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This work provides values of electron scattering 002 structure factors for InxGa1−xAs as a function of the In
concentration x=0 to 1. These results allow accurate compositional analysis of pseudomorphically grown
InxGa1−xAs/GaAs layers by transmission electron microscopy methods relying on the chemical sensitivity of
the �002� beam. The calculations go beyond the limits of the isolated atom approximation, because they take
into account charge redistribution effects between atomic sites in the crystal, strain, and static atomic displace-
ments. The computations were performed by the full potential linearized augmented plane-wave method using
a generalized gradient approximation for the exchange and correlation part of the potential. The calculations of
strained InxGa1−xAs correspond to the strain state in specimens with large, small, and intermediate thickness in
the electron beam direction. Additionally, the effect of static atomic displacements is taken into account. All
results are listed in a parameterized form. The calculated 002 structure factor vanishes at an In concentration
of 16.4%. This value is in a good agreement with previously reported experimental measurements. Hence, our
results are a significant improvement with respect to the isolated atom approximation which is conventionally
applied in transmission electron microscopy simulations, and which predicts a value of 22.5%.
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I. INTRODUCTION

In recent years, research on semiconductor nanostructures
has increased because of the many possible applications in
optoelectronic devices. In semiconductor laser structures,
which is a main topic of research at present, the composition
distribution of the active region strongly influences the per-
formance of the device. However, the interrelation between
growth parameters and composition distribution is not fully
understood. A detailed investigation of growth processes re-
quires accurate measurements of the composition distribu-
tion on an atomic scale.

Transmission electron microscopy �TEM� is a suitable
tool to provide information on an atomic scale because of its
high spatial resolution. Several methods have been devel-
oped to determine composition distributions in semiconduc-
tor nanostructures by analytical TEM or high resolution
TEM. Among the first methods, energy dispersive spectros-
copy �EDS� or electron energy loss spectroscopy1 �EELS�
are applied. High resolution TEM methods include strain
state analysis2,3 or techniques exploiting the chemical sensi-
tivity of the �002� beam in sphalerite type materials. For
these techniques, �002� dark field images4–6 or fringe images
stemming from a two-beam interference of the transmitted
beam and the �002� beam7 are used.

However, extraction of quantitative chemical information
requires a comparison with measured calibration curves5,6 or
with theoretical simulations.7 Such simulations are conven-
tionally based on structure factors calculated from atomic

scattering amplitudes, which can be found, e.g., in Refs.
8–10. In these papers, atomic scattering amplitudes are com-
puted for isolated atoms so that the redistribution of electrons
due to bonding of atoms, which occurs in any specific crys-
tal, cannot be taken into account in the structure factor cal-
culation. As already shown by Zuo et al.,11 charge redistri-
bution effects can be taken into account by ab initio density
functional theory methods. The structure factors are also af-
fected by local structural distortions which occur in most
sphalerite type alloys because the atoms which share at least
one of the two sublattices have different covalent radii.12

This effect can be taken into account by simulating large
crystals and computing the corresponding static atomic dis-
placements via the extended valence force field method.13

The interest of this work is to give values for the 002
structure factor as a function of x in parameterized form,
when the effects of charge redistribution between atomic
sites in the crystal, strain, and static atomic displacements are
taken into account. These data provide a useful basis for
compositional analysis of strained and unstrained InxGa1−xAs
layers by TEM using the chemically sensitive 002 beam. The
aim of the paper is also to describe briefly the theoretical
framework of the computations. In this paper we demon-
strate how an ab initio scheme using density functional
theory and an empirical valence force field method which
can be applied to large simulated crystals �containing typi-
cally one million atoms� can be combined to describe both
charge redistribution effects and static atomic displacements.

In detail, we show that the redistribution of electrons due
to bonding of atoms and the static atomic displacements sig-
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nificantly change the 002 structure factor of an InxGa1−xAs
alloy. We show how the redistribution of electrons can be
taken into account by introduction of modified atomic scat-
tering amplitudes �MASAs�. The MASAs are derived from
ab initio computations within the density functional theory
formalism for different compositions of InxGa1−xAs alloys.
The dependence of the MASAs upon composition is conve-
niently fitted to third-order polynomials whose coefficients
are given �Sec. II B�. The advantage of using MASAs is the
possibility to take into account static atomic displacements
and Debye-Waller factors by appropriate correction factors.
The correction factors for static displacements are computed
using a valence force field model. Their dependence upon
alloy composition is also fitted to third-order polynomials
and coefficients are given �Sec. II C�.

II. COMPUTATION OF STRUCTURE FACTORS

A. Isolated atom approximation

In TEM, amplitudes and phases of beams diffracted in a
crystalline specimen can be computed by different ap-
proaches such as the Bloch wave method,14,15 the Multislice
algorithm,16,17 or by solving the Darwin Howie-Whelan
equations.18 These methods exploit Fourier coefficients of
the crystal potential. In TEM simulations, it is common use
to calculate the crystal potential in the isolated atom approxi-
mation, in which it is assembled from atomic potentials us-
ing tabulated atomic scattering amplitudes, such as those
listed in parameterized form in Refs. 8–10. In the isolated
atom approximation, the hkl Fourier component of the po-
tential of a binary �strained� sphalerite type crystal � �here
GaAs or InAs� is given by �see, e.g., Ref. 19�

V�
hkl�a� =

hP
2

2�m0e��a���=1

2

�
j=1

4

D�,�
hkl�a�f�,�

hkl�a�

� exp�2�ighkl�a� · r j,��a�� , �1�

where a is a short hand notation for �ai�, i=1, 2, 3, and
describes the lattice parameters of the unit cell along the
�100�, �010�, and �001� direction �which may differ in a
strained unit cell�, hP is Planck‘s constant, e is the electron
charge �e= �e��, m0 is the rest mass of an electron, ��a� is the
volume of the unit cell, � indicates the sublattice �metal or
non-metal�, f�,�

hkl�a� is the atomic scattering amplitude of an
atom in the sublattice � of a crystal � ,D�,�

hkl�a� describes the
damping of f�,�

hkl�a� by thermal vibration, j counts the four
atoms in sublattice � with positions r j,� within the conven-
tional �nonprimitive� unit cell of the crystal, and ghkl�a� is the
reciprocal lattice vector. For the cubic and orthorhombic
crystal structures considered in this work �pertaining respec-
tively to bulk and epitaxial samples�, it is given by

ghkl�a� = 	 h

a�100�
,

k

a�010�
,

l

a�001�

 , �2�

where the factor “2�” has been excluded, in accordance with
the conventions used in the International Tables for
Crystallography.20 The damping factor D�,�

hkl�a� depends on

the temperature dependent Debye-Waller factor B�,��T� ac-
cording to

D�,�
hkl�a� = exp�− 1

4B�,��T��ghkl�a��2� . �3�

In the isolated atom approximation, the atomic scattering
amplitudes can be derived from

f�,�
hkl�a� = 	1 +

eU

m0c2
�
i=1

4

a�,�,iexp�− 1
4b�,�,i�ghkl�a��2� , �4�

where the coefficients a�,�,i and b�,�,i are listed in Ref. 8.
Note that in our definition the relativistic correction �1
+eU /m0c2� necessary to describe the interaction of the high-
energy electron with the crystal potential in the TEM theory
is included in the atomic scattering amplitudes.

Equation �1� is connected with the structure factor for
electron scattering �in units of meters� by

F�
hkl�a� =

2�m0e��a�
hP

2 V�
hkl�a� . �5�

In the ternary semiconductor InxGa1−xAs the metal sublat-
tice is occupied by a random distribution of In and Ga atoms.
The atomic scattering amplitude of atoms in the metal sub-
lattice can thus be approximated by a linear combination of
the scattering amplitudes of In and Ga. As a consequence,
the crystal potential with which the fast electron interacts can
in good approximation be described by �cf. virtual crystal
approximation for randomly disordered alloys�

VInxGa1−xAs
hkl �a� = xVInAs

hkl �a� + �1 − x�VGaAs
hkl �a� . �6�

Now we consider the case of a thin InxGa1−xAs layer bur-
ied in GaAs and derive an expression for the vector a de-
scribing the lattice parameters of the unit cell along the dif-
ferent �100� directions. Chemical TEM analysis of
InxGa1−xAs heterostructures with a chemically sensitive
�002� beam is usually carried out with an orientation of the
specimen where the incident electron beam is close to a
�100� direction of the crystal. Another choice would be an
orientation close to a �110� direction. According to dynamic
diffraction theory �see, e.g., Refs. 19, 21, and 22�, the strong
�111� beams would then contribute to the weak �002� beam
by multiple scattering, which complicates the measurement
of the chemical composition. Therefore, we restrict our con-
siderations to an orientation close to a �100� direction which
is better suited for compositional analysis. Without loss of
generality we assume an �001� growth direction of the het-
erostructure, and an electron beam direction close to �010�.

An InxGa1−xAs layer pseudomorphically grown on GaAs
is biaxially stressed. Using the definitions of directions made
in the preceding, this leads to a tetragonal distortion along
the �001� direction. For an investigation of the specimen in
the TEM, the specimen thickness along the �010� direction
has to be sufficiently small, typically between 5 and 50 nm.
In such a thin TEM specimen, the strained InxGa1−xAs layer
can expand close to the �010� surfaces, which leads to a
reduction of the tetragonal distortion. In case of an “infi-
nitely” thin specimen, the biaxial stress is reduced to uniaxial
stress applied along the �100� direction. For a realistic speci-
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men thickness, the strain state lies in between the uniaxial
and biaxial states. Applying elasticity theory, the lattice pa-
rameter a of a strained InxGa1−xAs layer is given by

a�x,s� = abulk�x��1 + ��x,s�� , �7�

where abulk�x� is the bulk lattice parameter of InxGa1−xAs. In
analogy to the definition of a ,��x ,s� is a short hand notation
for the dilatational strain components ��i�, i=1, 2, 3 along the
�100�, �010�, and �001� directions as a function of x and s,
given by

��100��x,s� = f�x� ,

��010��x,s� = f�x�
s�c11�x� + c12�x�� − c12�x�

c11�x� + c12�x��1 − s�
,

��001��x,s� = − f�x�
�1 + s�c12�x�

c11�x� + c12�x��1 − s�
, �8�

where the cij�x� are the elastic constants of InxGa1−xAs which
can be approximated by

cij�x� = xcij�1� + �1 − x�cij�0� , �9�

where the cij�1� and cij�0� are the elastic constants of InAs
and GaAs, respectively. The misfit f�x� is given by

f�x� =
abulk�0� − abulk�x�

abulk�x�
. �10�

In Eq. �8�, s is a parameter that describes the specimen thick-
ness in �010� direction. The value s=1 corresponds to the
limit of an infinitely thick specimen, and s=0 describes an
infinitely thin specimen. In the following, we denote a speci-
men thickness for which s=0.5 as “intermediate” thickness.
Note however, that the true thickness which corresponds to
s=0.5 depends on the profile of the In-concentration x within
the layer, and on the height of the layer in �001� growth
direction. For a given layer height and a given In-
concentration profile, the specimen thickness corresponding
to s=0.5 may be found by finite-element calculations.

