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The effect of surface stress on the resonance frequency of a cantilever sensor is modeled analytically by
incorporating strain-dependent surface stress terms into the equations of motion. This mechanistic approach
can be equated with a corresponding thermodynamic description, allowing basic equations to be derived that
link the analysis to experimentally determined parameters. Examples are shown for the cases of a pure surface
stress and an adsorption-induced surface stress, and indicate that frequency measurements may be useful for
fundamental understanding of surface and adsorption-induced stresses on metals, semiconductors, and nanos-
cale structures. Application to biomolecular adsorption sensors appears unlikely.
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Microfabricated cantilever structures have been demon-
strated to be extremely versatile sensors1–3 and have potential
applications in physical, chemical, and biological
sciences.1–5 Adsorption on a functionalized surface of a mi-
crocantilever may induce mass, damping, and stress changes
of the cantilever response. One cantilever sensor technique is
to monitor changes in the cantilever resonance frequency,
and this method seems best suited for use in gaseous or
vacuum environments to measure adsorption-induced mass
loading of the cantilever. For work in liquid environments,
measurement of the static bending of a cantilever arising
from surface stress was proposed as the most appropriate
method for detecting biomolecular adsorption6,7,10 in liquids,
and this indeed appears to be the case from a practical
viewpoint.4,8 However, there is minimal understanding of
how surface stress influences the resonance frequency of a
cantilever. As we show below, this problem is of interest in
the quantitative measurement of mass and stress loads found
using resonant frequency sensors; as a method to measure
fundamental properties of surface stress; and of increasing
importance to mechanical design as structures scale toward
nanometer dimensions, including the development of poten-
tial nanoscale stress sensors.

Both theoretical and experimental studies9–12 have been
undertaken to investigate surface stress effects in microcan-
tilevers. In this study we give a simple analytical description
of surface stress effects and show how frequency measure-
ments may be used to evaluate surface stresses. Previous
theoretical analyses on the problem of adsorption-induced
surface stress changes in cantilever resonance followed the
treatment given by Chen et al.,10 in which the differential
surface stress induced by adsorption is simplified to external
axial forces exerted on the cantilever. In this way, the prob-
lem of a self-balanced cantilever deformation due to mis-
match stress without any external forces has been replaced
by a problem of bending or vibration of the cantilever under
an applied force. Although a taunt string model10 and a beam
with axial force model11,12 have been suggested based on this
simplification, neither approach represents the correct physi-
cal model. The effective external forces are considerably
overestimated in these models because in the real situation
the cantilever has a free end to allow deformation or bending

to relieve the stress. For a cantilever with a free end, changes
in cantilever resonance frequency due to small changes in
curvature �i.e., bending� have been shown to be negligible.13

In what follows we consider changes in mechanical reso-
nance frequency that arise from a surface stress, not changes
in the bulk elastic properties of the cantilever that may arise
on adsorption, e.g., by alloying,4 material changes,10 or
deposition14 of relatively thick films to create composite
beam structures. Further, we use the term surface stress to
denote stress in the neighborhood of the surface of the bulk.
This includes pure surface stress �i.e., of a free surface�, in-
terfacial stress, and stress within a very thin adsorbed mate-
rial.

Consider a cantilever used as a sensor. The experimental
quantity measured is the surface stress difference, ��=�u
−�l, where �u and �l are the surface stresses on the upper and
the lower surfaces, respectively �see Fig. 1�. The stress terms
can be described in a full tensor form. However, for clarity
and with no loss of applicability, we simplify the problem by
assuming a one-dimensional system with scalar, isotropic
material properties. In this case, and to first order in the
strain, the surface stresses may be written,15,16

�u = au + bu�u, �l = al + bl�l, �1�

where a is the strain-independent surface stress, b is a con-
stant associated with the surface strain, � is the surface strain
measured from the prestressed configuration, and the sub-
scripts u and l always refer to the upper and lower surface,
respectively. The surface stress difference can be written
from Eq. �1� as

�� = ��0 + ��1 �2�

with ��0=au−al and ��1=bu�u−bl�l. The influence of the
surface stress on the resonance frequency of the cantilever
sensor can be investigated by considering the influences due
to ��0 and ��1. This approach follows from that of Gurtin
et al.17 who described a cantilever with equal stress on top
and bottom surfaces15 �see Fig. 2�a��. This work has been
overlooked in more recent research and it seems timely to
reintroduce their idea, which we extend to include the effects
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of surface adsorption and unequal stresses on top and bottom
surfaces �see Fig. 2�b��.

