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A bottleneck for multitimescale thermally activated dynamics is the computation of the potential energy
surface. We explore the use of genetic programming �GP� to symbolically regress a mapping of the saddle-
point barriers from only a few calculated points via molecular dynamics, thereby avoiding explicit calculation
of all barriers. The GP-regressed barrier function enables use of kinetic Monte Carlo to simulate real-time
kinetics �seconds to hours� based upon realistic atomic interactions. To illustrate the concept, we apply a GP
regression to vacancy-assisted migration on a surface of a concentrated binary alloy �from both quantum and
empirical potentials� and predict the diffusion barriers within �0.1% error from 3% �or less� of the barriers.
We discuss the significant reduction in CPU time �4 to 7 orders of magnitude�, the efficacy of GP over standard
regression, e.g., polynomial, and the independence of the method on the type of potential.
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I. INTRODUCTION

Molecular dynamics �MD� is extensively used for kinetic
modeling of materials. Yet MD methods are limited to nano-
seconds of real time, and hence fail to model many processes
directly. Recently, several approaches were proposed for
multiscaling.1–11 Methods such as temperature-accelerated
dynamics �TAD� �Ref. 2� provide significant acceleration of
MD, but they still fall 3–6 orders of magnitude short of real
processing times. These methods assume that transition-state
theory applies, and concentrate only on infrequent events. An
alternative approach to bridge timescales4 uses kinetic Monte
Carlo12 �KMC� combined with MD by constructing an a pri-
ori list of events �i.e., “look-up table”�. The table look-up
KMC yields several orders of magnitude increase in simu-
lated time over MD depending on temperature, see later. The
table of events is commonly comprised of atomic jumps, but
collective motions �or off-lattice jumps�, e.g., see Ref. 7, can
be added if they have been identified, for instance, by MD.
Additionally, tabulating barrier energies from a list of events
is a serious limitation. For example, multicomponent alloys
have an impossibly large set of barriers, due to configura-
tional dependence, making their tabulation impractical, espe-
cially from first principles. An alternative approach is calcu-
lating energies “on-the-fly,”6,13 but it too has serious time
limitation �see Fig. 1�. Recent developments and limitations
of KMC methods are given, e.g., in Ref. 13.

To avoid the need or expense of explicit calculation of all
activation barriers—frequent or infrequent—and thereby fa-
cilitate an effective hybridization of MD and KMC for mul-
tiscale dynamics modeling, we suggest genetic programming
�GP�—a genetic algorithm that evolves computer
programs—to regress symbolically the potential energy sur-
face �PES� �in the present, nontrivial case, saddle-point bar-
riers only� from a limited set of directly calculated points on
the PES using MD via semiempirical, tight-binding, or ab
initio potentials. Importantly, from only a few calculated bar-
riers relative to the total, GP regression provides an in-line
barrier function for increasing number of active configura-

tions �or complexity� as a machine-learned replacement to
the look-up table approach. A key point is that multiscale
modeling requires only relevant �often referred to as coarse-
grained� information at the appropriate length or timescales.
Hence, only the diffusion barriers are needed for kinetics, not
the underlying atomic-scale details; how that information is
obtained, direct calculation or machine learning, is not rel-
evant to the scaling, only that the barriers are accurate.
Therefore, an accurate GP-regressed PES extends the KMC
paradigm, as suggested in Fig. 1, permitting simulation over
experimentally relevant time frames, which may not be pos-
sible from standard table look-up or on-the-fly KMC. Inter-
facing GP with TAD-MD and/or pattern-recognition methods
will further extend its applicability, e.g., by finding system-
specific mechanisms. We refer to this approach as symboli-
cally regressed table KMC (sr-KMC). Of course, sr-KMC
benefits from any advances in KMC methods. In addition,
GP-based symbolic regression holds promise in other multi-
scaling areas, e.g., regressing constitutive rules14 and chemi-
cal reaction pathways, which we are now studying. Also, as

FIG. 1. �Color online� Schematic illustration of simulation ca-
pabilities and bottlenecks of on-the-fly KMC, table look-up KMC,
and symbolically regressed KMC �sr-KMC�.
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we exemplify, standard basis-set regression is generally not
competitive to GP for fixed accuracy due to the difficulty in
choosing �i.e., guessing� appropriate basis functions to rep-
resent that space, which are here configurationally dependent
diffusion barriers.