B. Density functional theory methods

1. Theoretical considerations

The isolated atom approximation does not take into ac-
count redistribution of electrons in chemical bonds. Since
this effect mainly alters the charge distribution between the
atoms, the Fourier components of the crystal potential with
small spatial frequencies are affected most. Therefore, it can
be expected that the isolated atom approximation leads to
significant errors for the calculation of the 002 structure fac-
tor. Density functional theory �DFT� methods can be used to
compute the crystal potential taking into account redistribu-
tion of electrons in bonds.23 Our calculations were performed
with the “WIEN2k” program package.24 Crystal potentials
computed by DFT methods correspond to the ground state of
a semiconductor, i.e., to a temperature T=0. Therefore, a
direct use of crystal potential does not allow to account for

the effect of thermal vibrations of atoms. In the isolated atom
approximation in Eq. �1�, this effect is included by the
Debye-Waller factors. In order to use element �and crystal�
dependent Debye Waller factors also for structure factors re-
sulting from the DFT calculation, we applied the following
procedure: We used the “lapw3” program of the WIEN2k

package to calculate x-ray scattering structure factors. In the
WIEN2k program, the crystal is subdivided into spheres
around the atoms and the interstitial region in between the
spheres. For our calculations we chose the radius RMT of the
spheres �“muffin-tin radius”� 10% smaller than half the next-
neighbor distance. The lapw3 program lists separate contri-
butions to an x-ray scattering structure factor stemming from
spheres of nonequivalent atoms and the interstitial region.
For a GaAs crystal, we, e.g., obtain the value XGa

hkl that cor-
responds to the contribution from all the spheres around Ga
atoms, the value XAs

hkl from the spheres around the As atoms
and the value XOut

hkl from the interstitial region outside the
spheres. The total x-ray scattering structure factor for a re-
flection hkl is then given by

XGaAs
hkl �a� = XGa,GaAs

hkl �a� + XAs,GaAs
hkl �a� + XOut,GaAs

hkl �a�

= �
�=1

3

X�,GaAs
hkl �a� . �11�

Note that XGaAs
hkl �a� is proportional to the �hkl� component of

the Fourier transform of the electron density and therefore is
only valid for nonresonant x-ray scattering. Using the Mott-
Bethe formula,25 the relativistically corrected potential for
electrons in a binary semiconductor crystal �, when they are
accelerated through a potential U, can be expressed as

V�
hkl�a� =

e�1 + eU
m0c2�

4�2�0�ghkl�a��2��a�

�
�
�=1

2

�
j=1

4

D�,�
hkl�a�Z�,�exp�2�i

�ghkl�a� · r j,��a��

− �
�=1

3

D�,�
hkl�a�X�,�

hkl�a�� , �12�

where Z�,� is the nuclear charge, c is the speed of light in
vacuum, and �0 is the dielectric constant in vacuum. In Eq.
�12�, the same Debye-Waller factors are applied to the
nuclear charges and the electron charge represented by
X�,�

hkl�a� �adiabatic approximation�. Note that the second sum
over � expands from 1 to 3, corresponding to the spheres
around the metal atoms ��=1�, those around the nonmetal
atoms ��=2�, and the region outside of the spheres ��=3�.
Since the contribution of the region outside the spheres to the
x-ray scattering structure factor usually is much smaller than
the contribution from the spheres �X3,�

hkl�a��X�1,2�,�
hkl �a��, the

choice of D3,�
hkl�a� is not critical. We use D3,�

hkl�a�= 1
2 �D1,�

hkl�a�
+D2,�

hkl�a��.
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In the next step, Eq. �12� is rewritten in a form similar to
Eq. �1�, which allows the identification of “modified atomic
scattering amplitudes”

V�
hkl�a� =

e�1 + eU
m0c2�

4�2�0�ghkl�a��2��a���=1

2

�
j=1

4

D�,�
hkl�a��Z�,� −

X�,�
hkl�a�
��

−
X3,�

hkl�a�
2��

�exp�2�ighkl�a� · r j,��a�� , �13�

with

�� = �
j=1

4

exp�2�ighkl�a� · r j,��a�� . �14�

In Eq. �13� we added the x-ray structure factor X3,�
hkl�a� of the

outer regions of the spheres equally to the x-ray structure
factor of the metal and nonmetal atoms. A comparison of Eq.
�13� with Eq. �1� leads to the definition of MASAs f��,�

hkl that
replace the atomic scattering amplitudes f�,�

hkl in Eq. �1� and
which take into account the redistribution of electrons in
bonds

f��,�
hkl�a� =

e2m0	1 +
eU

m0c2

2�hP

2�0�ghkl�a��2�Z�,� −
X�,�

hkl�a�
��

−
X3,�

hkl�a�
2��

� .

�15�

Note that MASAs are calculated for a special binary crys-
tal, so that, e.g., the MASA for As atoms in GaAs �f As,GaAs�hkl �
is different from the MASA of As in InAs �f As,InAs�hkl �. The
advantage of using the MASAs is the possibility to include
Debye-Waller temperature factors, which is necessary if the
computed structure factors are applied for compositional
analysis.

