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Accurate calculations of the phonon dispersion relations, phonon density of states, and phonon eigenvectors
of the narrow single-wall carbon nanotubes in optimized geometry are carried out. The method applied is based
on the force constants for graphene which reflect the long-range character of the dynamical matrix. Further, the
relaxation and symmetry imposed modifications of the force constants are performed and the calculations are
carried out by means of the fully symmetry implemented POLSym code. Shortcomings of the widely used
frozen phonon model are overcome. The results obtained are compared to the Raman scattering measurements
on the zeolite-grown nanotubes.
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I. INTRODUCTION

Existence of the ultrasmall radius carbon nanotubes has
been predicted1 soon after the discovery of the standard di-
ameter ones.2 Quite recently, local density functional results3

showed that the single-wall carbon nanotubes �SWCNTs� as
thin as 3.42 Å are energetically stable implying that the
zeolite-grown SWCNTs,4,5 when exposed into the free space
could persist. By high resolution transmission electron
microscopy,6,7 the diameter of the tubes encapsulated inside
the hexagonally arrayed open channels of the zeolite AFI
crystal was determined to be about the size of C20, the small-
est fullerene. The tubes were further characterized through
the optical absorption,6 polarized Raman scattering,4,8–10 dif-
fuse x-ray scattering,11 and electrical transport meas-
urements.4,12 More recently, systematic resonant Raman scat-
tering study of the SWCNTs inside the AFI crystal using
several laser lines has been performed10,13 and the influence
of the zeolite framework on the embedded SWCNTs �the
zig-zag ones, in particular� has been calculated.14 On the
other hand, to the best knowledge of the authors, no thor-
ough theoretical investigations of the phonon modes in nar-
row SWCNTs have been performed. For the tubes �5,0�,
�4,2� and �3,3� the radial breathing mode �RBM� frequencies
have been calculated by a frozen phonon method15,16 and
their phonon density of states �PDOS� has been determined
by a tight-binding molecular dynamics method.10,17 More re-
cently, ab initio density functional calculations of the phonon
dispersions and PDOS for the tubes �5,0� and �4,2� have been
carried out.13

In this paper we present an extensive and detailed theo-
retical study of the vibrational properties of the relaxed
SWCNTs with diameters between 3.4 Å and 5 Å. Particular
attention is paid to the 4-Å-diameter tubes where we com-
pare our theoretical results to the recently reported Raman
scattering measurements on the zeolite-grown nanotubes.10,13

The symmetry-based force constant method is applied: we
fit the force constants to the recently reported18 inelastic
x-ray scattering measurements of the phonon dispersions of
graphite and take into account the long-range character of the
dynamical matrix.

Further, we modify the fitted force constants to the
slightly strained sheet in order to match the equilibrium
geometries3 of the unfolded tubes and then additionally

kinematically19 adjust them to the cylindrical web geometry.
We use the POLSym simulation package,20 based on the
modified group projector technique21 and line group
symmetry22 �for details on the method, see Ref. 19�.

II. SYMMETRY

Due to the one-to-one correspondence between the sym-
metry transformations and the atoms in the cylindrical web
of a SWCNT the symmetry is essential for understanding
underlying physical properties. All the symmetry transforma-
tions of a SWCNT form a monoperiodic discrete infinite
group, called line group23 which is generated by three �in a
case of the chiral tubes� or four �for armchair and zig-zag
tubes� symmetry transformations.

Helical symmetry of the �n1 ,n2� tube is generated by a
rotation of 2r� /q around the tube axis followed by a trans-
lation for na /q, where a is a translational period of the tube
and n is the greatest common divisor of n1 and n2, while the
parameters q and r are more complicated functions of n1 and
n2 �for details see Ref. 22�. The helical group thus obtained
is denoted by Tq

r�a�. The remaining two generators are rota-
tion for 2� /n around the vertical axis �i.e., tube axis� and
twofold rotation U around the horizontal axis. Hence, gener-
ally, the full symmetry group of a chiral tube is a product of
the helical subgroup Tq

r�a� and the point subgroup Dn.
Analogously, for the achiral tubes, �n ,0� and �n ,n�, their
symmetry groups are product of Tq=2n

r=1 �a� and Dnh, as there is
a vertical mirror symmetry �v as well. All these groups are
nonsymmorphic,22 i.e., the corresponding isogonal point
groups, Dq and D2nh, are not subgroups.

