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We consider the scattering of electromagnetic waves by a left-handed cylinder—i.e., by a cylinder fabricated
from a left-handed material—in the framework of complex angular momentum techniques. We discuss both the
TE and TM theories. We emphasize more particularly the resonant aspects of the problem linked to the
existence of surface polaritons. We prove that the long-lived resonant modes can be classified into distinct
families, each family being generated by one surface polariton propagating close to the cylinder surface, and
we physically describe all the surface polaritons by providing, for each one, its dispersion relation and its
damping. This can be realized by noting that each surface polariton corresponds to a particular Regge pole of
the S matrix of the cylinder. Moreover, for both polarizations, we find that there exists a particular surface
polariton which corresponds, in the large-radius limit, to the surface polariton which is supported by the plane
interface. There exists also an infinite family of surface polaritons of whispering-gallery type which have no
analogs in the plane interface case and which are specific to left-handed materials.
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I. INTRODUCTION

In an article published in 1967 �see Ref. 1 for the English
translation�, Veselago speculated upon the alteration of elec-
tromagnetic and optical phenomena in hypothetical materials
for which the electric permittivity and the magnetic perme-
ability �and therefore the refractive index1,2� were simulta-
neously negative in a certain range of frequencies. He pre-
dicted more particularly the existence, in such materials, of
anomalous effects such as a reversed Doppler shift, reversed
Cerenkov radiation, negative radiation pressure, and inverse
Snell-Descartes law. Since in such substances the electric
field, the magnetic field, and the wave vector of a plane wave
form a left-handed system, so that the Poynting vector and
the wave vector have opposite direction, he referred to them
as left-handed media and here we shall use this terminology,
even if today other authors prefer to call this kind of mate-
rials “negative index media,” “double negative media,” or
“Veselago’s media.” Four years ago, following insights from
Pendry and co-workers,3–5 Smith and co-workers6–8 have
been able to build, for the first time, an artificial left-handed
medium by combining arrays of wires and split-ring resona-
tors and to experimentally test “left-handed electromagne-
tism” in the microwave frequency range. Since then, several
other groups have successfully fabricated left-handed media
and experimentally studied the alteration of electromagnetic
phenomena �see, for a comprehensive list of references, the
popular article by Pendry and Smith9�. Now, the possibility
to create left-handed materials working in the optical domain
is seriously foreseen and, very recently, negative refraction
has been even observed at infrared wavelengths in the con-
text of photonic crystal physics.10 Of course, the unusual and
remarkable properties of left-handed media could revolution-
ize optoelectronics and communications. Many technological
applications are already considered including superlenses,
bandpass filters, beam guiders, and light-emitting devices. As

a consequence, this recent new field of physics has attracted
the interest of many researchers and is rapidly evolving and
the corresponding scientific literature is exploding.

In this article, we shall focus our attention on a particular
problem of left-handed electromagnetism: namely, the scat-
tering of an electromagnetic wave by a “left-handed
cylinder”—i.e., by an homogeneous cylinder fabricated from
a left-handed material. This problem has been already con-
sidered by Kuzmiak and Maradudin11 but we shall reexamine
it in the framework of complex angular momentum �CAM�
techniques.12,13 In fact, we are above all interested in the
resonant aspects of scattering linked to the existence of sur-
face polaritons �SP’s� and, by using CAM techniques, we
shall be able to provide a theoretical description of SP’s
propagating close to the left-handed cylinder surface as well
as a physical explanation for the excitation of the associated
resonant modes.

Let us recall here that SP’s are electromagnetic surface
waves propagating close to the interface separating two dif-
ferent media with an amplitude that decays in an exponential
fashion perpendicularly to the interface and into both media.
SP’s supported by metal-dielectric or semiconducting-
dielectric interfaces have been extensively studied during the
last 40 years because of the fundamental role they play in the
context of the interaction of electromagnetic radiation with
matter but also because of their numerous practical applica-
tions in physics, chemistry, and biology �for reviews on this
subject we refer to Refs. 14–17�. Recently, activity has fo-
cused particularly on the role of SP’s in photonic crystal
physics �see, for example, Refs. 18–28� as well as on their
role in the enhanced transmission of light through periodic
arrays of holes in a metal film29 �see also Ref. 30 and refer-
ences therein�. Of course, the scientific literature dealing
with SP’s localized at the interface separating a left-handed
medium and a conventional one is much less developed and
it is still too early to judge their importance in left-handed
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electromagnetism. However, it is already obvious that it will
not be negligible: indeed, it seems that SP’s play a central
role in the superlensing phenomenon31–34 and in the giant
Goos-Hänchen effect recently discovered.35

The theory of SP’s supported by left-handed media has
been studied in Refs. 36–38 in the case of a plane interface.
In that configuration, we can consider that the properties of
SP’s are now completely known. They have been obtained
from rather elementary calculations involving homogeneous
and inhomogeneous plane waves. The existence of SP’s in
the presence of a curved interface has been noted in the
article by Kuzmiak and Maradudin11 previously cited and in
an article by Ruppin39 dealing with scattering from a sphere.
But it should be noted that neither of these two articles pro-
vide a clear physical description of SP’s. This is mainly due
to the fact that, unlike the case for a plane interface, in the
case of a curved interface the wave equation cannot be
solved in terms of elementary functions. As a consequence,
the description of SP’s involves transcendental equations
which obscures any analysis. Fortunately, it is possible to
circumvent these difficulties by using CAM techniques
�here, we refer to the Introduction of Ref. 40 for a short
bibliography on this topic� in connection with modern as-
pects of asymptotics.41–44 It is exactly what we did in a re-
cent article40 dealing with scattering of electromagnetic
waves from metallic and semiconducting cylinders—i.e., in
the presence of dispersive materials. This allowed us to pro-
vide a clear physical explanation for the excitation mecha-
nism of the resonant surface polariton modes �RSPM’s� as
well as a simple mathematical description of the SP’s that
generate them. In the present paper, we shall extend this
analysis to left-handed cylinders but before we embark on
this work we shall briefly discuss the limitations of our ap-
proach. We first recall that the CAM method is an asymptotic
approach and that formally it is only valid for high frequen-
cies or more precisely when the radius a of the cylinder is
large compared to the wavelength �=2�c /� of the electro-
magnetic field. In fact, this limitation must not be taken too
seriously. Indeed, in practical applications CAM techniques
provide good results even if ��a. Moreover, in the present
problem we cannot assume that a is very large compared to
�. Indeed, in that case, the wavelength of the electromagnetic
field could become comparable to the size a� of the unit cell
of the left-handed material and the cylinder could not be
treated as homogeneous. In other words, the analysis we
shall provide in the next sections is formally valid for a�
���a.

Our paper is organized as follows. In Sec. II, we introduce
our notations and we construct the S matrix of the system.
We consider the TE theory �H polarization� as well as the
TM theory �E polarization�. We then discuss the resonant
aspects of our problem for both theories. In Sec. III by work-
ing in the CAM plane, we qualitatively describe the SP’s
supported by the left-handed cylinder. Then, in Sec. IV, by
using CAM techniques, we establish the connection between
these SP’s and the associated RSPM’s. In Sec. V by using
asymptotic techniques, we describe semiclassically the dif-
ferent SP’s and we provide analytic expressions for their dis-
persion relations and their damping. We show more particu-
larly the existence of SP’s of whispering-gallery type.