We first consider the strain independent term, ��0, which
can be converted to a static deflection or a static internal
strain of the cantilever �similar to a temperature-induced
thermal strain�. If the relationship between ��0 and the in-
ternal prestrain can be obtained, the influence of ��0 on the
dynamic properties of the cantilever sensor can be estimated
using the model of a prestrained cantilever vibration.

An end-part free body diagram cut in any section of the
cantilever is drawn as shown in Fig. 1. If au and al are not
equal, the cantilever undergoes not only axial but also bend-
ing deformations, which is more complicated than the situa-
tion discussed by Gurtin et al.17 The strain induced in the
cantilever can be written as

�0�z� = �z − hn�/R , �3�

where R is the radius of curvature and hn the distance of the
neutral plane measured from the lower surface. Except for
antisymmetric surface stresses, the neutral plane is generally
not in the center of the sheet.18,19 The bulk stress �0�z� can
be expressed as

�0�z� = E�z − hn�/R , �4�

where E is Young’s modulus. Note that if the system has a
planar geometry, E is replaced by an isotropic biaxial modu-
lus, E / �1−��, where � is Poisson’s ratio. The constants hn

and R can be determined from the equilibrium relations,

�
0

h

�0�z�dz + au + al = 0 and �
0

h

�0�z�zdz + auh = 0,

to give Stoney’s equation,20

hn =
1

Eh
R���0 + 2al� +

h

2
,

1

R
= −

6

Eh2��0. �5�

The residual strain due to the surface stress is then obtained
as

�0�z� = −
2

Eh
�al + �3

h
z − 1���0	 . �6�

Equation �6� expresses how the influence of ��0 on the can-
tilever mechanical deformation has been converted to the
coupling of the bending extension with the equivalent pre-
strain, �0�z�.

We now consider the cantilever vibration. The elastic
stress-strain relation of the cantilever in vibration can be ex-
pressed as ��x ,z , t�=E���x ,z , t�−�0�z��, where � is the total
elastic strain in the cantilever and is given by

� = − �z − h/2��2w�x,t�/�x2, �7�

where w is the central plane deflection of the cantilever. The
resultant moment M on any cross section of the cantilever is

M�x,t� = �
0

h �z −
h

2
��dz = − EI

�2w

�x2 +
h

2
��0, �8�

where I=h3 /12 is the moment of inertia. Note that ��0 pro-
duces a constant bending moment on the cross section. Using
the resultant moment given in Eq. �8� the beam bending
equation is

EI�4w/�x4 + �A�2w/�t2 = 0, �9�

where �A is the mass per unit length. Since the equation of
motion is unchanged21 by ��0, the strain-independent part of
the surface stress has no effect on the resonance frequencies
of the cantilever. This is the same conclusion stated by Gur-
tin et al.17 for identical upper and lower surface stresses
�au=al� but contradicts more recent modeling of the
problem,10–12 which leads to changed equations of motion
dependant on the constant value �au ,al� of the surface stress.