Genetic algorithms and programs are used extensively
within optimization and machine-learning groups, but to a
lesser extent in the physical sciences �e.g., in quantum chem-
istry studies of clusters�. Thus, for completeness, we first
give an introduction into the key ideas of GP, which use the
concepts of genetic algorithms �GA� for optimization. Impor-
tantly, we discuss the key parameters, such as population size
of the solution space, to ensure valid results. Hopefully, it is
clear that all concepts may migrate to other application areas.

To demonstrate, we discuss GP and its application to a
nontrivial case of vacancy-assisted migration on �100� sur-
face of phase-separating CuxCo1−x at a concentrated alloy
composition, i.e., x=0.50. Although there are millions of
configurations, only the atoms in the environment locally
around vacancy and migrating atom significantly influence
the barrier energies. We refer to these as the active configu-
rations. The results show that GP predicts barriers within
0.1%–1% error using calculated barriers of less than 3% of
the total active configurations, depending on the type of po-
tential �error is less for the more accurate potentials, and
greater for semiempirical�. We also show the efficacy of the
GP approach relative to polynomial regression, where the
more complex the space, the lower percentage of total barri-
ers is required to regress the potential energy surface, in
contrast to standard regression. �Basically, it is too difficult
to guess a good basis to fit a complicated PES, but a com-
puter can machine learn it efficiently.� Our initial results hold
promise to enable the use of KMC �even with realistic po-
tentials� for increased problem complexity with a scale-up of
simulation time.

II. GENETIC PROGRAMMING

To obtain a viable multiscaling method, we require a re-
gression technique that provides an accurate prediction of
barrier energies from a very limited set of calculated diffu-
sion barriers. Furthermore, the regression method should be
generally applicable regardless of how the data were ac-
quired, as long as the multiply derived data contain roughly
similar characteristics, and it should not need to know about
the underlying potential. Therefore, the performance of the
method should not depend on whether the potential is linear
or nonlinear, pairwise or multibody, as long as the potentials
used are meaningful.

One such machine-learning method, which not only
searches for the optimal regression function but also opti-
mizes the coefficients, is genetic programming.15–25 Genetic
programming is a genetic algorithm26–28 that evolves com-
puter programs. Here, we use GP to regress an in-line barrier
function that saves CPU time by requiring fewer number of
barrier calculations and by not requiring table look-ups in
KMC.

In GP, the in-line barrier function is represented by a tree
consisting of functions in the internal nodes and terminals in

the leaf nodes �Fig. 2�a��. Here, we use the function set F
= �+,−, � , / ,ˆ, exp,sin�, where �, �, �, and / are the arith-
metic operators addition, subtraction, multiplication, and di-

vision, respectively, and ˆ, exp, and sin denote power, expo-
nential, and sine functions, respectively. We used the
terminal set T= �x� ,R�, where x� is a vector representing the
active alloy configuration, and R is an ephemeral random
constant.16 The ephemeral random constant is a “place
holder” for numerical coefficient values. Each time an
ephemeral random constant is encountered in a program tree,
it is replaced by a random value drawn from a uniform ran-
dom distribution. An important thing to ensure is that the
functions satisfy closure property,16 i.e., each of the functions
should be able to accept as its arguments any value or data
type taken by a terminal or returned by any function. Once
the closure property is satisfied, then new program trees cre-
ated by crossover and mutation will be syntactically correct
and executable. For example, divide by zero is normally de-
fined, but in order to satisfy closure, a divide function must
return a valid value even if the divisor is zero. In this paper,
division returns 1 if the divisor �second argument� is zero.
Thus, all floating point exceptions are trapped and a valid
value is returned, which is a common practice in genetic
programming approaches.