Finally, in Sec. VI, we conclude our article by emphasizing
the main results of our work.

II. EXACT S MATRICES AND SCATTERING
RESONANCES FOR THE TE AND TM THEORIES

From now on, we consider the scattering of electromag-
netic waves by a cylinder with circular cross section and
radius a having an effective frequency-dependent permittiv-
ity ���� and an effective frequency-dependent permeability
����. Here and in the following, we implicitly assume the
time dependence exp�−i�t� for electric and magnetic fields.
We consider that the cylinder is embedded in a host medium
of infinite extent having the electromagnetic properties of the
vacuum. We introduce the usual cylindrical polar coordinate
system �� ,	 ,z�. It is chosen so that the cylinder and sur-
rounding medium, respectively, occupy the regions corre-
sponding to the range 0��
a �region II� and to the range
��a �region I�. Furthermore, in order to describe wave
propagation we also introduce the wave number

k��� =
�

c
, �1�

where c denotes the velocity of light in vacuum, and the
refractive index of the cylinder,

n��� = ��������� . �2�

As far as the electric permittivity ���� and the magnetic
permeability ���� of the cylinder are concerned, we assume
they are, respectively, given by

���� = 1 −
�p

2

�2 �3�

and

���� = 1 −
F�2

�2 − �0
2 = �1 − F���2 − �b

2

�2 − �0
2� , �4�

where 0
F
1 and �b=�0 /�1−F. Here we have consid-
ered that the cylinder is fabricated from a metamaterial. Of
course, the parameters �p, �0, and F depend on its structure.
But we would like to be as general as possible in our analy-
sis, and therefore we do not restrict our study to any particu-
lar metamaterial �see, however, the discussion in the last
paragraph of our conclusion�. As a consequence, we do not
attribute any “microscopic” interpretation to the parameters
�p, �0, and F in terms of the internal structure of the
metamaterial considered. Similarly, we do not precise the
frequency range where �p and �0 lie. We only assume that
�0
�b
�p. We then have ����
0 in the frequency range
�� �0,�p� and ����
0 in the frequency range �
� ��0 ,�b�. Thus, the electric permittivity, the magnetic per-
meability and the refractive index are simultaneously nega-
tive in the region �0
�
�b. In that region the metamate-
rial presents left-handed behavior. As far as the numerical
aspects of our work are concerned, we shall work with F
=0.4 and with the reduced frequencies �0a /c=5.52, �ba /c
�7.127, and �pa /c=11.04. Even though we restrict our-
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selves to that particular configuration, the results we shall
obtain numerically are in fact very general and they permit
us to correctly illustrate the theory.

Here and from now on, we choose to treat our problem in
a two-dimensional setting, ignoring the z coordinate. We
briefly recall the equations governing the TE theory where
the magnetic field H is parallel to the cylinder axis �H po-
larization� and the TM theory where the electric field E is
parallel to the cylinder axis �E polarization�. From Maxwell’s
equations it is easy to show that the z components of the
magnetic and electric fields satisfy the Helmholtz equation

	�x + n2�����

c
�2
�Hz

II�x� = 0,

Ez
II�x� = 0,

� for 0 � � 
 a ,

�5a�

	�x + ��

c
�2
�Hz

I�x� = 0,

Ez
I�x� = 0,

� for � � a , �5b�

with x= �� ,	� and where the Laplacian �x is expressed in the
polar coordinate system. For the TE theory, from the conti-
nuity of the tangential components of the electric and mag-
netic fields—i.e., of E	 and Hz—at the interface between
regions I and II, it can be shown that the z component of the
magnetic field satisfies, for 0�	
2�,

Hz
I�� = a,	� = Hz

II�� = a,	� , �6a�

�Hz
I

��
�� = a,	� =

1

����
�Hz

II

��
�� = a,	� . �6b�

For the TM theory, the continuity of the tangential compo-
nents of the electric and magnetic fields—i.e., of Ez and
H	—at the interface between regions I and II permits us to
show that the z component of the electric field satisfies, for
0�	
2�,

Ez
I�� = a,	� = Ez

II�� = a,	� , �7a�

�Ez
I

��
�� = a,	� =

1

����
�Ez

II

��
�� = a,	� . �7b�

We can now construct the S matrix for the cylinder for
both polarizations. Because of the cylindrical symmetry of
the scatterer, the S matrix is diagonal and its elements
S������ are given by S������=S�������. It should be re-
called that the S matrix is of fundamental importance be-
cause it contains all the information about the scattering pro-
cess. Its components appear in the Green functions of the
problem, in the scattered field when a plane wave excites the
cylinder as well as in both the scattering amplitude and the
total scattering cross section. For the TE and TM theories,
we shall denote, respectively, by S�

H��� and S�
E��� the

S-matrix diagonal elements. For a given angular momentum
index ��Z, the coefficients S�

H and S�
E are, respectively, ob-

tained from the partial wave �Hz�� and �Ez�� solutions of the
following problem:45

�i� �Hz�� and �Ez�� satisfy the Helmholtz equations �5a�
and �5b�,

�ii� �Hz�� and �Ez��, respectively, satisfy the boundary
conditions �6� and �7�,

�iii� at large distance, �Hz�� and �Ez��, respectively,
present the asymptotic behaviors

�Hz����,	� 
�→+�

1
�2�k�

�e−i�k�−��/2−�/4�

+ S�
H���ei�k�−��/2−�/4��ei�	,

�Ez����,	� 
�→+�

1
�2�k�

�e−i�k�−��/2−�/4�

+ S�
E���ei�k�−��/2−�/4��ei�	.

Outside the cylinder �region I�, the solution of Eqs. �5a� and
�5b� is expressible in terms of Bessel functions �see Ref. 46�
as a linear combination of J���� /c�ei�	 and H�

�1���� /c�ei�	.
Inside the cylinder �region II�, it is proportional to
J��n����� /c�ei�	. As a consequence, the partial waves �Hz��

and �Ez�� solutions of �i� and �ii� can be obtained exactly.
Then, by using the standard asymptotic behavior of Hankel
functions H�

�1��x� and H�
�2��x� for x→� �see Ref. 46�, we find

from �iii� the expressions of the diagonal elements S�
H and S�

E

of the S matrix for the TE and TM theories. We have

S�
H��� = 1 − 2

C�
H���

D�
H���

, S�
E��� = 1 − 2

C�
E���

D�
E���

, �8�

where C�
H���, D�

H���, C�
E���, and D�

E��� are 2�2 determi-
nants which are explicitly given by

C�
H��� = �����/����J����a/c�J�„n����a/c…

− J���a/c�J��„n����a/c… , �9a�

D�
H��� = �����/����H�

�1����a/c�J�„n����a/c…

− H�
�1���a/c�J��„n����a/c… �9b�

and

C�
E��� = �����/����J����a/c�J�„n����a/c…

− J���a/c�J��„n����a/c… , �10a�

D�
E��� = �����/����H�

�1����a/c�J�„n����a/c…

− H�
�1���a/c�J��„n����a/c… . �10b�

For both polarizations, the unitarity of the S matrix,12 which
expresses the energy conservation, and the reciprocity
property,12 which is associated with time-reversal invariance,
can be easily verified by using elementary properties of
Bessel functions.