We now consider the strain-dependent stress term, ��1.
By replacing ��0 in Eq. �8� with the total surface stress dif-
ference �� defined in Eq. �2�, the bending moment can be
obtained as

M�x,t� = − �1 +
3

Eh
�bl + bu�	EI

�2w

�x2 +
h

2
��0. �10�

Thus the effective modulus �E*I� to be used in the equations
of motion is

E*I = �1 + 3
bl + bu

Eh
	EI . �11�

From Eq. �10� the change in fundamental resonance fre-
quency due to surface stress ���stress� can be found as

�stress
2 − �0

2

�0
2 =

E* − E

E
= 3

bl + bu

Eh

 2

��stress

�0
, �12�

where �0 is the fundamental resonance frequency with no
surface stress and �stress �=�0+��stress� is the new resonance
frequency with surface stresses acting. Note that the effect of
surface stress depends on the size �h� of the structure22 and

FIG. 1. Schematic view of the free-body diagram of the end part
of a cantilever.

FIG. 2. Schematic showing the general cases considered for �a�
a cantilever with uniform surface stress on upper and lower surfaces
and no adsorption; �b� the cantilever of �a� with adsorption on one
side of the cantilever, causing a surface stress difference between
the upper and lower surfaces.
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��stress can be positive or negative depending on the sign of
b.

Equation �12� has been left in a simple format as the
parameters a and b can take various forms depending on
specific models, experiments, and nomenclature. We now il-
lustrate with some specific cases.

Case (i): Thermodynamic expression for b. Equation �1� is
a mechanistic description of the surface stress. When canti-
levers are used as sensors, a thermodynamic approach is gen-
erally more useful for which Equation �1�, for the upper sur-
face, can be equated to16

�u
L = � �	u

L

��u
�

�=0
+ Cu�u, �13�

where C is the surface elastic constant and 	 is the surface
free energy. The superscript L indicates that the Lagrange
coordinate system is used in which the surface area does not
change during stretching. This definition shows most clearly
the definition of the parameters a and b and is particularly
useful for atomistic studies of surface stress. The deforma-
tion of the surface by a bulk strain ��� introduces an addi-
tional thermodynamic excess, namely the surface elastic con-
stant.

However, in cantilever experiments, we measure the ac-
tual, strained area of surface for which the Euler coordinate
system �denoted by superscript E� needs to be used and Eq.
�1� is written16

�E = ��=0
E + �C − ��=0

E ��

=�	0 +
�	E

��
�

�=0
+ �C − �	0 −

�	E

��
�

�=0
	� , �14�

where 	0 and ��=0
E are the surface free energy and surface

stress, respectively, for the undeformed surface. For clarity
the subscripts u and l are removed.

Equations �13� and �14� describe a free surface, i.e., a
“pure” surface stress. Adsorption typically generates an ad-
ditional interface and a successful approach to extend the
modeling in this case is to separate the free surface stress �F�
and the interface stresses �H ,G� as23,24

F = 	 +
�	

��
; H = � +

��

��
; G = � +

��

�e
, �15�

where � is an interfacial surface energy; e is a strain associ-
ated with stretching the adsorbed phase with respect to the
substrate; and F, G, and H are given for an undeformed
surface. The stress terms F and H can be inserted into Eqs.
�1�, �12�, and �14� to account for surface stress changes in
frequency of a cantilever beam. In particular, Eq. �14� can be
written

� = a + b� = F + H + �C − F − H�� . �16�

We assume the interface stress term G accounting for slip-
ping between the adsorbed film and the substrate has negli-
gible effect on the cantilever frequency because by definition
this term is separated from any strain ��� of the cantilever,
i.e., for a frequency change to be measured the physical pa-

rameter changing must couple to the bulk strain of the can-
tilever.

Case (ii): Pure surface stress. We first consider when
there is no adsorption and the top and bottom surfaces are
identical, as shown in Fig. 2�a�. This case represents a pure
surface stress of a single material. There is no bending ���
=��0=��1=0� and bu=bl. Equation �12� is then identical to
the expression obtained by Gurtin et al.,17 namely,