As we use GP for predicting the diffusion barriers, a tree
represents a PES-prediction function that takes a configura-
tion and ephemeral constants as inputs and returns the barrier
for that configuration as output. A tree’s quality is given by
its fitness f . For this, we calculate the barriers
��Ecalc�x�1� , . . . ,�Ecalc�x�M�� for M random configurations
�x�1 ,x�2 , . . . ,x�M�. These configurations are used as inputs to
the tree, and the barriers ��Epred�x�1� , . . . ,�Epred�x�M�� are pre-
dicted. The fitness is then computed as a weighted average of
the absolute error between the predicted and calculated bar-
riers

f =
1

M
�
i=1

M

wi	�Epred�x�i� − �Ecalc�x�i�	 , �1�

with wi= 	�Ecalc	−1, which gives preference to accurately pre-
dicting lower energy �most significant diffusional� events.
We note that parsimony pressure �or a penalty for unneces-
sarily complex programs� can also be added into the fitness

FIG. 2. �Color online� Illustration of tree representation, subtree
crossover, subtree mutation, and point mutation used in GP.
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measure. Complexity measures such as the number of nodes
in the program tree, tree height, tree depth, and model de-
scription length metrics have been used to favor simpler pro-
grams with good accuracy.29 While in this study we do not
use any parsimony pressure, for solving complex problems,
it might not be only helpful, but also essential.

Unlike traditional search methods, GP uses a population
of candidate solutions �PES prediction functions� that are
initially created using the ramped half-and-half method.16

Once the population is initialized and evaluated, the follow-
ing genetic operators are repeatedly applied until one or
more convergence criteria are satisfied:

Selection: allocates more copies to solutions with better
fitness values. We use an s-wise tournament selection,30

where s candidate solutions are randomly chosen and pitted
against each other in a tournament. A solution with the best
fitness wins.

Recombination combines bits and pieces of two solutions
to create new, hopefully better, solutions. We use subtree
crossover,16 where a crossover point for each solution is ran-
domly chosen and subtrees below the point are swapped to
create two new solutions; see Fig. 2.

Mutation locally but randomly modifies a solution. We
use two mutation techniques �see Fig. 2�: Subtree mutation,
where a subtree is randomly replaced with another randomly
created subtree, and point mutation, where a node is ran-
domly modified.

Parameter setting in GP

Before using GP for symbolically regressing an in-line
diffusion-barrier function, or any other evolutionary algo-
rithm, we need to set some parameters such as the population
size n, number of generations to run GP tconv, tournament
size s, crossover probability pc, and mutation probability pm.
Researchers who use evolutionary algorithms have often-
times set these parameters in an ad hoc manner. However,
many of the parameters in genetic algorithms and genetic
programming can be set based on facetwise modeling and
dimensional arguments.28

A key parameter determining performance of a GP is the
population size. For example, small population sizes might
lead to premature convergence and yield substandard solu-
tions, whereas large population sizes lead to unnecessary ex-
penditure of valuable computational time. Population size
should be large enough to ensure that all the raw
substructures—tree segments that are potentially part of the
solution to the search problem—are present in the initial
population so that recombination and mutation can assemble
and fine-tune them to yield high-quality PES predicting func-
tions. The minimum population size, n, required to ensure
that at least one copy of different subcomponents �or tree
fragments� with kf functionals and kt terminals is given by31

n =
1

�pexp
�2� f�kf�2�t�kt�kf ln � f + kt ln �t − ln �� , �2�

where � is the average tree size in the initial population, pexp
is the proportion of the tree that gets expressed, i.e., contrib-
utes to the fitness or objective value, �t is the number of

terminals in the terminal set T, � f is the number of functions
in the function set F, and � is the failure tolerance. Empiri-
cally, it has been observed that the subcomponent size, k
=kf +kt, is small and ranges between 1–5. The validity of the
model is demonstrated in Fig. 3, where we plot the probabil-
ity of having at least one copy of all the raw subcomponents,
1−�, versus population size. As shown in Fig. 3, as the popu-
lation size is increased, the probability of initializing at least
one copy of all the competing raw subcomponents increases.