As far as the scattering amplitude f�� ,	� and the total
scattering cross section per unit length of the cylinder �T���
are concerned, they are, respectively, given by
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f��,	� =� 1

2i�k�����=0

+�

���S���� − 1�cos��	� , �11�

where �� is the Neumann factor ��0=1 and for ��0, ��=2�
and

�T��� =� 8�

k���
Im�e−i�/4f��,	 = 0�� . �12�

It should be noted that the definition �12� assumes the uni-
tarity of the S matrix. It is obtained by using the optical
theorem.12 From the expressions �8�–�10� of the S matrices
and by using expressions �11� and �12�, we obtain the total
cross sections �T

H��� and �T
E��� for the TE and TM theories.

We have

�T
H��� =

4

k�����=0

+�

���C�
H���

D�
H���

�2

�13�

and

�T
E��� =

4

k�����=0

+�

���C�
E���

D�
E���

�2

. �14�

Here, it should be noted that our expressions for the total
cross sections �T

H��� and �T
E��� are different from the ex-

pressions given by Kuzmiak and Maradudin.11 It seems to us
that these authors have incorrectly applied the boundary con-
ditions for the electric and magnetic fields at the cylinder
surface.

In Figs. 1�a� and 2�a�, we display the total cross sections
for the TE and TM theories. They are both plotted as func-
tions of the reduced frequency �a /c. In the two figures,
rapid variations of sharp characteristic shapes can be ob-
served. For the H polarization, this strongly fluctuating be-
havior is localized within and slightly around the frequency
range where the cylinder presents left-handed behavior,
while for the E polarization, it is totally localized within that

frequency range. For both polarizations, such strongly fluc-
tuating behavior is due to the scattering resonances associ-
ated with the long-lived resonant modes of the cylinder—i.e.,
the long-lived resonant states of the photon-cylinder system.
These resonances are the poles of the S matrix lying in the
fourth quadrant of the complex � plane near the real � axis.
Resonances are determined by solving

D�
H��� = 0 for � � N �15�

for the TE theory and

D�
E��� = 0 for � � N �16�

for the TM theory. In Figs. 1�b� and 2�b�, resonances are
exhibited for both theories. For certain frequencies, we can
clearly observe a one-to-one correspondence between the
peaks of �T��� and the resonances near the real �a /c axis
but in general the situation seems very confused. This is due
to the profusion of long-lived resonant modes in and around
the frequency range where the cylinder presents left-handed
behavior. Furthermore, by zooming in on the distribution of
resonances in regions close to the real axis of the complex �
plane, we have also observed accumulations of resonances
for large values of �.

�i� For the TE theory, there exists an accumulation of
resonances which converges to the limiting frequency �s sat-
isfying

���s� + 1 = 0 �17�

and given by

�s =
�p

�2
. �18�

We have for the corresponding numerical reduced frequency
�sa /c�7.806.

�ii� For the TM theory, there exists an accumulation of
resonances at the limiting frequency � f satisfying

FIG. 1. TE theory. �a� Total cross section �T
H. �b� Scattering

resonances in the complex �a /c plane.

FIG. 2. TM theory. �a� Total cross section �T
E. �b� Scattering

resonances in the complex �a /c plane.
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��� f� + 1 = 0 �19�

and given by

� f = �0� 2

2 − F
. �20�

We have for the corresponding numerical reduced frequency
� fa /c�6.172.

�iii� For both theories, there exists an accumulation of
resonances at the pole �0 of ���� and which corresponds
more precisely to

���0� = − � . �21�

In summary, as far as the spectrum of resonances is con-
cerned, the left-handed cylinder is a physical system much
richer than the metallic or the semiconducting cylinder �see
Figs. 1 and 2 of Ref. 40 and the discussion at the end of Sec.
II of that reference� and this is certainly very interesting for
practical applications of left-handed electromagnetism. With
this aim in view, it is necessary to understand the resonance
spectrum of the left-handed cylinder from a physical point of
view—i.e., to decode the underlying physics. That is what
we shall do in the next sections. More precisely, we shall
prove that this resonance spectrum is generated by SP’s or-
biting around the cylinder and we shall provide a numerical
and a theoretical description of these surface waves.

It should be noted that the spectrum of resonances lies
beyond the frequency range where n���
0 �long-wave and
short-wave scattering�. The corresponding resonant modes
are associated with bulk polaritons. Their complex reso-
nances appear in Figs. 1�b� and 2�b�. Their imaginary parts
are much larger in modulus than those associated with the
resonant modes generated by SP’s. As a consequence, they
have a shorter lifetime, they do not play a significant role in
the scattering process �see Figs. 1�a� and 2�a� beyond the
frequency range where n���
0� and so they are much less
interesting with in mind practical applications. For all these
reasons, we focus our interest only on the resonant modes
associated with surface polaritons.

III. REGGE POLES AND SURFACE POLARITONS

Using the CAM method, we shall first provide a physical
picture of the scattering of electromagnetic waves by the
left-handed cylinder in term of diffraction by surface waves.
By means of a Watson transformation47 applied to the scat-
tering amplitude �11�, we can write

f��,	� =� i

2�k���
P�

C

�S���� − 1�
sin ��

cos���� − 	��d� .

�22�

Here, in order to simplify the notation, we have not specified
the polarization. In Eq. �22�, C is the integration contour in
the complex � plane �CAM plane� illustrated in Fig. 3 and
which encircles the real axis in the clockwise sense. P which
stands for Cauchy’s principal value at the origin is used in
order to reproduce the Neumann factor. The Watson transfor-

mation has permitted us to replace the ordinary angular mo-
mentum � by the complex angular momentum �. S���� is
now an analytic extension of S���� into the complex � plane
which is regular in the vicinity of the positive real � axis.
Using Cauchy’s theorem and by noting that inside the con-
tour C the only singularities of the integrand in Eq. �22� are
the integers, we can easily recover Eq. �11� from Eq. �22�.

We can then deform the path of integration in Eq. �22�
taking into account the possible singularities. The only sin-
gularities that are encountered are the poles of the S matrix
lying in the CAM plane. They are known as Regge poles12,13

and are determined by solving

D�
H��� = 0 for � � 0 �23�

for the TE theory and

D�
E��� = 0 for � � 0 �24�

for the TM theory. Figures 4 and 5 exhibit the distribution of
Regge poles for both theories for three different reduced fre-
quencies lying in the frequency region where n���
0. At
first sight, these Regge pole distributions are more compli-
cated than the distributions associated with the metallic and
semiconducting cylinders studied in Ref. 40. However, we
have identified and indicated some particular Regge poles
which, as we shall see below, are associated with surface
waves orbiting around the cylinder and which explain its
resonant behavior. For both polarizations �i� one of these
Regge poles is associated with the SP denoted SP� which, as
we shall show in Sec. V corresponds, in the large-radius limit
�i.e., for a→��, to a SP which is supported by the plane
interface and which has been theoretically described in Refs.
36–38 and �ii� the other Regge poles are associated with an
infinite family of SP’s of whispering-gallery type denoted by
WGSPn with n�N and which have no analogs in the plane
interface case �see Sec. V�.