2
��stress

�0
= 6

bl

Eh
=

6

Eh
�C − F� . �17�

To estimate the magnitude of ��stress we consider a sili-
con cantilever. Atomistic calculations for the Si �100� surface
show that C
−11.5 N/m,22 and F
−0.5 N/m.25 Using E
=130 GPa we find b /E
−1
10−10, which appears to be
typical for crystalline silicon and aluminum beams.17,22 Thus,
for a Si cantilever of thickness h�1 �m, the value of
��stress /�0 is �10−4 or �100 ppm. This frequency shift is
small but measurable. If a cantilever has h�10 nm �e.g., a
nanowire� then ��stress /�0�10−2, which is a significant ef-
fect. Clearly, the extent of the stress-induced resonance fre-
quency shift ���stress� is influenced by the cantilever size.
Due to the large surface-bulk ratio, the effects of surface
stress on the elastic modulus26–29 and resonance properties of
nanosized structure elements are significant.22

Conversely, the use of nanosized resonators would allow
for considerable improvement in the sensitivity and usage of
surface stress sensors. For example, Eq. �17� shows is that it
may be possible to find the surface parameter �C-F� of single
crystal surfaces by measuring frequency changes of ultrathin
cantilevers of varying thickness.

Case (iii): Adsorption. Given the considerable difficulty
in measuring absolute values of surface stress ��u ,�l�, one
invariably measures only a change in surface stress as the
material properties of the surfaces are modified. We illustrate
this by considering adsorption onto the cantilever giving a
change in stress measured before adsorption �Fig. 2�a�� and
after adsorption �Fig. 2�b��. Using Equation �1�, the surface
stress after adsorption is

�u = au + �au + �bu + �bu��u; �l = al + �al + �bl + �bl��l,

�18�

where �a and �b represent the adsorption-induced change in
the stress parameters. Equation �18� assumes a linear varia-
tion of b with strain since all our considerations are for elas-
tic deformations. The change in fundamental resonance fre-
quency �Eq. �12�� can be expressed as

2
��stress

�0
=

3

Eh
�bu + bl� +

3

Eh
��bu + �bl� , �19�

with the second term showing the effect of adsorption-
induced surface stress.

Interestingly, Eq. �19� shows that surface stress will
change the resonance even if adsorption occurs identically
on both upper and lower surfaces ��bu=�bl�, whereas no
static bending would be observed �since ��0=0 in Eq. �5��.
However, for most sensor applications, adsorption is con-
strained to occur on one surface only. Assuming adsorption
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only occurs on the upper cantilever surface �see Fig. 2�b��
then the resonance frequency shift arising solely from the
adsorption is

�2
��stress

�0
�

adsorption
=

3�bu

Eh
=

3

Eh
��C − �F − �H� �20�

with �C, �F, and �H representing changes in C, F, and H
on the upper surface.

Data are not readily available for the elasticity change
�C. Nevertheless, we can use known values of the surface
stress terms �F and �H to estimate ���stress /�0�adsorption.
For semiconductor surfaces the stress can change greatly on
adsorption. For example, on a clean Si �100� surface the
calculated surface stress ��F+�H� changes by �0.1 to
�1 N/m depending on the adsorbed species �e.g., As, Ga,
Ge� and the surface microstructure.25 Taking typical values
for a silicon microcantilever of E=130 GPa and h=1 �m,
one finds ���stress /�0�adsorption�10 ppm. This is a measur-
able shift using high quality factor cantilevers. The fre-
quency shifts will become more pronounced with the use of
ultrathin cantilevers. Indeed, there are indications that such
surface stress effects have been observed in the recent data of
Wang et al.30 in which UHV clean �50 nm thick Si �100�
and Si �111� cantilevers were exposed to molecular oxygen.
The fundamental resonance frequency rapidly increased by
approximately �� /�0�5000 ppm on a low exposure �8
Langmuir� to O2. It is highly unlikely that this large fre-
quency shift is due to other adsorption effects because �a� an
increase in mass loading would decrease the value of
�� /�0, and �b� a change in the bulk stiffness of the cantile-
ver by formation of an oxide could increase �� /�0 on ad-
sorption but at the low temperatures used by Wang et al. an
O2 exposure of 8L will only result in submonolayer coverage
of the silicon surface.31