2. Results

For the computation of the 002 structure factors for elec-
tron diffraction in ternary InxGa1−xAs we applied the proce-
dure described in the following. For a certain In-
concentration x and strain factor s �Eq. �8�� we obtained the
lattice parameter a�x ,s� of the strained InxGa1−xAs layer
from Eq. �7�. Using an orthorombic crystal unit cell with 8
atoms and dimensions �ai� along the �100� directions, we
computed the MASAs f Ga,GaAs�002 �x ,s� and f As,GaAs�002 �x ,s� of a
strained GaAs unit cell, as well as the MASAs f In,InAs�002 �x ,s�
and f As,InAs�002 �x ,s� of a strained InAs cell. Note that the same
dimensions �ai� were used for both cells. For the DFT calcu-
lation with the WIEN2k program, a sampling of k points with
800 k points in the full Brillouin zone was used. The inter-
stitial plane-wave vector cutoff Kmax was chosen in such a
way that RMTKmax=7. The value of Kmax corresponds to an
energy cutoff Emax=10.5. These values for the number of k
points and the interstitial plane wave vector cutoff were
found by converging the structure factors of the �002� reflec-
tion of GaAs and InAs, respectively. A precision better than
5�10−2% was achieved. The generalized gradient approxi-
mation �GGA� of Perdew et al.26 was used for the exchange

and correlation part of the potential. An acceleration voltage
U=200 kV of the TEM was assumed. The MASAs were
calculated for In-concentrations x between 0 and 1 in steps of
0.01. Strain parameters s of 0, 0.5, and 1 were used. In ad-
dition, the calculations were performed for unstrained
InxGa1−xAs �i.e., a�100�=a�010�=a�001�=abulk�. The computed
MASAs have been fitted to the third-order polynomial

f �,��002�x,s� = p1�s�x3 + p2�s�x2 + p3�s�x + p4. �16�

A list of all polynomial coefficients is given in Table I.
Figure 1 shows the composition dependence of the MASAs
computed for s=0.5. Note that the composition dependence
of the MASAs is caused by the composition dependence of
the bulk material lattice parameter of InxGa1−xAs and by
strain �Eq. �8��. For comparison, Fig. 1 also contains the
atomic scattering amplitudes �ASAs� calculated in the iso-
lated atom approximation. The structure factor of the �002�
reflection is according to Eqs. �1�, �5�, and �6� given by

FInxGa1−xAs
002 = 4��1 − x��f�Ga,GaAs

002 − f�As,GaAs
002 �

+ x�f�In,InAs
002 − f�As,InAs

002 �� . �17�

Note that the MASAs and the structure factor are functions
of x and s, which is not explicitly indicated in Eq. �17�. For
simplicity, Debye-Waller temperature factors are not taken
into account in Eq. �17�.

Figure 2 depicts the resulting composition-dependent 002
structure factor for electron scattering for the different values
of the strain parameter s. The solid line gives the result we
obtain using the bulk material lattice parameter of
InxGa1−xAs. The zero of FInxGa1−xAs

002 occurs close to x=0.175.
The difference of the structure factors calculated for s=0,
0.5, and 1 becomes significant for In concentrations larger
than approximately 0.3. Figure 2 also contains the 002 struc-
ture factor calculated for s=0.5 in the isolated atom approxi-
mation with ASAs taken from Ref. 8. Obviously, there is a
significant difference between the results of the isolated atom
approximation and the DFT computation, which is caused by
charge redistribution. Recalling that, according to Eq. �17�,
the 002 structure factor depends on the difference between
the atomic scattering amplitudes of metal and nonmetal at-
oms, this can be understood from Fig. 1, which shows that
the difference between MASAs and ASAs is larger for As
than for Ga and In.

C. The effect of static atomic displacements

1. Theoretical considerations

Besides charge redistribution, the structure factors of
InxGa1−xAs are also affected by local structural distortions.
Indeed, in any III–V alloy where atoms having different co-
valent radii share at least one sublattice, there exists an av-
erage perfect periodic structure, but the equilibrium positions
of the atoms are displaced from its sites �although these
static atomic displacements �SDs� are small enough for any
atom to be unambiguously assigned to a given site�. Whereas
for bulk materials the average structure is cubic sphalerite
�with a lattice parameter equal to the average parameter of
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the alloy�, for the thinned epitaxial layers considered here,
the sphalerite unit cell is homogeneously strained into an
orthorhombic cell with lattice parameters a along the �100�
directions �Eqs. �7� and �8� �. Because In and Ga have cova-
lent radii differing by about 14%, InxGa1−xAs is strongly af-
fected by SDs. Detected by extended x-ray absorption fine
structure experiments,27 the SDs were subsequently shown to
have significant effects in x-ray and electron diffraction,28

diffraction contrast TEM,29 and high resolution TEM.30

In an alloy with no long range order, and in particular in
the random alloys here considered, the SDs destroy the trans-
lation symmetry of the crystal and nonzero Fourier compo-

nents of the potential exist for vectors not belonging to the
reciprocal lattice �which, experimentally, gives rise to diffuse
scattering�. However, there still exists a long range ordered
perfect average lattice and an associated reciprocal lattice. In
the isolated atom approximation, the average hkl Fourier
component of the potential �Eq. �1�� becomes

Vhkl�a� =
hP

2

2�m0eN��a��n=1

N

�
�=1

2

�
j=1

4

Dj,�,n
hkl �a�f j,�,n

hkl �a�

� exp�2�ighkl�a� · �r j,��a� + u j,�,n�� , �18�

where we now also sum over the N different unit cells of a
given crystal and take into account that site j ,� of cell n is

TABLE I. Table of polynomial coefficients for the modified atomic scattering amplitudes of strained
InxGa1−xAs. The parameter s describes the strain state according to Eq. �8�. The bulk material lattice param-
eter was used for the column “bulk.” All values are given in units of �nanometers�.