For the TE theory, the Regge pole �SP�
lies in the first

quadrant of the CAM plane while for the TM theory it lies in
the fourth quadrant of that plane. For both theories, the
Regge poles �WGSPn

lie in the fourth quadrant of the CAM
plane but as �→�b they migrate to the third quadrant of that
plane where they do not play any role.

By Cauchy’s theorem we can now extract from Eq. �22�
the contribution of a residue series over Regge poles. For
each Regge pole �SP��� �here SP stands for SP� as well for

FIG. 3. The Watson integration contour.
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WGSPn�, we capture an associated contribution given by

fSP��,	� =� 2�

ik���
rSP���

sin���SP����
cos��SP����� − 	�� ,

�25�

where rSP���=residue(S����)�=�SP���.
By using

1

sin ��
= − 2i�

m=0

+�

e+i��2m+1��,

which is true if Im ��0, we can write

fSP��,	� = −� 2i�

k���
rSP����

m=0

+�

�e+i�SP����	+2m��

+ e+i�SP����2�−	+2m��� , �26�

when the Regge pole �SP lies in the first quadrant of the
CAM plane. Expression �26� is therefore associated with the
surface wave SP� of the TE theory. By using

1

sin ��
= 2i�

m=0

+�

e−i��2m+1��,

which is true if Im �
0, we can write

fSP��,	� = +� 2i�

k���
rSP����

m=0

+�

�e−i�SP����	+2m��

+ e−i�SP����2�−	+2m��� , �27�

when the Regge pole �SP lies in the fourth quadrant of the
CAM plane. Expression �27� is therefore associated with the
surface waves WGSPn with n�N of the TE theory as well as
with the surface waves SP� and WGSPn with n�N of the
TM theory.

In Eqs. �26� and �27�, exponential terms correspond to
diffractive contributions. This clearly appears by taking into
account the time dependence exp�−i�t�. The physical inter-
pretations slightly differ according to the position of the
Regge pole �SP in the complex � plane.

FIG. 4. Regge poles in the CAM plane for the TE theory. �a� The distribution corresponds to �a /c=5.6. �b� The distribution corresponds
to �a /c=6.2. �c� The distribution corresponds to �a /c=7.0.
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�i� When the Regge pole �SP��� lies in the first quadrant
of the CAM plane—i.e., when we can use Eq. �26�—the
term exp�i�SP����	�� (exp�i�SP����2�−	��) describes the
SP propagating counterclockwise �clockwise� around the cyl-
inder and Re �SP��� represents its azimuthal propagation
constant while Im �SP��� is its damping constant. The corre-
sponding exponential decay reads exp�−Im �SP���	�
(exp�−Im �SP����2�−	��).

�ii� When the Regge pole �SP��� lies in the fourth quad-
rant of the CAM plane—i.e., when we can use Eq. �27�—the
term exp�−i�SP����	�� (exp�−i�SP����2�−	��) describes the
SP propagating clockwise �counterclockwise� around the cyl-
inder and Re �SP��� represents its azimuthal propagation
constant while −Im �SP��� is its damping constant. The cor-
responding exponential decay reads exp�+Im �SP���	�
(exp�+Im �SP����2�−	��).

Finally, in both cases, the sum over m in Eqs. �26� and
�27� takes into account the multiple circumnavigations of the
surface wave around the cylinder as well as the associated
radiation damping.

From the previous discussion, it is important to keep in
mind that the function Re �SP��� provides the dispersion re-
lation for the SP associated with the Regge pole �SP and that
the phase velocity vp and the group velocity vg of that SP are
therefore given by

vp =
a�

Re �SP���
, vg =

da�

d Re �SP���
. �28�

Here we have taken into account the fact that the SP is sup-
ported by the cylinder surface at �=a and therefore that its
wave number is given by

kSP��� =
Re �SP���

a
. �29�

Moreover, it is also important to note that the Regge poles
�SP�

and �WGSPn
with n�N are always close to the real axis

in the complex � plane. As a consequence, they all corre-
spond to SP’s which are slightly attenuated during their
propagation and which contribute significantly to the scatter-

FIG. 5. Regge poles in the CAM plane for the TM theory. �a� The distribution corresponds to �a /c=5.6. �b� The distribution corresponds
to �a /c=6.2. �c� The distribution corresponds to �a /c=7.0.
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ing process and to the resonance excitation mechanism.
As � varies, a given Regge pole �SP��� describes a curve

in the CAM plane. Such a curve is called a Regge
trajectory.12 From a physical point of view, the Regge trajec-
tory corresponding to �SP��� provides the dispersion relation
as well as the damping of the surface wave associated with
this pole. In Figs. 6–9 we have displayed the Regge trajec-
tories of some SP’s for the TE and TM theories. They have
been obtained by solving numerically Eqs. �23� and �24�. We
can observe some interesting features.

�i� The dispersion curve for the surface wave SP� of the
TE theory is a positive and monotonically increasing func-
tion of �. As a consequence, the associated group and phase
velocities given by Eq. �28� are both positive and SP� has an
ordinary behavior. It should be also noted that this SP exists
in the frequency range �� �0,�s� and therefore in the range
��0 ,�b� where the refraction index is negative but also out-
side this range. However, for low values of �, its damping

becomes very high and thus this surface wave has a negli-
gible role in the scattering process and in the resonance ex-
citation mechanism. Furthermore, it should be noted that as
�→�s the dispersion curve increases indefinitely. In the next
section, this result will permit us to explain the accumulation
of resonances which converges to the limiting frequency �s
for the TE theory.

�ii� The dispersion curve for the surface wave SP� of the
TM theory is a positive and monotonically decreasing func-
tion of �. As a consequence, the associated phase velocity is
positive while the group velocity is negative �see Eq. �28��.
SP� has a “left-handed behavior.” It should be also noted that
this SP only exists in the frequency range �� f ,�b� which is
included in the frequency range ��0 ,�b� where the refraction
index is negative, that its damping is always weak, and thus
that this surface wave always plays a significant role in the
scattering process and in the resonance excitation mecha-
nism. Finally, it should be noted that as �→� f the disper-

FIG. 6. Regge trajectory for the Regge pole associated with SP�

�TE theory�.

FIG. 7. Regge trajectories for the Regge poles associated with
the first three whispering-gallery SP’s �TE theory�.

FIG. 8. Regge trajectory for the Regge pole associated with SP�

�TM theory�.

FIG. 9. Regge trajectories for the Regge poles associated with
the first three whispering-gallery SP’s �TM theory�.
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sion curve increases indefinitely. In the next section, this re-
sult will permit us to explain the accumulation of resonances
which converges to the limiting frequency � f for the TM
theory.

�iii� As far as the surface waves WGSPn with n�N of the
TE and TM theories are concerned, it seems at first sight they
present a behavior which is rather independent of the polar-
ization. It should be also noted that the real part of a given
Regge pole �WGSPn

vanishes for a frequency in the frequency
range ��0 ,�b� and becomes negative. The Regge pole then
lies in the third quadrant of the CAM plane and is not taken
into account by the theory previously developed. So we can
consider that the surface waves WGSPn with n�N only exist
in a subdomain of the frequency range ��0 ,�b� where the
refraction index is negative. The dispersion relations of all
these surface waves are positive but monotonically decreas-
ing functions. Their group velocities are always negative
while their phase velocities are positive �see Eq. �28��. All
these SP’s thus have a “left-handed behavior.” Furthermore,
because the dampings of these surface waves are always
weak, they all play a significant role in the scattering process
and in the resonance excitation mechanism. Finally, it should
be noted that as �→�0, the dispersion curves increase in-
definitely. In the next section, this result will permit us to
explain the accumulation of resonances which converges to
the limiting frequency �0 for the TE and TM theories.