The parameters q, r and n, which determine full symme-
try �as well as the isogonal point group� of the narrow tubes
considered here are given in Table I. From the above factor-
ization of the SWCNTs symmetry groups it is easy to see
that the corresponding irreducible representations �IRs� are
one- and two-dimensional in the case of the chiral tubes
while one-, two- and four-dimensional for the achiral ones.

Apart from the parities two types of quantum numbers are
used: rototranslational and helical.24,25 The former, consist-
ing of linear momenta k and total angular momenta m are not
conserved in Umklapp processes. While k is the conserved
linear quasimomentum �canonically conjugated to the dis-
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crete translations�, the angular momentum m is not, as it
appears due to the isogonal rotations being not the elements
of the total symmetry group. In contrast, the helical quantum

numbers, i.e., helical momenta k̃ and complementary angular

momenta m̃, are always conserved since k̃ is conjugated to
the helix Tq

r�a� �thus combining angular and linear momenta�
while m̃ is related to the rotations of the point subgroups Dn
or Dnh.

Each IR can be labeled by either set of quantum numbers:

�k ,m� and �k̃ , m̃�. For fixed m and k allowed over the irre-
ducible domain �ID� �0,� /a� of the Brillouin zone �BZ� one
gets the m series. Likewise, the m̃ series is obtained for fixed

m̃ and k̃ running over the ID �0,�q /na� of the helical BZ.
Altogether the number of the m and m̃ series is q and n,

respectively. Consequently, the k̃m̃ quantum numbers are
more practical when phonon �or electron24� dispersions in the
chiral tubes are considered �and graphically presented� as
these tubes are usually characterized by a large q value �due
to the large number of atoms within the unit cell�. Anyway,
by means of the transition rules25 it is easy to switch between
the two sets of the quantum numbers.

Concerning the parities, the ones with respect to the
z-reversal symmetries �U or �h� are denoted by � or �
while A and B respectively indicate even and odd character
of the parity which is due to the vertical mirror symmetry.

III. RAMAN ACTIVE MODES

Resonant Raman scattering has proved to provide a reli-
able tool for characterizing SWCNTs. However, out of 15
�for the chiral tubes� and eight �for the achiral tubes� Raman
active vibrational modes19,22,26 only the radial breathing
mode and the tangential G-band modes of vibration are
strongly resonance enhanced29,30 comprising the main fea-
tures in first-order Raman spectra. While the low-frequency
perfectly symmetric RBM has no counterpart in the graphene
sheet the G-band high energy modes �HEMs� can be inter-
preted by splitting �due to the symmetry breaking after fold-
ing the sheet into the tube� of the E2g peak in the Raman
spectra of the 2D graphene sheet.

In what follows we focus firstly on the RBM, which in a
case of the conventional SWCNTs has shown to be very
useful for the identification of the tube diameter. Subse-
quently we turn to the inspection of the more complex Ra-
man spectral feature: frequencies and atomic displacements
of the G-band HEMs.

A. Radial modes of vibration

The breathing mode of vibration, in which all the atoms
undergo an equal radial displacement, is a unique feature in

the SWCNTs Raman spectra. Being sensitive to the tube di-
ameter it is widely used to characterize samples of SWCNTs.
Many theoretical calculations17,19,28,29,31,32 have shown that
its frequency �RBM decreases with the diameter D of the
tube: e.g., �RBM�cm−1��224.3/D�nm� �from Ref. 19�. Being
purely symmetric mode, it transforms according to the IR:

0A0
+ �A1g, subscript “g” is for the achiral tubes only�, where

the line group �isogonal point group� notation is used. How-
ever, the radial breathing mode, in a case of the ultrathin
nanotubes, is not quite radial as it appears to have finite
components along and normal to the tube axis �tangential to
the cylindrical surface�. Namely, as the achiral tubes posses
nontrivial stabilizer22 �i.e., the carbon atoms sit in vertical
and horizontal mirror planes, in zig-zag and armchair tubes,
respectively� the RBM displacement has no circumferential
component in the zig-zag tubes �due to the stabilizer that is
generated by a vertical mirror plane�, while in the armchair
tubes �where the stabilizer is generated by a horizontal mir-
ror plane� it does not have the longitudinal component. On
the other hand, the chiral tubes have trivial stabilizer and no
mirror symmetry22 and their RBM displacement is thus al-
lowed to have both the circumferential and the longitudinal
component. As expected, the first one, �, increases, whereas
the second one, z, decreases with the chiral angle �, Fig. 1.
The contribution of these components to the RBM displace-
ment amplitude decreases rapidly with the tube diameter D:

z�D,���%� = �24

D
+

97

D3��cos 3�� , �1�

��D,���%� = − �26

D
−

4.1

D3 ��sin 3�� , �2�

where D should be inserted in the units of angstrom.
Since in the case of the narrow tubes the deviation from

the radial direction is considerable, the generally used frozen
phonon method15,32 where the tube radius is simply increased
and decreased by, e.g., 1% and 2%, when applied to the
narrow nanotubes would somewhat overestimate the RBM
frequency: from 5 cm−1 to 12 cm−1. This error is chirality
dependant �Fig. 2� and diminishes with the SWCNTs’ diam-
eter: it is about 1.5 cm−1 for the 	1.4-nm-diameter tubes. A
fit to the inverse diameter gives the constant of proportion-
ality which is somewhat larger than in a case of the standard
diameter nanotubes19 and no significant chirality dependence
of the RBM frequency is obtained:

�RBM�cm−1� =
259

D�nm�
−

1.4

D3�nm�
, �3�

which contradicts recent frozen phonon model calculations.16

Namely, within such an approach RBM is modeled as totally

TABLE I. Symmetry parameters of the narrow SWCNTs.

�n1 ,n2� �4,0� �3,2� �4,1� �5,0� �3,3� �4,2� �5,1� �6,0� �4,3� �5,2�

q 8 38 14 10 6 28 62 12 74 26

r 1 15 11 1 1 9 51 1 21 11

n 4 1 1 5 3 2 1 6 1 1
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radial displacement and consequently, the square root of the
corresponding dynamical matrix element is interpreted as the
RBM frequency. However, since RBM has finite nonradial
components which are chirality sensitive, the RBM frequen-
cies calculated within frozen phonon approximation reflect
the chirality dependence of the RBM nonradial
components.27

It is interesting to note that in SWCNTs there is also an
exact radial mode of vibration. Using simple symmetry ar-
guments existence of such a phonon mode can be easily de-
duced: The longitudinal translations change the sign upon the
z-reversal symmetry while they are invariant under all the
other symmetry transformations. Thus the corresponding
acoustic mode transforms as the 0A0

−�A2u� tensor. Further, in a
case of the chiral tubes the twisting acoustic mode is of the
same symmetry �it has to be odd with respect to the
U-transformation� and the frequency number of the 0A0

− in

the dynamical representation is three. Consequently, the third
�optic� 0A0

− mode is purely radial �as it has to be orthogonal
onto both the longitudinal and the twisting mode of the same
symmetry�. On the other hand, in a case of the achiral tubes,
where the extra mirror plane symmetries emerge, the twist-
ing mode is to change the sign upon the reflection in the
vertical mirror plane and it is to be invariant under the hori-
zontal mirror plane transformation; hence it transforms as the

0B0
+�A2g� tensor. Moreover, the dynamical representation of

the zig-zag �armchair� tubes contains the 0A0
−�0B0

+� represen-
tation twice. Therefore the optic 0A0

−�0B0
+� mode should be

orthogonal onto the z axis �the axis tangential to the tube
circumference�. As the 0A0

−�0B0
+� tensor is invariant under the

reflection in the vertical �horizontal� mirror plane, the optical
mode 0A0

−�0B0
+� is therefore exactly radial.

Hence, the exact radial mode, unlike the RBM, is not
totally symmetric since the adjacent carbon atoms undergo
an equal radial displacement but in the opposite directions. It
is both infrared and Raman active in a case of the chiral
tubes while only Raman and only infrared active for the arm-
chair and zig-zag tubes, respectively.