Crystal Element s=0 s=0.5 s=1 Bulk

GaAs Ga p1 −7.725E−4 1.304E−3 2.933E−3 2.619E−4

p2 1.789E−3 6.326E−4 2.738E−3 −1.009E−3

p3 4.295E−2 5.282E−2 6.602E−2 3.205E−2

p4 5.384E−1 5.383E−1 5.383E−1 5.383E−1

As p1 −9.497E−4 7.797E−4 1.760E−3 3.178E−4

p2 4.945E−4 −7.600E−4 8.080E−4 −1.547E−3

p3 4.446E−2 5.300E−2 6.426E−2 3.471E−2

p4 5.907E−1 5.906E−1 5.907E−1 5.907E−1

InAs In p1 −7.940E−4 1.446E−3 3.050E−3 2.278E−4

p2 1.271E−3 1.904E−4 3.182E−3 −1.372E−3

p3 5.889E−2 7.218E−2 9.013E−2 4.348E−2

p4 8.311E−1 8.311E−1 8.311E−1 8.311E−1

As p1 −1.403E−3 9.827E−4 2.536E−3 1.902E−4

p2 1.442E−3 −8.390E−4 −2.023E−4 −1.411E−3

p3 4.306E−2 5.147E−2 6.235E−2 3.443E−2

p4 5.831E−1 5.831E−1 5.831E−1 5.830E−1

FIG. 1. MASAs f In,InAs�002 , f As,GaAs
002 , f As,InAs�002 , and f Ga,GaAs�002 , as well

as corresponding ASAs calculated in the isolated atom approxima-
tion from Doyle and Turner �see Ref. 8�, plotted vs the In-
concentration x. The curves were calculated for a strain factor of
s=0.5 and an acceleration voltage of the electron beam of 200 kV.

FIG. 2. Structure factor for electron scattering of the 002 reflec-
tion in InxGa1−xAs, plotted vs the In-concentration x �acceleration
voltage 200 kV�.
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occupied by a particular atom �Ga or In on the mixed sub-
lattice, As only on the nonmetal sublattice� displaced from its
average site by u j,�,n.31 Note that the actual position of per-
fect lattice site j ,� ,n is the sum of r j,� and of the position
vector of the origin of cell n: however, the latter term disap-
pears via its scalar product with reciprocal vector ghkl. Using
this approximation, we recently carried out a comprehensive
study which showed that the SDs may significantly modify
the SFs of the “weak” reflections �such that h+k+ l
�2�mod 4�� in a large number of III–V and II–VI cubic
alloys.13

Because both sublattices are distorted and because the
SDs do not depend only on the nature of a few nearest neigh-
bors �NNs� but are correlated over distances of several nm,29

the calculation of statistically significant SD-related proper-
ties cannot rely on oversimplifying assumptions �such as the
nondistortion of the mixed sublattice�, which would allow to
consider small unit cells. Instead, they must be based on
averages taken over large simulated crystals. However, for
such large supercells, DFT calculations become impractical.

To take both charge redistribution and SDs into account,
we thus adopt the following approach. We simulate large
InxGa1−xAs supercells with various In compositions x and in
various strain states s. Atoms are first placed at the sites of a
perfect average crystal with parameters a�x ,s� �Eq. �7��. The
overall dimensions of the supercell are taken �and subse-
quently kept� equal to large multiples �typically 50� of the
components of a. The SDs are then calculated numerically
by using the extended valence force field �VFF� model,32,33

as detailed previously.13,28 Finally, we calculate Vhkl�a� from
Eq. �18� by inserting the SDs u j,�,n and by replacing the
standard atomic scattering amplitudes by quantities derived
from the MASAs calculated in Sec. II B 2 for the same val-
ues of x and s. Namely, for a metal atom ��=1�, which has
four As NNs, we simply replace f j,1,n

hkl �a� by f Ga,GaAs�hkl �x ,s� if
site j ,1 ,n is occupied by a Ga atom and by f In,InAs�hkl �x ,s� if it
is occupied by an In atom. For an As atom at site j ,2 ,n
having pj,n

M metal NNs of species M �with pj,n
Ga+ pj,n

In =4�, we
replace f j,2,n

hkl �a� by 1
4 �pj,n

Gaf As,GaAs�hkl �x ,s�+ pj,n
In f As,InAs�hkl �x ,s��.

Omitting here again Debye-Waller factors and the depen-
dence of ghkl and r j,� on a, the structure factor is then ob-
tained from Eqs. �5� and �18� as