IV. FROM SURFACE POLARITONS TO RESONANCES

From now on, we shall focus our attention on the physical
interpretation of the long-lived resonant modes whose exci-
tation frequencies are localized within or slightly around the
frequency range �0
�
�b where the cylinder presents
left-handed behavior. In this section, we shall prove that they
are generated by the SP’s described in Sec. III and for this
reason we have called them RSPM’s.

We first consider that the solutions of Eq. �15� or �16� are
denoted by ��p=��p

�0�− i��p /2 where ��p
�0��0 and ��p�0, the

index p permitting us to distinguish between the different
roots of Eq. �15� or �16� for a given �. We also assume that
in the immediate neighborhood of the resonance ��p, S�

H���
or S�

E��� and therefore the corresponding scattering ampli-
tudes obtained from Eq. �11� present a Breit-Wigner type
behavior—i.e., are proportional to

��p/2

� − ��p
�0� + i��p/2

. �30�

The resonant behavior of the cylinder �or more precisely of
the cylinder-photon system� can then be understood in terms
of SP Regge trajectories. Let us consider a given SP �we do
not precise its polarization� described by the Regge pole de-
noted �SP���. When the quantity Re �SP��� coincides with
an integer, a resonance occurs which is produced by a con-
structive interference between the different components of
the surface wave, each component corresponding to a differ-
ent number of circumnavigations of the cylinder �see Eqs.
�26� and �27��. Resonance excitation frequencies ��SP

�0� asso-
ciated with that SP are therefore obtained from the Bohr-
Sommerfeld-type quantization condition

Re �SP���SP
�0� � = �, � = 0,1,2, . . . . �31�

Thus, they can be obtained numerically from the dispersion
curves. Now, by assuming that � is in the neighborhood of
��SP

�0� , we can expand �SP��� in a Taylor series about ��SP
�0� and

write

�SP��� � � + �d Re �SP���
d�

�
�=�

�SP
�0�

�� − ��SP
�0� �

+ i Im �SP���SP
�0� � + i�d Im �SP���

d�
�

�=�
�SP
�0�

��� − ��SP
�0� � + ¯ . �32�

Then, by replacing Eq. �32� in the term sin���SP���� of Eq.
�25�, we can see that fSP�� ,	� presents a resonant behavior
given by the Breit-Wigner formula �30� with

��SP

2
= � Im �SP����d Re �SP���/d��

�d Re �SP���/d��2 + �d Im �SP���/d��2�
�=�

�SP
�0�

.

�33�

Our reasoning also predicts a shift in the excitation fre-
quency ��SP

�0� solution of Eq. �31� which is given by

���SP
�0� = − � Im �SP����d Im �SP���/d��

�d Re �SP���/d��2 + �d Im �SP���/d��2�
�=�

�SP
�0�

.

�34�

In fact, such a shift is always negligible and it can be forgot-
ten. Furthermore, it should be noted that in some frequency
range we have

�d Re �SP���/d�� � �d Im �SP���/d�� , �35�

so that Eq. �33� then reduces to

��SP

2
= � Im �SP���

d Re �SP���/d�
�

�=�
�SP
�0�

. �36�

FIG. 10. Resonances generated by SP� �TE theory�.
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Equations �31� and �33� �or Eq. �36�� are two semiclassi-
cal formulas which permit us to determine the location of the
resonances from the Regge trajectory of �SP. In Figs. 10–13
we present samples of complex frequencies for the RSPM’s

associated with the surface waves SP� and WGSPn with n
=1, 2, and 3. They have been calculated from the semiclas-
sical formulas �31� and �33� by using the Regge trajectories
determined numerically by solving Eqs. �23� and �34� �see
Figs. 6–9�. A comparison between the semiclassical spectra
and the “exact ones” �calculated by solving numerically Eq.
�15� or �16�� shows a very good agreement. Moreover, we
can also observe some interesting features.

�i� The resonance spectrum associated with the surface
wave SP� of the TE theory �see Fig. 10� extends beyond the
frequency range ��0 ,�b� where the cylinder presents left-
handed behavior because SP� exists for �� �0,�s�. Further-
more, inserted into the semiclassical formulas �31� and �33�,
the behavior of the Regge trajectory of �SP�

near �s easily
explains the existence of the family of resonances close to
the real axis of the complex � plane which converges for
large � to the limiting frequency �s.

�ii� The resonance spectrum associated with the surface
wave SP� of the TM theory �see Fig. 12� fully lies inside the
frequency range ��0 ,�b� where the cylinder presents left-
handed behavior because SP� exists only in that range. Fur-
thermore, inserted into the semiclassical formulas �31� and
�33�, the behavior of the Regge trajectory of �SP�

near � f

FIG. 11. Resonances generated by the first three whispering-gallery SP’s �TE theory�.

FIG. 12. Resonances generated by SP� �TM theory�.
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explains the existence of the family of resonances close to
the real axis of the complex � plane which converges for
large � to the limiting frequency � f.

�iii� The resonance spectra associated with the surface
waves WGSPn with n�N of the TE and TM theories �see
Figs. 11 and 13� fully lie inside the frequency range ��0 ,�b�
where the cylinder presents left-handed behavior because all
these surface waves exist only in that range. Furthermore,
inserted into the semiclassical formulas �31� and �33�, the
behavior of the Regge trajectory of a given Regge pole
�WGSPn

near �0 explains the existence of a corresponding
family of resonances close to the real axis of the complex �
plane which converges for large � to the limiting frequency
�0. Since there is an infinity of surface waves WGSPn, the
accumulation of resonances in Fig. 1�b� �Fig. 2�b�� is more
intense at the point �0 than at the point �s�� f�.

In conclusion, we have established a connection between
the complex frequencies of the long-lived resonant modes
�or RSPM’s� of the cylinder and the SP’s noted SP� and
WGSPn with n�N which are supported by its surface. In
other words, in spite of the great confusion which seems to
prevail in the resonance spectrum of the left-handed cylinder
�see Sec. II�, we have been able to fully classify and physi-

cally interpret the resonances thanks to CAM techniques. We
now invite the reader to look at Figs. 14 and 15 where we
have zoomed in on Figs. 1�a� and 2�a�. On the total cross

FIG. 13. Resonances generated by the first three whispering-gallery SP’s �TM theory�.

FIG. 14. Zoom-in on the total cross section �T
H.
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sections �T
H��� and �T

E��� we have identified the peaks cor-
responding to resonances and, for each one, we have speci-
fied the SP which has generated it as well as the associated
“quantum number” �.