One can also estimate that large stress-induced frequency
shifts will occur for monolayer adsorption of metals.24,25

However, the application of the resonator method for biosen-
sors is more problematic because typical surface stress
changes on biomolecular adsorption are usually
�0.01 N/m.5,8 The estimated frequency shifts, even for very
thin cantilevers, would be �1 ppm. This level of sensitivity
cannot be measured at present given that such cantilever bio-
sensors must operate in ambient or liquid environments and
this results in high viscous damping of the cantilever �quality
factor Q1000�. A high Q factor is essential for measure-
ment of surface stress using the cantilever resonator method.

Case (iv): Comparison with other adsorption effects. We
now compare surface stress effects with other adsorp-
tion-induced frequency changes. Equation �8� is the basis
of computing changes in resonance frequency due to mass
loading and stiffness �i.e., effective inertia� changes arising
from adsorption.2,14 It is readily shown to first order that
mass and stiffness changes on adsorption shift the fundamen-
tal cantilever resonance frequency ��0� by an amount ��mass

given by

2
��mass

�0

 �3Ef/E − � f/��

hf

h
, �21�

where h is thickness, E is Young’s modulus, and � is material
density, with the subscript f representing the adsorbed film.

This assumes a uniform coverage on one side of the cantile-
ver and a simple composite beam description to model the
effective cantilever stiffness.14 Both conditions can be gen-
eralized.

For practical purposes the adsorbed and cantilever mate-
rial properties are similar and hence ��mass /�0�hf /h. For a
typical cantilever h�1 �m and a monolayer adsorption �i.e.,
hf �0.1 nm� gives ��mass /�0�100 ppm. We note that �a�
mass loading effects are the same order of magnitude or
larger than surface stress effects, and �b� the sensitivity of
Eq. �21� also scales with 1/h. Therefore, for semiconductor
and clean metal surfaces, care will be required to distinguish
between ��stress and ��mass during adsorption. In biomo-
lecular systems, adsorption-induced stress effects will cause
negligible frequency shift in comparison with mass loading.

Finally, note the difference between the Young’s modulus
of the adsorbed film �Ef in Eq. �21�� and the surface elasticity
�C�. The elasticity C is a surface excess value, i.e., the dif-
ference between the elasticity of the surface and the bulk
substrate. The modulus Ef is a bulk value for the adsorbed
film. For example, if the adsorbed surface material were en-
tirely identical to the bulk, then �C=0 and surface elasticity
does not change the resonance frequency. In contrast for this
example Ef =E, and Eq. �21� shows that the stiffness change
would lead to a frequency shift of ��mass /�0=hf /h, which
reflects the change in inertia of the cantilever beam.

To summarize, we have reinvestigated17 the effects of sur-
face stress on the fundamental resonance frequency of a can-
tilever sensor. Our approach differs from more recent inves-
tigations of this problem,10–12 which use a strain-independent
�i.e., constant� surface stress, which actually has no effect on
the resonance frequency. The resonance is only influenced by
the strain-dependent surface stresses, which in turn can be
related to a thermodynamic description to allow a compari-
son to be made between the analysis and experimental data.

A major conclusion is that frequency measurements may
be used to evaluate surface stresses and such data can com-
pliment static beam bending experiments. This may be useful
to study surface stress of semiconductors and metals, al-
though the experiments will be challenging as it is difficult to
disentangle all of the stress terms. A particularly interesting
problem will be the study of the absolute surface stress of
clean, single crystal surfaces in UHV.30

If the size of the cantilever is reduced to the nano-
meter range, the surface stress effects on the mechanical
properties become considerable, which may be detrimental
or beneficial depending on the application. For example, can-
tilever stress sensors for adsorption typically measure a static
bending of the lever but measurement of the resonant fre-
quency shift of a nanocantilever would offer some practical
benefit, such as less instrumental drift. A high quality factor
is still required for applications and this appears to rule out
the use of the method for biomolecular sensors requiring
liquid environments.
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