Fhkl =
1

N
�
n=1

N 	�
j=1

4

�	 j,n
Gaf�Ga,GaAs

hkl + 	 j,n
In f�In,InAs

hkl �

� exp�2�ighkl · �r j,1 + u j,1,n��

+ �
j=1

4 � pj,n
Ga

4
f�As,GaAs

hkl +
pj,n

In

4
f�As,InAs

hkl �
� exp�2�ighkl · �r j,2 + u j,2,n��
 , �19�

where 	 j,n
M =1 if site j ,1 ,n is occupied by metal atom M, and

	 j,n
M =0 if not. Noting that for any reciprocal lattice vector,

exp�2�ighkl ·r j,��=�� /4 for any j=1 to 4, Eq. �19� rewrites

Fhkl = �1��1 − x�dGa,As
hkl f Ga,GaAs�hkl + xdIn,As

hkl f In,InAs�hkl � + �2��1

− x�dAs,Ga
hkl f As,GaAs�hkl + xdAs,In

hkl f As,InAs�hkl � , �20�

where the static displacement correction factors are defined
as

dM,As
hkl =

1

4NxM
�
n=1

N

�
j=1

4

	 j,n
M exp�2�ighkl · u j,1,n� �21�

dAs,M
hkl =

1

4NxM
�
n=1

N

�
j=1

4
pj,n

M

4
exp�2�ighkl · u j,2,n� �22�

with xM the concentration of metal M �xGa=1−x, xIn=x�. At
variance with the usual “static Debye-Waller factors,“ the
static displacement correction factors depend not only on the
nature of the atoms but also on their environments. In Eq.
�21�, the number of nonzero terms summed is precisely
4NxM, so that for large enough random crystals, dM,As should
not depend on the details of the distributions of the atoms;
the same holds for dAs,M. However, these quantities depend
on x and s because the statistical properties of the SDs de-
pend on these parameters. Note that �1 /4=1 for any reflec-
tion and that �2 /4=−1 for any weak reflection. In particular,
for 002, Eq. �20� rewrites

F002 = 4��1 − x��dGa,As
002 f Ga,GaAs�002 − dAs,Ga

002 f As,GaAs�002 �

+ x�dIn,As
002 f In,InAs�002 − dAs,In

002 f As,InAs�002 �� . �23�

In Eq. �23�, the MASAs and the static displacement correc-
tion factors, and therefore the structure factor, depend on x
and s. Finally, each dA,B

002 f A,B�002 product can be multiplied by
the appropriate Debye-Waller factor.

2. Results

We simulated 13 alloy crystals containing one million at-
oms �N=50� with different In concentrations, each in the
four strain states mentioned in Sec. II B 2. The SD field was
found by minimizing the VFF energy and the static displace-
ment correction factors were then calculated by using Eqs.
�21� and �22�. Figures 3 and 4 show the variations of these
factors for As and metal atoms, respectively.

That the static displacement correction factors are less
than one has been discussed in Ref. 13. Moreover, at any
concentration x , dAs,M

002 differs more from one than dM,As
002 . This

is because, in such ternary alloys, the homogeneous sublat-
tice �here, the As sublattice� is more distorted than the mixed
�metal� sublattice.34 The behavior of the correction factors in
dilute alloys can be understood as follows. For x→0, the
alloy is nearly pure GaAs with a cubic unit cell irrespective
of its strain state �since the layers considered are epitaxially
deposited on GaAs�. The only distortions occur around an
isolated In atom, which, for sake of symmetry, stays at its
average site whereas the four surrounding As atoms �and less
so, the more distant atoms� are displaced from theirs. Hence,
dIn,As

002 →1 whereas dAs,In
002 �1 since all As atoms with In NN

are displaced. Most of the III–V pairs are Ga-As so that
dGa,As

002 and dAs,Ga
002 →1. For x→1, the alloy is nearly pure

InAs. The only distortions occur around an isolated Ga atom.
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The preceding discussion applies again to these atoms and to
the majority atoms �In and As with In NN�, so that
dGa,As

002 , dIn,As
002 and dAs,In

002 →1. The only atoms systematically
displaced are the As with a Ga NN, so that dAs,Ga

002 �1. How-
ever, since the average tetragonal distortion of the near-InAs
crystal deposited on GaAs depends on its strain state s, so do
the SDs and the limit of dAs,Ga

002 .
For use in Eq. �23�, the correction factors were fitted to a

third-order polynomial. Using the same notation as in Eq.
�16�, the corresponding coefficients are listed in Table II.
Figure 5 shows the quantity to be added to the SF calculated
according to Eq. �17� �Fig. 2� to obtain the SF taking into
account both charge redistribution and static atomic displace-
ments �Eq. �23��; this difference has the sign opposite to that
found in Ref. 13 because of the change of origin in the unit
cell. Since it is increased by the SD correction, the SF con-
sequently vanishes at lower In concentrations which, for all
strain states considered, are close to x=0.16. Note that this

shift is due not to the mere existence of SDs, but to the
difference of magnitude between the SDs of As and metal
atoms.

III. DISCUSSION

Figure 6 shows 002 structure factors computed by differ-
ent methods as a function of the In concentration, where the
respective bulk material lattice parameter is used. The
dashed line depicts the structure factor derived using Eq.
�17� and the atomic scattering amplitudes from Doyle and
Turner.8 The structure factor vanishes at an In concentration
of 22.5%. The full and dotted lines show the dependence of
the 002 structure factor derived from Eq. �23� using the poly-
nomial fit coefficients from Table I for the calculation of the
MASAs. For the dotted line, the SDs were neglected by set-
ting the SD correction factors equal to 1 �in this case Eq. �23�
simplifies to Eq. �17��, whereas for the full line the polyno-
mial fit coefficients for SD correction factors from Table II
were used. The structure factors derived from our computa-
tions are clearly shifted with respect to those computed from
the Doyle and Turner atomic scattering amplitudes.8 The 002
structure factor vanishes at 17.5% for the computations with-
out SDs. The shift of the structure factor towards larger val-
ues is caused by redistribution of electrons due to bonding of
atoms in the crystal, which is of course ignored in the com-
putation of the atomic scattering factors of Doyle and
Turner,8 but is taken into account in our computation of the
MASAs. Additionally taking into account the SDs, the struc-
ture factor is again shifted slightly to larger values and van-
ishes at 16.4%.