B. G-band modes

As established by resonant Raman scattering measure-
ments and lattice dynamics calculations,29 components of the
G-band in the Raman spectra of achiral SWCNTs have

0A0
+�A1g�, 0E1

−�E1g�, 0E2
+�E2g� symmetry while in a case of the

chiral tubes there are six components, a pair of each having
the following symmetries: 0A0

+�A1�, 0E1�E1�, 0E2�E2�.
Since the frequency number of the 0A0

+ in the dynamic
representation of the achiral and chiral tube is two and three,
respectively,22 and since the RBM is totally symmetric, the
HEM of vibration in the achiral tubes must take place in the
plane which is orthogonal onto the radial breathing displace-
ment vector. Similarly, in a case of the chiral tubes, the two
HEMs of vibration form an orthogonal basis in such a plane.
Bearing in mind that the symmetric displacement in the arm-
chair or zig-zag tube cannot have longitudinal or circumfer-

FIG. 1. RBM longitudinal, z, and circumferential, �, components. Left: z and � dependence on the chiral angle, �. Overlap of the
longitudinal and circumferential values in a case of the �5,2� tube is indicated. Right: z / cos 3� and � / sin 3� as a function of tube diameter.
Solid curves are fits �1� and �2�.

FIG. 2. RBM frequencies of the narrow SWCNTs as a function
of the inverse diameter. Solid symbols are chiral tubes, open ones
are achiral tubes; linear fit is given by Eq. �3�. The inset shows the
RBM frequency overestimation �� which frozen phonon method
gives.
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ential component as the stabilizer contains horizontal or ver-
tical mirror plane and that the RBM is only nearly radial, one
deduces easily that the HEM in armchair or zig-zag tube is
almost �but never exactly� circumferential or longitudinal. As
in a case of the chiral tubes no such restriction occurs �due to
the lack of the mirror symmetry� these tubes happen to have
one �almost� circumferential and one �almost� longitudinal
HEM. If the RBM was exactly radial these modes would
determine the tangential plane to the tubule. Nevertheless, as
the nonradial components of the RBM are vanishingly small
for the larger tubes, the frequently used notion of the tangen-
tial fully symmetric mode within the G-band is fully justi-
fied. The notion appears to make sense also in a case of the
narrow tubes since the declination from the both circumfer-
ential and longitudinal direction is at most 3.8° for the tube
�5,2� which is fairly narrow and almost equally “distant”
from both the zig-zag and armchair geometry �Fig. 1�.

Unlike the symmetric HEM, the descriptive notion of the
tangential modes of vibration does not hold for the doubly
degenerate G-band phonons in the chiral tubes as the corre-
sponding atomic displacements usually have substantial ra-
dial component as well. Namely, since the Hamiltonian is
degenerated, the particular result obtained from the symme-
try based calculations is specified by the �arbitrary� choice of
the matrix forms of the corresponding IR, but any other �of
infinitely many� equivalent representation�s� would yield the
vectors from the same eigensubspace, connected to the pre-
vious ones by an orthogonal transformation. Further, as the
range of the projector onto the corresponding IR �0E1 or 0E2�
is a six-dimensional real space22 any atomic displacement
direction is allowed. On the other hand, in a case of the
methods not based on symmetry details of calculation single
out the particular pair of eigenvectors. For instance, the ex-
haustive illustrations of the E1 and E2 modes in some of the
chiral tubes33 represent just one of infinitely many diverse
possibilities.

In contrast to the chiral, the doubly degenerated HEMs of
the achiral tubes are characterized by the sharp horizontal
mirror parity �0E1

− is odd and 0E2
+ is even� which in a case of

the armchair tubes severely restricts the possible directions
of the corresponding atomic displacements. Since in these
tubes the carbon atoms sit on the horizontal mirror planes
�i.e., the stabilizer is C1h� the corresponding odd or even
phonon modes are necessarily longitudinal or
circumferential.29 As the horizontal mirror plane does not
pertain to the stabilizer of the zig-zag tubes both the 0E1

− and

0E2
+ atomic displacements in these tubes may have finite cir-

cumferential and longitudinal components.
The calculated frequencies of the HEMs are shown in Fig.

3. The splitting of the two 0A0
+�A1� modes in the chiral tubes

ranges between 30 cm−1 and 70 cm−1, considerably less than
the splitting obtained by extrapolating the empirical
formula34 defined for the tubes with diameters between 0.95
nm and 2.62 nm.