While ensuring the presence of raw subcomponents is im-
portant, it is not always sufficient for ensuring GP success.
We need to consider a large enough population that ensures
sustained growth of better subcomponents over bad ones.
This decision making among different, competing subcom-
ponents is statistical in nature, and, as we increase the popu-
lation size, we increase the likelihood of making the best
possible decisions.32–34 The population sizing required for
ensuring sustained growth of good subcomponents is given
by35

n = c
�bb

2

d2 �
�ckmk − 1�2k+1

pBB
expr�

. �3�

Each of the terms in the above population-sizing equation is
explained in the following paragraphs. In essence, the popu-
lation sizing for GP consists of the following factors:

�i� Competition complexity, quantified by the total num-
ber of competing subcomponents, �=� f

kf�t
kt.

�ii� Ease of decision making, quantified by the signal-to-
noise ratio, d2 /�bb

2 , where d is the difference between the
mean fitness of candidate solutions containing competing
subcomponents, and �bb is the variance of fitness of the com-
peting subcomponents.

�iii� Probabilistic safety factor, quantified by the coeffi-
cient c=z2�	�, where z�	� is the ordinate of a unit, one-sided
normal deviate, and 	 is the probability of making an error
�choosing the wrong competing subcomponent�.

�iv� Subcomponent complexity, which depends not only
on the minimum number of subcomponents �building blocks�
required to solve the problem mk, but also on the average tree

FIG. 3. Probability of at least one copy of all raw subcompo-
nents being present in the population vs population size, n for dif-
ferent tree sizes �=2h. Empirical results depict the proportion of
runs having at least one copy of a primitive and its complement in
the population out of 1000 trials.
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size �, and the proportion of the tree that gets expressed on
an average, pBB

exp. Empirical evidence shows that � is a mul-
tiple �usually 3–5 times� of the Kolmogorov complexity of
the problem.

The above population-sizing equation is verified with em-
pirical results in Fig. 4. The initial population was randomly
generated with either full trees or by the ramped half-and-
half method with trees of heights, h� �hk−1,hk+1�, where
hk is the minimum tree height with an average of 2mk leaf
nodes. We have empirically observed that the population size
scales quadratically with Kolmogorov complexity, n
=O�2k�k

2�.
Another parameter affecting scalability of GP is the ex-

pected number of generations required for the population to
converge successfully to a high-quality solution. Facetwise
analysis of GP shows that the number of generations required
to converge to a high-quality solution scales linearly with
Kolmogorov complexity, tconv=O��k�.36,37

III. CASE STUDY: VACANCY-ASSISTED SURFACE
DIFFUSION IN BINARY ALLOY

Via GP-based regression, we consider the prediction of
diffusion barriers for vacancy-assisted migration on �100�
surface of phase-separating fcc CuxCo1−x

38,39 for a concen-
trated alloy with x=0.5, a nontrivial case with many configu-
rations that affect the diffusional barrier height. The system
consists of five layers with 100 to 625 atoms in each layer;
see Fig. 5. The bottom three layers are held fixed to their
bulk bond distances, while the top layers are either held fixed
�as a test� or fully relaxed via MD. The input to the barrier
regression and prediction function, x� = �xj�, is a binary-
encoded vector sequence, where xj =0 �1� represents a Cu
�Co� atom. We consider only first and second nearest-
neighbor �n.n.� jumps, along with first- �as a test� and
second-n.n. environmental atoms in the active configuration,
as shown in Fig. 5. This system already exhibits large com-
plexity and is still small enough so that table look-up and
GP-regressed KMC can be implemented and directly com-

pared. Table I gives the number of active configurations
when first- and second-n.n. environments are considered for
a binary alloy.