The derivation of the electron structure factor from Eq.
�23� using the MASAs the SD correction factors includes an
approximation. The MASAs are computed by taking into
account the average unit cell distortion but not the SDs.
Therefore, the structure factors might additionally be influ-
enced by a redistribution of charge due to SDs. A better
procedure to incorporate SDs and charge redistribution
would be to derive the SDs of a large alloy supercell �with
typically one million atoms�, as described in Sec. II C 2,
compute by DFT the x-ray scattering factors of this super-
cell, including the SDs, and finally calculate the electron
structure factors similar to Eq. �12�. However, the computa-
tional effort required for the DFT calculation is too large for
such a supercell.

Such computations can nevertheless be performed for or-
dered alloys and this allowed us to check the validity of our
approach. To this end, we simulated ordered alloys with unit
cells consisting of 4 As atoms, p In atoms and �4− p� Ga
atoms, with p=1, 2, or 3, and lattice parameter correspond-
ing to the bulk alloy composition, respectively, x=0.25, 0.5,
and 0.75. In this case, the atoms of the same sublattice �metal
or nonmetal� were considered nonequivalent. Consequently,
the lapw3 program lists separate contributions to the x-ray
scattering factor for all individual atoms: Xj,In

hkl �j=1 to p� for
the p In atoms, Xj,Ga

hkl �j=1 to �4− p�� for the �4− p� Ga atoms
and Xj,As

hkl �j=1 to 4�. To describe this situation, we rewrite
Eq. �11� to give the x-ray scattering structure factor Xhkl of
the ordered-alloy InGaAs crystal as

FIG. 3. Static displacement correction factors to the 002 struc-
ture factor for As atoms in InxGa1−xAs, as a function of the In-
concentration x. The lines are polynomial fits to the results of the
VFF calculations �symbols�.

FIG. 4. Same as Fig. 3 for Ga and In atoms. For each strain
parameter s, the lower curve corresponds to Ga and the upper one to
In. Since the VFF results for Ga and In are very close, only the
former are shown.

FIRST-PRINCIPLES CALCULATIONS OF 002 … PHYSICAL REVIEW B 72, 085326 �2005�

085326-7



Xhkl = �
j=1

p

Xj,In
hkl + �

j=1

4−p

Xj,Ga
hkl + �

j=1

4

Xj,As
hkl + XOut

hkl . �24�

The structure factor FInGaAs
hkl for electron scattering is

FInGaAs
hkl =

e2m0�1 + eU
m0c2�

2�hP
2�0�ghkl�2

� 
�
�=1

2

�
j=1

4

Zj,�exp�2�ighkl · �r j,� + u j,��� − Xhkl� ,

�25�

where the static atomic displacement u j,� of atom j in sub-

lattice � is either set to zero for a calculation without SDs or
computed using the VFF model �the usual periodic boundary
conditions ensure the formation of an ordered alloy�. This
approach, which in the following will be called the “direct
DFT” approach, circumvents the two approximations made
in Eqs. �6� and �23�, because the unit cell used for the DFT

TABLE II. Table of polynomial coefficients for the static displacement correction factors dA,B
002 to the 002

SF of strained InxGa1−xAs, with A the atom considered and B its nearest neighbor. Parameter s as in Table I.

B A s=0 s=0.5 s=1 Bulk

As Ga p1 0.0123 0.0144 0.0188 0.0095

p2 0.0019 −0.0004 −0.0057 0.0051

p3 −0.0142 −0.0139 −0.0131 −0.0145

p4 1.0000 1.0000 1.0000 1.0000

Ga As p1 0.0104 0.0126 0.0169 0.0078

p2 0.0185 0.0151 0.0087 0.0223

p3 −0.0433 −0.0430 −0.0423 −0.0435

p4 1.0000 1.0000 1.0000 1.0000

As In p1 0.0120 0.0139 0.0185 0.0093

p2 0.0021 −0.0001 −0.0057 0.0053

p3 −0.0141 −0.0138 −0.0128 −0.0145

p4 1.0000 1.0000 1.0000 1.0000

In As p1 0.0123 0.0157 0.0224 0.0086

p2 0.0221 0.0191 0.0124 0.0254

p3 −0.0227 −0.0230 −0.0230 −0.0222

p4 0.9883 0.9883 0.9882 0.9883

FIG. 5. Differences of the 002 structure factors for strained
InxGa1−xAs calculated with and without taking into account the
static atomic displacements, as a function of the In concentration.

FIG. 6. 002 structure factors plotted as a function of the In
concentration. The dashed line was computed using the atomic scat-
tering amplitudes of Doyle and Turner �see Ref. 8�. The dotted and
full lines were computed from Eqs. �16� and �23� using the polyno-
mial fit coefficients in Table I for the calculation of the MASAs. For
the full line the SD correction factors were calculated with the
polynomial fit coefficients in Table II, whereas for the dotted line
the SDs were not taken into account. The filled and open circles
indicate structure factors that were directly obtained by DFT com-
putations of ordered alloys using Eq. �25� with �open circles with
crosses� and without �filled circles� taking into account SDs.
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calculation now contains a mixture of In and Ga atoms to-
gether with the static displacements of all the atoms. The
“direct DFT approach” thus allows a check of the validity of
the two approximations by comparing its results with those
obtained with MASAs via Eqs. �6� and �23�.