V. ASYMPTOTICS FOR SURFACE POLARITONS AND
PHYSICAL DESCRIPTION

In order to obtain a deeper physical understanding of the
SP’s orbiting around the left-handed cylinder and to justify
the terminology previously used, we must “analytically”
solve Eqs. �23� and �24� for �=�SP or, equivalently,

−
J�SP
� „�n�����a/c…

J�SP
„�n�����a/c…

=� ����
����

H�SP

�1����a/c�

H�SP

�1� ��a/c�
�37�

for the TE theory and

−
J�SP
� „�n�����a/c…

J�SP
„�n�����a/c…

=�����
����

H�SP

�1����a/c�

H�SP

�1� ��a/c�
�38�

for the TM theory. Here, Eqs. �37� and �38� have been ob-
tained from Eqs. �23� and �24� by using the relations
J��−z�=ei��J��z� and J���−z�=−ei��J���z� �see Ref. 46�. These
two equations can be solved approximatively by using
asymptotic analysis. More precisely, by considering adequate
asymptotic expansions for the Bessel functions occurring in
Eqs. �37� and �38�, we shall be able to provide analytic ex-
pressions for the Regge poles �SP�

��� and �WGSPn
��� for the

two polarizations. Of course, the main difficulty with this
method concerns the choice of the asymptotic expansions for
the Bessel functions. Such a choice strongly depends on the
relative positions of the arguments �n�����a /c and �a /c
with respect to the complex order �SP. In order to simplify
the discussion, we choose to describe theoretically the SP’s
in the frequency ranges where they generate the RSPM’s
with the longest lifetime �such modes are the most important
from the physical point of view�. In other words, we shall

seek �SP�
��� of the TE theory for � in the neighborhood of

�s, �SP�
��� of the TM theory for � in the neighborhood of

� f and �WGSPn
��� of the TE and TM theories for � in the

neighborhood of �0. In fact, in spite of these restrictions, we
shall obtain asymptotic results valid in large frequency
ranges.

Let us first consider the Regge pole associated with SP�

of the TE theory. We assume � in the neighborhood of �s,
and then we can also assume that Re �SP�

�����a /c
� �n�����a /c and formally that Re �SP�

����1 and
Re �SP�

���� Im �SP�
���. The configuration there is dis-

played in Fig. 4�c�. As a consequence, we can use the Debye
asymptotic expansions for J��z� and H�

�1��z� valid for large
orders �see Appendix A of Ref. 48 or Ref. 49� in the form

J��z� 
1

2
A��,z�e+���,z�, �39�

H�
�1��z�  − iA��,z�e−���,z�, �40�

where

A��,z� = � 2

�
�1/2

��2 − z2�−1/4, �41a�

���,z� = ��2 − z2�1/2 − � ln�� + ��2 − z2�1/2

z
� . �41b�

Thus, we have

J�SP�

� „�n�����a/c…

J�SP�

„�n�����a/c…


��SP�

2 − ��n�����a/c�2�1/2

�n������a/c�
�42�

and

H�SP�

�1�� ��a/c�

H�SP�

�1� ��a/c�
 −

��SP�

2 − ��a/c�2�1/2

��a/c�
. �43�

Now, by inserting Eqs. �42� and �43� into Eq. �37�, we obtain
an equation which can be easily solved and we deduce

�SP�
���  ��a

c
��������������� + �����

�2��� − 1
. �44�

We have obtained an asymptotic expansion for �SP�
��� or,

more exactly, for the real part of that function. Indeed, it
should be noted that the right-hand side of Eq. �44� is purely
real. The perturbative method previously used did not permit
us to extract the small imaginary part of �SP�

���. Even by
taking into account higher orders in the asymptotic expan-
sions �39� and �40�, we are not able to provide the imaginary
part of �SP�

��� because it corresponds to an exponentially
small contribution which lies beyond all orders in perturba-
tion theory and which can be captured only by carefully tak-
ing into account the Stokes phenomenon.50,51 We have al-
ready encountered such a problem in Ref. 40 and, mutatis
mutandis, we shall solve it in the same way. Instead of Eq.
�40�, we must use the Debye asymptotic expansion of
H�

�1��z� in the form

FIG. 15. Zoom-in on the total cross section �T
E.

ANCEY et al. PHYSICAL REVIEW B 72, 085458 �2005�

085458-12



H�
�1��z�  − iA��,z�e−���,z��1 + ¯ � + S����,z��

�A��,z��1 + ¯ �e���,z�. �45�

On the right-hand side of Eq. �45�, the first term is the usual
Debye asymptotic expansion truncated near its least term.
The second one is obtained by decoding the divergent tail of
that asymptotic expansion. This can be done �see Refs. 42
and 43� by Borel summation after exploiting a resurgence
formula discovered by Dingle.41 In the region of the � com-
plex plane where the Regge pole �SP�

lies �see Fig. 16�, we
have Re �
0. As a consequence, the first term of the right-
hand side of Eq. �45� is the dominant contribution while the
second one is a subdominant term which can be forgotten
when ���→�. That is what we did previously by using Eq.
�40�. The Stokes multiplier function S���� ,z�� is a compli-
cated function involving the exponential integral function E1.
It goes continuously from 0 to 1 at the crossing of the Stokes
line Im �=0 emerging from the turning point z=� �see Fig.
16�. Below the Stokes line, it rapidly vanishes. On the Stokes
line it is equal to 1/2, and above the Stokes line it rapidly
becomes equal to 1. It thus describes the rapid but continu-
ous birth of the subdominant contribution near the Stokes
line.42 From Eq. �45� we can now write

H�SP�

�1�� ��a/c�

H�SP�

�1� ��a/c�
 −

��SP�

2 − ��a/c�2�1/2

��a/c�

� �1 − 2iS����SP�
,�a/c��e2���SP�

,�a/c��

�46�

instead of Eq. �43�. Because we can assume that �SP�
��� is

very close to the Stokes line emerging from the turning point
�a /c, we can consider that S����SP�

��� ,�a /c��=1/2. Then,
by inserting Eqs. �42� and �46� into Eq. �37�, we obtain

Re �SP�
���  ��a

c
��������������� + �����

�2��� − 1
, �47a�

Im �SP�
���  � �2���

�2��� − 1
� �Re �SP�

����2 − ��a/c�2

Re �SP�
���

� exp�2�„Re �SP�
���,�a/c…� . �47b�

Equations �47a� and �47b� provide analytic expressions
for the dispersion relation and the damping of the surface
polariton SP� of the TE theory. The following important fea-
tures must be noted.

�i� The wave number kSP�
��� associated with this SP is

obtained from Eqs. �47a� and �29� and is given by

kSP�
���  ��

c
��������������� + �����

�2��� − 1
. �48�

This expression is the usual dispersion relation found in
Refs. 36–38 for the p-polarized SP—i.e., the SP for which
the magnetic field H is normal to the incidence plane—
supported by the flat interface. Here, we have recovered ex-
actly the same dispersion relation because we have limited
the perturbative resolution of Eq. �37� to the lowest order. By
taking into account higher orders in the asymptotic expan-
sions �39� and �45�, we could obtain corrections for Eq. �48�
which vanish for a→�—i.e., in the flat interface limit. The
surface wave of the TE theory denoted by SP� is therefore
the counterpart of the p-polarized SP supported by the flat
interface.

�ii� The imaginary part �47b� of �SP�
vanishes for

a→�—i.e., in the flat interface limit. Then, SP� has no
damping like the p-polarized SP supported by the flat inter-
face. This result strengthens our previous claim.