If one were to tackle this problem with on-the-fly KMC
simulations, it would require the explicit calculations of four
activation energies for the four possible jumps to first-
nearest-neighbor sites. For most practical cases, this ap-
proach is prohibitively expensive in computing time since
activation energies depend strongly on the local environment
of the vacancy; even with a rather small range of interatomic
interactions, this results in activation energy calculations
well in excess of a million. There are, however, two excep-
tions for which on-the-fly calculations are possible. The first
one is for very large dilution �x
1�, and the second is for
small systems. For the present demonstration, we consider a
small system, so that we can calculate explicitly and exactly
all relevant activation energies. This approach will make it
possible to compare directly the effectiveness of GP-based
KMC to that of on-the-fly KMC simulations. We will discuss
below how these results scale as the size of the system in-
creases, an important question for practical applications.

Note that, for the sake of simplicity, we have restricted the
dynamics of the atoms to vacancy-assisted jumps. This sim-
plification, however, does not limit the generality of our
demonstration. Indeed, as long as the list of possible jumps is
known a priori, which is a standard requirement for lattice
KMC simulations,7 the present approach can easily be ex-
tended. One would simply use one symbolically regressed
function for activation energies corresponding to each migra-
tion mechanism, for instance, divacancy migration, adatom
migration, and atom exchanges at step surfaces.40

FIG. 4. �Color online� Empirical validation of the population-
sizing model �Eq. �3�� for GP. Empirical results denote the mini-
mum population size required to decide correctly between compet-
ing substructures with probability �mk−1� /mk. The tree height hk

equals 2mk and �k=2mk−1.

FIG. 5. �Color online� Sketch of simulation cell for vacancy-
assisted migration on �100� surface of an fcc binary alloy. Atoms in
all but bottom layers and the boundary can fully relax. Solid
�dashed� lines around migrating atom and vacancy represent first-
�second-� n.n environmental atoms. Atoms for first- �second-� n.n.
jumps are labeled from 1–7 �1–13� as they occur in the encoded
vector x� along with the barrier energy �E�x��.

TABLE I. Number of active configurations for first- and second-
n.n. jumps, and for first- and second-n.n. active atoms.

First-n.n.
jumps

Second-n.n.
jumps

First-n.n. active configurations 128 128

Second-n.n. active configurations 2048 8192

Total configurations �2100 �2100
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We model atomic interactions with a Morse potential,41

which includes at least second-n.n. interactions, and a tight-
binding potential within a second-moment approximation
�TB-SMA�.42–47 The atomic interactions of TB-SMA range
over fifth-nearest neighbors, which are longer range and,
hence, more computationally intensive �as in timings given
later� but more accurate.48 For the TB-SMA with interactions
up to fifth-n.n. atoms, we only consider up to second-n.n.
environmental atoms as variables for GP regression of the
barrier function �which is just to minimize the large variable
space�. If the TB-SMA potential were truncated to second-
n.n. interactions, its timings would be approximately equal to
those of the Morse potential, but it requires additional terms
to ensure continuity of potential, no truncation forces, etc.48

To validate interactions, we model vacancy-assisted migra-
tion on �100� surface of Cu and consider only first-n.n.
jumps. The predicted barrier for n.n. vacancy jumps with
fully relaxed lattice in Cu is 0.39 eV for Morse and 0.45 eV
for TB-SMA, agreeing with 0.42±0.08 �0.47±0.05� from ab
initio �EAM� �Ref. 46� calculations.