In Table III, we compare the 002-type structure factors
calculated either by using the tabulated MASAs or with the
direct DFT approach, for crystals without and with SDs. For
the calculations from MASAs, we used Eqs. �16� and �23�
with SD correction factors calculated specifically from the
optimized cells of the ordered alloys, since the SD fields of
ordered and disordered alloys are different: the metal atoms
remain undisplaced in the three ordered crystals whereas the
As atoms are displaced along �111� directions for x=0.25 or
0.75, but only along 020 in the particular crystal chosen for
x=0.5. We thus expect all 002-type structure factors to be
equal for x=0.25 or 0.75, whereas for x=0.5 only the 020
factor should be affected by the SDs. Table III shows that
this is indeed the case. Moreover, there is an excellent agree-
ment between the direct DFT calculations and the calcula-
tions from MASAs. This fully justifies our method of taking
into account separately the charge redistribution �through the
MASAs� and the SDs �through the correction factors�. In
addition, we compare in Fig. 6 the structure factors calcu-
lated for disordered alloys �from MASAs� and ordered alloys
�direct DFT approach�. These agree again very well whether
the SDs are ignored or not, provided, however, that, in the
latter case and for x=0.5, the value for the disordered alloy
�where the three 200-type directions are equivalent� is com-
pared with the DFT value averaged over the three 002-type
directions �see Table III�.

We also checked the SDs calculated in the VFF model by
a comparison with an ab initio optimization. For that pur-
pose, we used one of the cells of the ordered alloys with SDs
and tried to optimize the structure with the “mini” program
of the WIEN2k software package. We found that no geometry
optimization was necessary, indicating that the forces on the
atoms are small and that the SDs are in a good agreement
with ab initio structure optimization. The forces on the
atoms in the ordered alloy with SDs were smaller than
4�10−11 N, i.e., two orders of magnitude smaller than for
the cell without SDs.

Computations within the DFT formalism are always de-
pendent upon approximations for the exchange and correla-
tion part of the potential, because the exact form of the ex-

change and correlation functional is unknown. To estimate
the error on the structure factors due to these approxima-
tions, we computed the structure factors of GaAs and InAs
using the local density approximation �LDA� in the param-
etrization of Ceperly and Alder35 instead of the GGA. We
found that the structure factor for GaAs differs by only
0.20% from the GGA value, whereas for InAs the computa-
tions resulted in a deviation of 0.17%.

In principle, our value for GaAs can also be compared
with experimental determinations. We are aware of two mea-
surements of the 002 structure factor for electrons, made by
convergent beam electron diffraction.11,36 Both experiments
actually yield the Fourier component VGaAs

002 of the scattering
potential for an electron accelerating voltage U=120 kV. We
convert these values to structure factors via Eq. �5� and to
U=200 kV. We also divide the value of Ref. 36, which per-
tains to T=100 K, by the appropriate Debye-Waller factor.37

This yields FGaAs
002 =−0.183±0.004 nm and −0.184 nm, re-

spectively, which differs by about 12% from our calculated
value for GaAs. However, the difficulties inherent in extract-
ing the structure factors from the experiments38 should be
borne in mind when making such comparisons. Moreover, no
measurement for alloys seems to have been made so far.

Using the DFT theory and SDs computed with the ex-
tended VFF model, we found that the structure factor of
InxGa1−xAs vanishes at an In concentration x=0.164. Cagnon
et al.5 and Patriarche et al.6 measured values of x=0.17 and
x=0.18, respectively. However, these experiments corre-
spond to an interpolated minimum rather than to an observed
zero of the 002 diffracted intensity and no estimation of the
experimental errors is quoted. Furthermore, we expect a
small shift of our theoretical value if Debye-Waller factors
are used. Namely, since the Debye-Waller factor for In is
larger than the Debye-Waller factors for Ga and As, the In
concentration causing the structure factor to vanish should be
shifted to higher values. Using calculated Debye-Waller
factors,37 we estimate this shift to about 
x=0.002 in In con-
centration at T=300 K, which brings our results very close
to the experimental determination of Cagnon et al.5

IV. SUMMARY

In summary, we showed that the 002 structure factor is
strongly influenced by redistribution of electrons due to
bonding of atoms in a crystal and by local structural distor-

TABLE III. Structure factors �in nanometers� for the three 002 type reflections, calculated for three
InxGa1−xAs bulk ordered alloys, without �“no SD”� and with �“with SD”� static atomic displacements.
“MASA” values were obtained from Eq. �16� and Table I �no SD� and corrected according to Eq. �23� by
using static displacements factors calculated specifically for the ordered alloys �with SD�. “DFT” values
correspond to the direct DFT approach which uses Eq. �25�.

x Reflection No SD No SD With SD With SD

MASA DFT MASA DFT

0.25 200, 020, 002 0.0913 0.0911 0.1060 0.1060

0.5 200, 002 0.3981 0.3977 0.3981 0.3966

0.5 020 0.3981 0.3977 0.4657 0.4685

0.75 200, 020, 002 0.7107 0.7101 0.7297 0.7294
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tions. We demonstrated how the redistribution of electrons
can be taken into account by using newly defined quantities,
the MASAs, instead of the usual atomic scattering ampli-
tudes, and how the SDs can be incorporated via SD correc-
tion factors. The dependences of the MASAs and of the SD
correction factors upon composition were fitted to third-order
polynomials, and fitting coefficients were provided. In agree-
ment with experimental measurements, the 002 structure fac-

tor computed using MASAs and SD correction factors van-
ishes for an In concentration of 16.4%.
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