�iii� The function Re �SP�
��� given by Eq. �47a� has a

simple pole when ����+1=0—i.e., for �=�s. Furthermore,
the imaginary part �47b� of �SP�

vanishes for �=�s. These
two results justify all our previous remarks concerning the
accumulation of resonances which converges to the limiting
frequency �s.

�iv� We have numerically tested formulas �47a� and �47b�
�see Fig. 17�. They provide rather good approximations for
Re �SP�

��� in a large frequency range and for Im �SP�
��� in

the neighborhood of �s. It would be possible to improve Eq.
�47b� by taking into account the variation of the Stokes mul-
tiplier and to obtain a formula valid in a larger frequency
domain but then the expression of Im �SP�

��� would become
much more complicated.

Let us now consider the Regge pole associated with SP�

of the TM theory. We must solve Eq. �38� which only differs
from Eq. �37� by the factor in front of the Bessel functions.
We assume � in the neighborhood of � f and then we can
also assume that Re �SP�

���� �n�����a /c��a /c and for-
mally that Re �SP�

����1 and Re �SP�
���� Im �SP�

���. The
configuration there is displayed in Fig. 5�b�. As a conse-
quence, we can use again the Debye asymptotic expansions
for J��z� and H�

�1��z� given in Eqs. �39� and �45� and the
resolution of Eq. �38� can be modeled on that of Eq. �37�.
Formulas �42� and �46� are still valid, and the Stokes multi-
plier in Eq. �46� can be taken equal to 1/2. Indeed, in this
case �SP�

��� is below the Stokes line emerging from the

FIG. 16. The relative positions, in the � complex plane of the
reduced frequency �=�a /c and the Regge pole �SP�

of the TE
theory.
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turning point �a /c but it remains very close to this Stokes
line. Then, by inserting Eqs. �42� and �46� into Eq. �38�, we
obtain

Re �SP�
���  ��a

c
��������������� + �����

�2��� − 1
, �49a�

Im �SP�
���  � �2���

�2��� − 1
� �Re �SP�

����2 − ��a/c�2

Re �SP�
���

� exp�2�„Re �SP�
���,�a/c…� . �49b�

Equations �49a� and �49b� provide analytic expressions for
the dispersion relation and the damping of the surface polar-
iton SP� of the TM theory. The following important features
must be also noted.

�i� The wave number kSP�
��� associated with this SP is

obtained from Eqs. �49a� and �29� and is given by

kSP�
���  ��

c
��������������� + �����

�2��� − 1
. �50�

This expression is the usual dispersion relation found in
Refs. 36–38 for the s-polarized SP—i.e., the SP for which
the electric field E is normal to the incidence plane—
supported by the flat interface. The surface wave of the TM
theory denoted by SP� is therefore the counterpart of the
s-polarized SP supported by the flat interface.

�ii� The imaginary part �49b� of �SP�
vanishes for

a→�—i.e., in the flat interface limit. Then, SP� has no
damping like the s-polarized SP supported by the flat inter-
face. This result strengthens our previous claim.

�iii� The function Re �SP�
��� given by Eq. �49a� has a

simple pole when ����+1=0—i.e., for �=� f. Furthermore,
the imaginary part �49b� of �SP�

vanishes for �=� f. These

two results justify all our previous remarks concerning the
accumulation of resonances which converges to the limiting
frequency � f.

We have numerically tested formulas �49a� and �49b� �see
Fig. 18�. They provide good approximations for Re �SP�

���
in the frequency range �� f ,�b� and for Im �SP�

��� in the
neighborhood of � f. Of course, it would be possible to im-
prove Eq. �49b� by taking into account the variation of the
Stokes multiplier and to obtain a formula for the imaginary
part of �SP�

��� valid in a larger frequency domain.
Let us finally consider the Regge poles associated with

the surface waves WGSPn for the TE and TM theories. We
must now solve Eqs. �37� and �38� for �SP=�WGSPn

by as-
suming � in the neighborhood of �0. We are in the configu-
rations described in Fig. 4�a� for the TE theory and Fig. 5�a�
for the TM theory �see also Fig. 19�. As far as the asymptotic
expansion for H��z� is concerned, we can still use Eq. �40� as
well as its modification �45� because we can assume that
Re �WGSPn

�����a /c and formally that Re �WGSPn
����1

and Re �WGSPn
���� Im �WGSPn

���. We then obtain

FIG. 17. Regge trajectory for the Regge pole associated with
SP� �TE theory�. Comparison between exact and asymptotic
theories.

FIG. 18. Regge trajectory for the Regge pole associated with
SP� �TM theory�. Comparison between exact and asymptotic
theories.

FIG. 19. The relative positions, in the � complex plane, of the
reduced frequencies �=�a /c and �= �n�����a /c and of the Regge
pole �WGSP1

of the TE and TM theories.
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H�WGSPn

�1�� ��a/c�

H�WGSPn

�1� ��a/c�

 −
��WGSPn

2 − ��a/c�2�1/2

��a/c�

� �1 − 2iS����WGSPn
,�a/c��e2���WGSPn

,�a/c�� .

�51�

As far as the asymptotic expansion for J��z� is concerned,
the situation is a little bit more complicated. �WGSPn

is in the
immediate neighborhood of �n�����a /c or more precisely in
the Airy circle centered on �n�����a /c �see Fig. 19�. This is
true for the Regge pole corresponding to n=1 but it is also
formally true for all the other Regge poles with n�1 when
�→�0. Then, the Debye asymptotic expansion �40� for J��z�
fails because ��z and we must use the uniform asymptotic
expansion �see Appendix A of Ref. 48 or Ref. 49�

J��z�  �2/z�1/3Ai��2/z�1/3�� − z�� , �52�

where Ai�z� denotes the Airy function.46 Thus we have

J�WGSPn

� ��n�����a/c�

J�WGSPn
��n�����a/c�

 �2/��n�����a/c��1/3

�
Ai�„�2/��n�����a/c��1/3��WGSPn

− �n�����a/c�…

Ai„�2/��n�����a/c��1/3��WGSPn
− �n�����a/c�…

.

�53�

We can now insert Eqs. �53� and �51� into Eqs. �37� and �38�.
In order to solve the resulting equations, we first note that
their right-hand sides tend to infinity when �→�0. Hence,
the argument of the Airy function is very close to the zeros xn
of that function �let us recall here that the first three ones are
x1�−2.3381. . ., x2�−4.0879. . ., and x3�−5.5205. . .�, and
we then have

�WGSPn
���  �n�����a/c + � �n�����a/c

2
�1/3

xn. �54�

Of course, Eq. �54� provides an approximation which can be
easily improved by taking into account the subdominant con-
tribution in Eq. �51�. We assume that the Stokes multiplier is
equal to 1/2. This is true because the Regge pole �WGSPn

���
is below but very close to the Stokes line emerging from the
turning point �a /c. We then obtain

Re �WGSPn
���  �n�����a/c + � �n�����a/c

2
�1/3

xn

�55a�

for the TE and TM theories,

Im �WGSPn
��� � ����

����
� �n�����a/c

2
�2/3

�
��Re �WGSPn

����2 − ��a/c�2�1/2

��a/c�xn

� exp�2�„Re �WGSPn
���,�a/c…�

�55b�

for the TE theory, and

Im �WGSPn
��� �����

����
� �n�����a/c

2
�2/3

�
��Re �WGSPn

����2 − ��a/c�2�1/2

��a/c�xn

� exp�2�„Re �WGSPn
���,�a/c…� �55c�

for the TM theory.
Equations �55a�–�55c� provide analytic expressions for

the dispersion relation and the damping of the surface polari-
tons WGSPn of the TE and TM theories. The corresponding
wave numbers kWGSPn

