/7	m0
B	�2/2. We have

also considered the case when the slope is even larger and is
intermediate between that corresponding to a “short” terrace
and a facet ��111� microfacet for B steps or �100� microfacet
for A steps�. We note that in our calculations we assumed
perfect “downward funneling” for atoms deposited on micro-
facets. While this is a reasonable approximation for short
microfacets, for larger microfacets it is more suitable for B
steps than for A steps due to the low activation energies for
diffusion on �111� microfacets. Consideration of this effect is
likely to lead to a further enhancement of the anisotropy
already observed in our calculations.

We have also analyzed the expressions for the surface
current and selected mound slope and discussed two possible
scenarios corresponding to different values of the key param-
eters. In particular, we found that the critical value of �, e.g.,
�c= �−9+�101� /5�0.21 is independent of the degree of up-
hill funneling. In both scenarios the surface is unstable for
���c for small slopes while for ���c the surface is stable
for small slopes. For small values of uphill funneling, sce-
nario 1 holds and the selected slope decreases with increas-
ing � up to the value �=�c, while for ���c there is no
instability. However, for larger values of uphill funneling

FIG. 10. Selected mound slope of A steps as function of � for
scenario 2 �enhanced uphill funneling�. Parameters here are Pav

=0.72, P̃av=0.76, P�up=1. Dashed curve indicates critical slope for
fluctuation-induced mound formation.

FIG. 11. Selected mound slope of B steps as
function of � �scenario 1� for several different

values of Pav and P̃av. �a� Pav and P̃av both not

too large �P̃av�0.75�. Case 1 corresponds to
Pav=0, case 2 to Pav=1/2 �DF�, case 3 to Pav

=0.53, P�up=0.71, P̃av=0.62. �b� Discontinuity in

slope �Pav=0.57, P�up=0.9, P̃av=0.77�. Dashed
curve indicates critical slope for fluctuation-
induced mound formation.

FIG. 12. Selected mound slope of B steps as function of � for
scenario 2 �enhanced uphill funneling�. Parameters here are Pav

=0.8, P̃av=0.9, P�up=1. Dashed curve indicates critical slope for
fluctuation-induced mound formation.
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probabilities, e.g., P̃av�0.6 �0.75� for A steps �B steps�, the
surface may become unstable even for ���c and the se-
lected slope may reach the value corresponding to the mix-
ture of facets and short terraces. Thus, in this case there
exists the possibility of mound formation due to fluctuations
even for a small ES barrier. We note such a fluctuation-
induced instability is a new phenomenon which has not been
previously discussed. Similar behavior is observed for the
case of even larger values of the uphill funneling probabili-
ties such that scenario 2 holds. In this case the selected slope
corresponds to a mixture of facets and short terraces and is
approximately constant for ���c. However, for ���c, the
surface again becomes unstable for larger slopes. Thus, in
this case there again exists the possibility of mound forma-
tion due to fluctuations even for a small ES barrier.

Finally, we note that while our model is as general as we
could make it, it is possible that for some metal �111� sur-
faces a more complicated model would be required. For ex-
ample, it has recently been suggested27 that in some �111�
systems correlated jumps may play an important role in the
diffusion process. While it is unclear how this would affect
the surface current, we note that this effect is mainly impor-
tant at higher temperatures. We also note that field-ion-
microscope studies of diffusion on Ir�111� �Refs. 31 and 32�
indicate that the potential energy surface for an atom near a
step edge may include the existence of a so called “empty
zone” separating the central region of the terrace from the
step-edge region. For such systems, our model would have to
be modified to take this into account.
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APPENDIX: CALCULATION OF �„�…

Here we first obtain a general expression for � as a func-
tion of the probabilities � and �� of diffusion down a step
from the fcc and hcp sites closest to the step edge. Using
reasonable assumptions about the exchange process and
symmetry of the saddle-point site, this leads to a direct ex-
pression for � as a function of the Erhlich-Schwoebel param-

eter �. We first consider the case of B steps. In this case �see
Figs. 2, 3, and 13� one may write

Pc−1 = ��Pc−2 + 2��P*, �A1�

P* = 2�Pc−1, �A2�

where ��= �1−��� /3 is the probability of going from the last
hcp site at the edge of the terrace to any of the three nearby
fcc sites and �= �1−�� /2 is the probability of going from the
last fcc site at the edge of the terrace to any of the two nearby
hcp sites. Pi is the probability that a particle deposited at site
i will be absorbed at site 0. P* corresponds to the last site on
the terrace, which is an fcc site in case of B steps. Solving we
obtain

Pc−1 =
��

1 − 4���
Pc−2. �A3�

Comparing with Eq. �1c� that defines �, e.g., Pc−1
= �1−��Pc−2 and substituting for � and �� we obtain

� =
2� + 3�� − 2���

1 + 2� + 2�� − 2���
. �A4�

We now assume that the rate for hopping from the last fcc
site �*� to any of the one of the two nearby hcp sites �c−1� is
given by D=�0e−Ea/kBT�where Ea is the corresponding activa-
tion energy for diffusion from fcc to hcp sites on the flat
terrace� while the rate for interlayer diffusion from the last
hcp site �c−1� is given by DES=�ESe−�Ea+EES�/kBT. We thus
obtain

� =
D

2D + DES
=

1

2 + �
, �A5�

where �=DES/D= ��ES/�0�e−EES/kBT.
We now assume that the saddle-points for interlayer ex-

change from the last hcp site and the last fcc site are essen-
tially the same �see Ref. 28�. Defining the difference between
the binding energies of adatoms at fcc and hcp sites as �Eb
=Eb

fcc−Eb
hcp, we can see that the rate for hopping from the

last hcp site �c−1� to any of the nearby fcc sites is given by
D�=e�Eb/kBTD while the rate for interlayer diffusion from the
last hcp site �c−1� is given by D�ES=e�Eb/kBTDES. Thus we
obtain for ��,

�� =
D�

3D� + D�ES
=

D

3D + DES
=

1

3 + �
. �A6�

Solving for � and �� we obtain �=1−2�=� / �2+�� and ��
=1−3�=� / �3+��. Substituting in Eq. �A4� we obtain

���� =
��4 + ��

2 + 5� + �2 . �A7�

For A steps we can use the same approach, except that the
last site on the terrace is an hcp site. In this case we obtain
�= �3�+2��−2���� / �1+2�+2��−2����, where now �
=� / �3+�� and ��=� / �2+��. This again leads to Eq. �A7� for
A steps, although in general the values of EES and thus � are
different for A and B steps.

FIG. 13. Diagram showing details of diffusion down the step for
B steps.
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