A. Efficacy of GP regression

For simplicity, we begin by considering only seven sur-
face first-n.n. environmental atoms, i.e., six neighboring at-
oms of both the diffusing atom and vacancy—for a total of
seven atoms that can be either Cu or Co, yielding 128 active
configurations. The environment outside this configuration is
fixed. About 20, i.e., 16%, different active configurations, are
randomly chosen and their barriers are computed using the
conjugate-gradient method and are used in the GP fitness
function; see Eq. �1�. The barriers predicted by GP for the
relaxed configurations are compared to the exact values in
Fig. 6. We note that the prediction error for the rigid lattice
case �0.4±0.04% � is significantly less than that for the re-
laxed lattice case �2.8±0.08% �. Due to the weighting used
in the fitness function, GP predicts barriers for most signifi-
cant, low-energy events more accurately than for less signifi-

cant, higher-energy events. The in-line barrier function sym-
bolically regressed via GP is simple

fbarrier�x�� = x1 − 2x2 + x3 + x4 − 2x5 + x7

−
x7

x6
− g1�x�� − g2�x�� + g3�x�� , �4�

where, once again, x� = �x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7�, and xi is either
0 or 1 denoting a Cu or Co atom, but the functions gi�x�� are
highly nonlinear; see the Appendix.

Figure 6 also compares the barriers predicted by GP to
those predicted by a least-squares-fit quadratic polynomial,
showing clearly its inadequacy for alloys. Furthermore,
while GP requires only 16%, the quadratic �cubic� polyno-
mial fit needs 28% �78%� of the barriers. �For clarity, the
large percentage needed for the polynomial regression arises
because of the number of variables. In the quadratic case for
this simple test case, the variable x� has 7 occupation compo-
nents of 0 or 1, so we need to fit coefficient terms from 1
constant, 7 linear, and 7 (21) (off-)diagonal quadratic, for
36/128 or 28%.� In limited cases, such as dilute Fe1−xCux,
the barriers can be predicted via a simple polynomial fit.50

To test the scalability of GP with active configuration size,
we consider the second-n.n. jumps and first- and second-n.n.
environmental atoms in the active configuration. As shown in
Table I, there is a total of 8192 configurations. The energies
predicted by GP are compared with direct calculations in Fig.
7, along with the error in the Morse �worst case� example.
The GP predicts the barriers for most significant events with
less than 0.1% error by fitting to energies from only 3% �i.e.,
256/8192� of the active configurations �see the error defini-
tion in Ref. 51�. From Fig. 7, clearly the nonadditive and
nonlinear tight-binding potential has less error than the
Morse case for even fewer barriers in the learning set. In
comparison, a cubic polynomial fit requires energies for
�6% of the configurations, predicting the barriers with 2.5%
error for the most significant events.

FIG. 6. �Color online� Activation energies �in electron volts�
predicted by regression. GP �circles� and a quadratic polynomial
�crosses� are compared to the calculated �Morse� barriers for first-
n.n. jumps on �100� surface of Cu0.5Co0.5 for relaxed lattices. As a
simple test, only first-n.n. environments are considered in the active
configuration. The line is a guide for the eye.

FIG. 7. �Color online� Upper: Calculated vs GP-predicted
�Morse and TB-SMA� barriers �in electron volts� for second-n.n.
jumps on relaxed Cu0.5Co0.5�100� from configurations out to
second-n.n. Lower: Morse GP-barrier error vs number of configu-
rations used in learning set: 0.1% �1%� error for most- ��E
�4.8 eV� and least- ��E4.8 eV� significant events from only 3%
of active configurations; TB-SMA GP error is 0.1% for less than
3%.
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The results shown in Figs. 6 and 7 clearly demonstrate the
effectiveness of GP in predicting the potential energy sur-
face, with high accuracy and little information. As expected,
since the regression and barrier calculation are nearly inde-
pendent, the GP performance does not depend on the poten-
tials used, e.g., Fig. 7 shows results for both Morse, and
nonadditive and nonlinear tight-binding potentials. The re-
gression only requires a database of barriers and has no
knowledge �nor the need� of the underlying potential used.
We also find that the GP performance is independent of the
configuration set used in calculating the fitness function, the
order in which they are used, and the labeling scheme used
to convert the configuration into a vector of inputs. Differ-
ences in activation-energy scale on the PES prediction via
GP are also negligible. That is, even though the barriers for
the first- and second-n.n. jumps differ by an order of magni-
tude, GP predicts the barriers with similar accuracy. More-
over, for more complex, cooperative effects, such as island
diffusion via surface dislocations,52 sr-KMC could be inter-
faced with pattern-recognition methods,53 as well as long-
range fields.54