Generally, the order of the frequencies at the 	 point �k
=0� differs from the one expected in the simple zone folding
approach �e.g., with decreasing frequency the branches are
sorted as m=0, 0, 1, 1, 5, 2, 2, 3 in a case of the �5,0� tube�.
However, the ordering of the Raman active HEMs happen to
match the zone folding prediction: Sorted by decreasing the

frequency it is A1g, E1g, E2g for both the zig-zag and the
armchair narrow tubes, unlike the case of the tubes with
larger diameter.35

IV. 4-Å DIAMETER TUBES

Recently, porous aluminophosphate AlPO4 zeolite crystal
was used as a template to grow monosized SWCNTs by py-
rolyzing hydrocarbon molecules in its channels.4 Under the
assumption of the van der Waals type of interaction between
the SWCNT inside the channel and the crystal the diameter
of the SWCNT should be around 0.4 nm. Also, by high-
resolution transmission electron microscopy the diameter of
the zeolite-grown tubes was determined6 to be
0.42±0.02 nm. Within this diameter range there are four dif-
ferent chiralities: �5,0�, �3,3�, �4,2�, and �5,1�. Diameter of
the largest, �5,1�, SWCNT in ideal cylindrical structure is
0.436 nm. Thus, it is expected to exceed the upper limit of
0.44 nm when relaxed in a free space. In a case of the
zeolite-grown SWCNTs nanometer-sized channels must have
an important function in their stabilization. Namely, although
the narrow SWCNTs were predicted to be energetically
stable2,3 when exposed into a free space there are certain
indications of their instability,4 especially under electron-
beam irradiation. Therefore we do not rule out the possibility
�at least not on the diameter range basis� the �5,1� tube to be
zeolite-grown.

It is not easy to determine accurately the chirality from
electron microcopy. Raman spectroscopy seems to be a more
helpful characterization tool. It is also sensitive to the con-
centration of the particular tube types and to the channels’
filling rate. The interpretation of the Raman scattering mea-
surements relies on calculated optical absorption and phonon
dispersions. In the rest of the paper we present and discuss-
the latter for the above listed four 0.4-nm-sized tubes.

In Fig. 4 phonon dispersion of the achiral tubes are de-

FIG. 3. Raman active HEM frequencies plotted as a function of
the inverse radius. Triangles denote modes with A1 and A1g sym-
metry, asterisks the ones with E1 and E1g symmetry while the
modes with E2 and E2g symmetry are depicted as squares. Solid
symbols are the circumferential modes, open ones are the longitu-
dinal modes.
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picted. Due to the relatively small q values the km represen-
tation is used. Out of the 	 point the branches with m=0 and
m=n are double degenerate and have well defined parity
under vertical mirror reflection. All the other bands are four-
fold degenerate. On the other hand, phonon branches of the

�4,2� and �5,1� tubes are given by the helical k̃m̃ quantum
numbers �Fig. 5�. The length of the BZ is 14� /a and 62� /a,
respectively. The bands with m̃=0 are given by the bold
lines. A band with a given m̃ can be understood as “unfold-
ing” the bands in the km description by obeying the Umklapp
rules25 at the zone boundary. The frequencies extend up to

1570 cm−1, similar to the recent density functional theory
calculations.13 All the phonon bands are double degenerate
�apart from the modes at k=0�. Finally, the totally symmetric
phonon modes �RBM and HEMs� which are observable by
Raman spectroscopy are indicated in the figures.

For the relaxed �5,0�, �3,3�, �4,2�, �5,1� tubes �the geom-
etry parameters of the relaxed configurations are taken from
Ref. 3� the calculated RBM frequencies are 611 cm−1,
598 cm−1, 586 cm−1, and 559 cm−1, respectively. The larger
the diameter, the smaller RBM frequency �likewise the larger
radius tubes�—in agreement with the quite recent calcula-
tions by Li et al.36 and in contrast to the previously reported
calculations13,15,37 which give the following RBM frequency
ordering �starting from the lowest one�: �3,3�, �4,2�, �5,0�.
The results of ours are also in a qualitative agreement with

FIG. 4. Phonon dispersions of
the �5,0� and �3,3� nanotubes
given by km quantum numbers.
The bands with m=0 and m=n
�bold lines� are double-
degenerate, with the vertical mir-
ror parity �even and odd is indi-
cated by A and B�. The remaining
bands are fourfold degenerate.
Circles denote the radial breathing
and high energy totally symmetric
modes.