��� which are obtained from Eqs. �55a�
and �29� are given by

kWGSPn
���  �n�����/c + � �n�����/c

2a2 �1/3

xn. �56�

It should be noted that Eq. �54� and therefore Eq. �55a� have
been obtained by following, mutatis mutandis, the calcula-
tions done by Rayleigh a long time ago in order to describe
mathematically the whispering-gallery phenomenon in
acoustics52,53 �see also Ref. 54�. We encounter the same phe-
nomenon but in the context of left-handed electromagnetism
and the SP’s described by the Regge poles �WGSPn

are surface
waves of whispering-gallery type. Here it should be recalled
that a whispering-gallery surface wave propagates only close
to a curved interface and mainly in the internal medium in a
layer whose thickness is proportional to k−2/3 with k its wave
number. From a physical point of view, the surface polaritons
WGSPn are therefore very different from the surface polari-
tons SP� which exist on both sides of the interface. More-
over, the following important features must be also noted.

�i� These SP’s have no counterparts in the plane interface
case.

�ii� The function Re �WGSPn
��� given by Eq. �49a� has a

pole which is that of n��� and therefore which corresponds
to �=�0. Furthermore, the imaginary parts �55b� and �55c�
of �WGSPn

vanish for �=�0. These results justify all our pre-
vious remarks concerning the accumulations of resonances
which converge to the limiting frequency �0.

�iii� We have numerically tested formulas �55a�–�55c�
�see Figs. 20 and 21 for WGSP1�. They provide very good
approximations for Re �WGSP1

��� in the full frequency range
��0 ,�b� where the cylinder presents left-handed behavior.
They also provide very good approximations for
Im �WGSP1

��� in a rather large frequency range above the
limiting frequency �0.
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VI. CONCLUSION AND PERSPECTIVES

In the present article, we have considered the scattering of
TE and TM electromagnetic waves by a cylinder fabricated
from a left-handed material. We have mainly emphasized the
resonant aspects of the problem. We have shown that the
long-lived resonant modes can be classified into distinct
families, each family being generated by one SP, and we
have physically described all the SP’s orbiting around the
cylinder by providing, for each one, a numerical and a semi-
classical description of its dispersion relation and its damp-
ing.

We have also shown that the left-handed cylindrical inter-
face can support both TE- and TM-polarized SP’s. For each
polarization, we have found that there exists a particular SP
which corresponds, in the large-radius limit, to the SP which
is supported by the plane interface and which has been theo-
retically described in Refs. 36–38. But there also exists, for

each polarization, an infinite family of SP’s of whispering-
gallery type and these have no analogs in the plane interface
case. The existence of these SP’s of whispering-gallery type
is certainly the main result of our article. Here, in order to
appreciate it, it should be recalled that on a cylindrical metal-
dielectric or semiconductor-dielectric interface, the SP’s of
whispering-gallery type are absent. There exists only one
SP.40 It can be excited in the H polarization configuration—
i.e., by TE waves—and in the large-radius limit it corre-
sponds to the SP which is supported by the plane interface.
From the point of view of SP physics, left-handed cylinders
are therefore much richer systems than metallic or semicon-
ducting cylinders and this could have important conse-
quences in term of practical applications.

We are now completing a theoretical and numerical study
in order to provide a better physical understanding of the
resonant modes of left-handed cylinders.55 We more particu-
larly focus on the repartition of the electromagnetic energy
density—both inside and outside the cylinder—associated
with all the resonant modes. That enables us to physically
distinguish, on the one hand, the resonant modes generated
by bulk polaritons from those generated by SP’s and, on the
other hand, the resonant modes generated by SP’s of SP�

type from those generated by SP’s of whispering-gallery
type.

It should be also noted that in our paper we have assumed
for the effective electric permittivity and the effective mag-
netic permeability of the left-handed material the simple ex-
pressions respectively given by Eqs. �3� and �4�. In fact,
actual left-handed materials have a more complicated permit-
tivity. Indeed, they consist of periodic arrangements of split
ring resonators and wires, and it has been recently shown
that the split ring resonators present a strong electric re-
sponse in addition to the magnetic one �see Ref. 56�. In fact,
it is possible to take into account this response by assuming
that the effective electric permittivity is given by56

���� =
�2 − �p

2

�2 − �̃0
2 , �57�

with �̃0�0, while the effective magnetic permeability is still
given by Eq. �4�. Such a modification does not change radi-
cally our previous analysis. Mutatis mutandis, our results
remain valid. Indeed, we have theoretically—i.e., semi-
classically—and numerically reexamined, in this new con-
text, the resonant aspects of a left-handed cylinder linked
with SP’s. We have obtained the following results.

�i� The surface wave SP� of the TE theory still exists. It
generates a family of resonances which converges to the lim-
iting frequency �s satisfying ���s�+1=0 and which is now
given by �s=���p

2+ �̃0
2� /2 instead of Eq. �18�. This SP is

still described by Eqs. �47a� and �47b� with now ���� given
by Eq. �57�. Of course, its behavior depends on the relative
order of the characteristic frequencies �̃0, �0, �b, and �p. In
general, it presents a left-handed behavior if �s lies in the
frequency range where n���
0.

�ii� The surface wave SP� of the TM theory still exists. It
generates a family of resonances which converges to the lim-
iting frequency � f satisfying ��� f�+1=0 and which is still

FIG. 20. Regge trajectory for the Regge pole associated with
WGSP1 �TE theory�. Comparison between exact and asymptotic
theories.

FIG. 21. Regge trajectory for the Regge pole associated with
WGSP1 �TE theory�. Comparison between exact and asymptotic
theories.
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given by Eq. �20�. This SP is still described by Eqs. �49a�
and �49b� and, in general, it presents a left-handed behavior
if � f lies in the frequency range where n���
0.

�iii� For both polarizations, there still exists the family of
SP’s of whispering-gallery type described by Eqs.
�55a�–�55c� in the neighborhood of the pole �0 of ����.
They generate an infinity of resonances which converges to
the limiting frequency �0. In general, they present a left-
handed behavior if �0 lies in the frequency range where
n���
0.

�iv� But there also exists, for both polarizations, a new
family of SP’s of whispering-gallery type in the neighbor-
hood of the pole �̃0 of ����. They are also described by Eqs.
�55a�–�55c� �in this frequency range�, and they generate an
infinity of resonances which converges to the limiting fre-

quency �̃0. In general, they present a left-handed behavior if
�̃0 lies in the frequency range where n���
0.

Finally, it is worthwhile pointing out the possible applica-
tion of the CAM method in the context of multiple scattering
by left-handed cylinders. This could be achieved by extend-
ing to electromagnetism of dispersive media the approaches
previously developed in the context of quantum mechanics
and acoustics �see, for example, Refs. 57 and 58�. SP’s prob-
ably induce a strong coupling between the different cylin-
ders, and the CAM method could permit us to understand it
and to quantify its intensity.
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