B. Relative time comparisons

The CPU time savings by coupling GP-regressed in-line
barrier function with KMC �i.e., sr-KMC� are simple to es-
timate. For our example, with �33 times fewer calculated
barriers GP symbolically regresses an in-line barrier
function—rather than the complete look-up table—and thus,
sr-KMC provides a direct CPU savings of �100 over table
look-up methods. Additionally, each sr-KMC time step re-
quires only 10−3 CPU seconds for an in-line function evalu-
ation, as opposed to on-the-fly KMC that requires seconds
�empirical potentials� to hours �quantum methods�, providing
a gain of 104–107 CPU seconds. For our example, one re-
laxed barrier calculation takes �10 s ��1800 s� for Morse
�tight-binding�.

An important question, especially for bulk diffusion, is
how the gain from sr-KMC scales with system complexity
�e.g., range of environment considered—the active
environment—or additional alloying components�. While we
cannot fully answer this question yet, in the present study it
is remarkable and promising that the fraction of explicit bar-
rier calculations required by sr-KMC decreases as the num-
ber of active configurations increases.

For sake of completeness, we note the simulation time
enhancements over MD �from nanoseconds to seconds� by
sr-KMC. �Of course, if a complete look-up table is also cal-
culated, the estimate is the same.� With event occurrence
following a Poisson distribution, the real time in KMC is
given by12,55

�r = �
j=1

NKMC − ln U

�i=1

Ncfgs �0e−��E�x�i�
, �5�

where NKMC is the number of Monte Carlo steps, U� �0,1�
is a uniform random number, Ncfgs is the number of active
configurations. Using �0
27�1012 Hz for Cu-Co,49 Eq. �5�
gives—per time step of KMC relative to MD �assuming an

MD time step of 10−15 s�—an increase in simulated time of
109 at 300 K, 104 at 650 K, and 102.3 at 1000 K. Direct
timing runs from KMC agree with these estimates. So, the
key increase in timings comes from learning the table from
very few barriers, saving all the calculating time, and allow-
ing more complex problems to be addressed potentially.

IV. SUMMARY AND CONCLUSIONS

Here, we have presented an approach using a machine-
learning method based upon symbolic regression via genetic
programming to determine, accurately, and with little infor-
mation, complete details of the potential energy surface and
output as an in-line function. We have shown, on a nontrivial
example of vacancy-assisted migration on a surface of fcc
CuxCo1−x, that GP predicts all barriers with 0.1% error from
calculations for less than 3% of active configurations, inde-
pendent of the type of potentials used to obtain the learning
set of barriers via molecular dynamics. The genetic
programming-based KMC approach avoids the need or ex-
pense of calculating the entire potential-energy surface, is
highly accurate, and leads to significant scale-up in real
simulation time for complex cases as it enables use of KMC
and, more importantly, leads to a significant reduction in
CPU time needed for KMC �7 orders of magnitude for
quantum-based calculations�, not possible by any other cur-
rent means. For alloys, we believe the number of explicit
barrier calculations for the learning set can be reduced fur-
ther by over an order of magnitude ��0.3% of the active
configurations� using local cluster expansion methods.56

The genetic programming regression allows atomic-scale
information �in our example, diffusion barriers on the poten-
tial energy surface� to be included in a long-time kinetic
simulation without maintaining a detailed description of the
all-atomistic physics, as done within molecular dynamics.
Our multiscale approach does not require finding pertinent
“hidden variables,” but just uses necessary information at the
appropriate timescale �or length scale�—a coarse graining of
sorts. We emphasize that the genetic programming is non-
trivially regressing an in-line function and its coefficients
that approximate the potential-energy surface, and its effi-
cacy over standard basis-set regression was made clear.
Moreover, the genetic programming approach is not problem
specific and requires little modification, if any �say, by
choice of operators and functions�, to address increasingly
complex cases, and, thus holds promise as an efficient tool
for multiscaling in more than one area, as suggested.
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APPENDIX: GP-REGRESSED IN-LINE BARRIER
FUNCTION