FIG. 5. Phonon dispersions of the �4,2� and �5,1� nanotubes

given by k̃m̃ quantum numbers. For �4,2� tube, as n=2, six bands
are assigned by m=0 �bold�, and the other six by m=1 �dashed�,
while for �5,1� there are only six m=0 branches. All the bands are
double degenerate. Circles denote the radial breathing mode and the
high energy totally symmetric modes.

FIG. 6. PDOS of the �4,2� and �5,1� SWCNTs in low- and high-
energy regions.
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the measurements of Jorio and co-workers10 and with the
more recently reported Raman studies of the AFI-grown
tubes.13,36 The experimental values that have recently been
reported in Ref. 37 are also matched. However, we ascribe
the lower frequency to the �4,2� and the higher one to the
�5,0� tube.

As the Raman active modes fall into two different energy
regions we provide low-energy and high-energy phonon den-
sity of states �PDOS� plots for each of the tubes. While in a
case of the chiral tubes �Fig. 6� all the peaks in the low-
energy PDOS �apart from the one coming from the RBM�
correspond to the Raman inactive phonon modes �i.e., with
�m� larger than two� in a case of the achiral tubes besides the
RBM peak there are features in the low-energy PDOS also
coming from the Raman active modes: 0E2

+�E2g� at 350 cm−1

and 0E1
−�E1g� at 750 cm−1 for the �5,0� tube �Fig. 7�. There-

fore, the peak at 390 cm−1, in the experimentally obtained13

low energy Raman spectra of SWCNTs embedded in a zeo-
lite crystal can be ascribed to the Raman active E2g mode of
the �5,0� SWCNT. However, not only the Raman active
modes are those which correspond to the PDOS peaks, as
shown in Fig. 6 and Fig. 7.

The calculated frequencies of the G-band modes are given
in Table II. The values are at most 3% lower than the mea-
sured ones.10,13 The agreement is much better when the AFI
crystal lattice constant is taken �instead of the free SWCNT
unit cell length� indicating the role of the AFI template in the
stabilization of the incased tubes. Also, the possible A1g
HEM softening, by a Peirels-like mechanism,38 in the metal-
lic, �3,3� and �5,0�, tubes has not been taken into account.

Finally, it is interesting to note that the exactly radial
mode shows a high density exhibiting thus well pronounced
peak in the PDOS plot. The calculated frequency for the

armchair �3,3� and the zig-zag �5,0� tubes are very close:
954 cm−1 and 958 cm−1, respectively. However, the suitable
measurement can distinguish between these two as in the
first case the mode is Raman active, while in the latter it is
infrared active. Concerning the chiral tubes, the modes are
both Raman and infrared active and the frequencies are
952 cm−1 for �4,2� and 946 cm−1 for �5,1�.

V. CONCLUSION

In conclusion, we performed comprehensive theoretical
study of the vibrational properties of the narrow SWCNTs,
the 0.4-nm-sized ones in particular. The full-symmetry
groups of the narrow tubes are determined and the phonon
dispersions and atomic displacements are calculated within
the specifically symmetry based force constants approach. Its
direct output together with the frequencies and the displace-
ments are the phonon branches assignation by the full set of
the conserved quantum numbers, band degeneracy, Raman
and infrared active modes. Further, PDOS is calculated and
its main features are ascribed by Raman or infrared active
modes. The eigenvectors of the phonon modes are calculated
exactly and thus the shortcomings of the frozen phonon
method are overcome. As a consequence, no significant
chirality dependence of the RBM frequency is obtained and
it is shown that the rule: “the lower the diameter the higher
the RBM frequency” holds for the ultrathin SWCNTs as
well. Finally, the results of the exhaustive symmetry-based
numerical study presented here may help to resolve the am-
biguities in the identification of the AFI-grown tubes.
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TABLE II. Calculated frequencies of the Raman active high-
energy modes.

SWCNT IR Frequency �cm−1� SWCNT IR Frequency �cm−1�

�5,0� A1g 1565 �3,3� A1g 1517

E1g 1485 E1g 1512

E2g 1375 E2g 1437

�4,2� A1 1515 �5,1� A1 1520

1563 1566

E1 1501 E1 1509

1517 1524

E2 1414 E2 1414

1442 1456

FIG. 7. PDOS of the �5,0� and �3,3� SWCNTs in low- and high-
energy regions.
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