The inline barrier function fbarrier symbolically regressed
via GP for second-n.n. jumps considering only seven surface
first-n.n. environmental atoms �our initial simple case� is
given by

fbarrier�x�� = x1 − 2x2 + x3 + x4 − 2x5 + x7 −
x7

x6
− g1 − g2 + g3,

�A1�

where x� = �x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7�, and xi is either 0 or 1 de-
noting a Cu or Co atom, and

g1 =
1

x5
�x4 +

x5

�x1 + x4 + 2x5 + 40x7��0.025

,

g2 =
− g4 � �x2 + 0.25x5��g7x2

g6�1+x3��

�x1 + x3 + x4 + 0.945 � x4x6/x7�
,

g3 = 40x2�x2
�1+x2+2x3+x5+g5�� . �A2�

See Sec. II for handling of floating point and other expecta-
tions that might occur in the symbolically regressed barrier
functions. The functions gi�x�� are highly nonlinear functions
of the configurations, i.e.,

g4 = g8� 0.473 � x3x5�x2
�x7/x4��2x3

0.177 � x1x6g9�x1 + x4��x2 + x5�� ,

g5 =
�x2 + 0.025x5�g10 � g11

x2 + x3 + x4 + g12
,

g6 = x2 +

x5�2�x2 + x5� +
x7

x6
+ 40�

x5 + x3�2�x2 + x5� +
x7

x6
+ 40� ,

g7 = �g13 + g14��x2
�x2+x5/�x2+x5+x4��� . �A3�

g8 = ��x2
g14 + g17��x2

�x2+g18� + g17��0.025,

g9 =
x6�0.473 + x6�

x4�x2
g19�x5/x7

,

g10 = g15x2
g20�2x2x5+x2x4x6+x5�,

g11 =
3x3x5x2

�2x2�

g21�x3 − 1 −
x6

x7
+ �0.59 − x1��x5 − x6�� ,

g12 = x1 + x2 + 3x3 + x4 + x5 + x2
2�x2+x5� + 0.95

x4x6

x7

+ �0.59 − x1��x5 − x6� +
x7

x6 − 0.23
. �A4�

g13 = x2 +
x5

0.473 + x1 + x3 + x4 + x2
g22

,

g14 = x2 +
x5�0.473 + x2

g23�
x5 + x2�0.473 + x2

g23�
,

g15 = 1 + x2 + x5 +
x5

x6
+

x7

x4
+

x5

x1 + x4

+ g16
�x5/x7� + x2

�x3−1+�x6/x5�−�x6/x7�+�x6/x2��,

g16 = x2
�−1−x1+x3−x4+�x6/x7�+�x6/x5�−g24�,

g17 =
x5�0.473 + 40x7�

x5 + x2�0.473 + 40x7�
. �A5�

g18 =
x5�0.473 + x2

�x2+x5��
x5 + �x2 + x5��0.473 + x2

�x2+x5��
,

g19 = �− x1 + x3 − x4 +
x6

x5
− g24��x5/x7�

,

g20 =
�x5 + x7/x6��x2+x5�

x2x5 + x5 + x4x6
,

g21 = x6�x2 + x5�x3 +
x5

x2 + x5 +
x7

x6
+ g25� . �A6�

g22 =
x6

x7
+

x6

x5
− x1 − x3 − x4 − � x2

x1
���x6/x3�−0.47�x2+x5��

,

g23 = �x3 +
x6

x5
��3x3+x7/x6�

,

g24 = � x2

x1
���x6/x3�+0.473�x2+x5��

,

g25 = 0.47 +
x5

x2 + x5 +
x7

x6
+

1

x2 + x5
+

x4

0.473 + x6

. �A7�
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