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We analyze the noise properties of two single electron transistors �SETs� coupled via a shared voltage gate
consisting of a nanomechanical resonator. Working in the regime where the resonator can be treated as a
classical system, we find that the SETs act on the resonator like two independent heat baths. The coupling to
the resonator generates positive correlations in the currents flowing through each of the SETs as well as
between the two currents. In the regime where the dynamics of the resonator is dominated by the back-action
of the SETs, these positive correlations can lead to parametrically large enhancements of the low-frequency
current noise. These noise properties can be understood in terms of the effects on the SET currents of fluctua-
tions in the state of a resonator in thermal equilibrium that persist for times of the order of the resonator
damping time.
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I. INTRODUCTION

Nanoelectromechanical systems in which micron-sized
mechanical resonators couple to the transport electrons of a
nearby conductor form a new and interesting class of meso-
scopic system.1 In particular, there has been considerable
theoretical2–9 and experimental10,11 interest in the properties
of nanomechanical single electron transistors in which a me-
chanical resonator forms the voltage gate of the transistor.
For these systems, the conductance properties of the SET are
extremely sensitive to the resonator motion, and such a de-
vice has been used to measure the displacement of a nano-
mechanical resonator with almost quantum-limited preci-
sion.11

Apart from its application as an ultrasensitive displace-
ment detector, the SET-resonator system has a number of
interesting features arising from its coupled dynamics. As
electrons pass through the island of the SET, they exert a
stochastic driving force on the resonator, but the motion of
the resonator in turn affects the rates at which electrons tun-
nel between the leads and the island of the SET, leading to
nontrivial correlations between the electrical and mechanical
motion. In general, the resonator-SET system has compli-
cated coupled dynamics, but in the experimentally relevant
regime of relatively large applied bias but low electrome-
chanical coupling and resonator frequency, the effect of the
electrons on the mechanical resonator turns out to be closely
analogous to that of an equilibrium thermal bath.4,9

The correlations between the electrical and mechanical
degrees of freedom in nanomechanical SETs also give rise to
a number of unusual features in the current noise spectrum of
the SET. There is a strong enhancement of the current noise
at the resonator frequency; there can also be a strong en-
hancement at the first harmonic of the resonator frequency
and at low frequencies.5 Similar features have also been pre-
dicted in the noise spectra of a number of closely related
nanoelectromechanical systems.6–8,12,13 Of particular interest
in such systems is the unusual behavior of the zero-
frequency current noise, which can become parametrically
large when the resonator is underdamped.12,13

Enhancement of the zero-frequency current noise is also
known to occur, under certain circumstances, in systems con-

sisting of two parallel SETs, or quantum dots, with a direct
electrostatic interaction between the two islands. Such sys-
tems have been investigated quite extensively,14–17 and it has
been shown that the electrostatic interactions between
charges on the two islands give rise to important cross cor-
relations between the currents in the individual SETs,14

which can generate either positive or negative correlations
between the carriers and hence either enhance or suppress
the noise, depending on the exact details of the system.14–17

Apart from their intrinsic interest, correlations between the
currents of two SETs can be used to enhance the sensitivity
of charge detection.18

In this paper we investigate the noise properties of a sys-
tem consisting of a nanomechanical resonator coupled to two
SETs aligned in parallel and relate them to the dynamics of
the resonator. The resonator is assumed to lie between the
islands of the two SETs acting as a mechanically compliant
voltage gate for both of them. In order to act as a gate, the
resonator is coated with a thin metal layer and kept at a fixed
voltage. Under such circumstances there is no direct electro-
static interaction between the SET islands, but the mutual
interaction between the electrons traveling through the SETs
and the resonator nevertheless generates correlations be-
tween the currents flowing in the two conductors.

As electrons pass through the SETs they exert a stochastic
force on the resonator that can strongly affect its motion, but
the motion of the resonator in turn affects the motion of
electrons through the SETs. We find that the dynamical state
of a resonator coupled to two SETs is approximately equiva-
lent to that of an oscillator coupled to two independent ther-
mal baths. We also find that the presence of the resonator
strongly enhances the low-frequency current noise of the in-
dividual SETs and generates positive correlations between
the currents in the two SETs. The correlations in the currents
within each of the individual SETs, and between the currents
in the two SETs, are generated by fluctuations in the state of
the resonator and hence the magnitude of the low-frequency
noise depends sensitively on the time scale over which they
decay, the damping time of the resonator. Although the fluc-
tuations in the state of the resonator are in turn generated by
the motion of the electrons through the SETs, the resulting

PHYSICAL REVIEW B 72, 085324 �2005�

1098-0121/2005/72�8�/085324�9�/$23.00 ©2005 The American Physical Society085324-1

http://dx.doi.org/10.1103/PhysRevB.72.085324


noise properties are very similar to those obtained if the
back-action of the SETs on the resonator is neglected and,
instead, the resonator is assumed to be in a fixed thermal
state with appropriately chosen parameters.

The outline of this paper is as follows. In Sec. II we
describe our model for the two-SET resonator system and the
conditions under which it is valid. We also introduce the
master equation formalism that is used to derive the subse-
quent results. Then in Sec. III we analyze the dynamics of
the resonator when coupled to two SETs and compare the
results to those obtained for a resonator coupled to a single
SET. In Sec. IV we investigate the noise properties of the
SET currents. First, we present calculations of the zero-
frequency current noise in one of the SETs and relate the
results to a simple model where the back-action of the SETs
on the resonator is neglected. Then we describe the cross
correlations between the currents in the two SETs and how
they can be investigated via measurements on the combined
currents through the two leads. Finally, in Sec. V we present
our conclusions. The Appendix contains additional details
about how an effective equation for the resonator is derived.

II. MODEL SYSTEM

The system of two SETs coupled to a nanomechanical
resonator that we consider is illustrated schematically in Fig.
1. The SET islands, labeled 1 and 2, are linked to voltage
leads by source �S� and drain �D� junctions across which
voltages V1 and V2, respectively, are applied. The resonator
acts as a movable gate for island 1�2� with capacitance
C1�2�r�x� that depends on its position, x. In practice, the mo-
tion of the resonator will be very small on the scale of the
equilibrium separation between it and the SET islands, d1�2�,
and hence can be treated as a linear perturbation, C1�2�r�x�
=C1�2�r�1+x /d1�2��. We also assume that SET 1 has an addi-
tional gate with a capacitance C1g and voltage V1g so that the
operating points of the two SETs can be tuned independently.

The dynamics of the system can be described using a
generalization of the classical master equation formalism that
was used to analyze the coupled dynamics of a nanome-
chanical resonator coupled to one SET.4,5 The basic assump-
tions underlying this approach are that the charge state of the
SET islands are each limited to two possible values by charg-
ing effects, with transitions between these charge states oc-

curring via electron tunneling processes that are adequately
described by the orthodox model,19 and that the resonator
can be treated as a classical harmonic oscillator. These con-
ditions are met if the background temperature is much lower
than the charging energy of the SET islands, the SETs are
assumed to be tuned to, or close to, degeneracy and the
drain-source voltages applied are much larger than the quan-
tum of energy associated with the resonator.4

Since the electronic motion is stochastic, the system may
be described by a set of probability distributions of the form
Pn,m

n1,n2�x ,u ; t�, which give the probability at time t of having n
excess electrons on the island of SET 1, m excess electrons
on the island of SET 2, and the resonator being at a position
x with velocity u. The superscripts on the distributions, n1�2�,
are count variables that give the number of electrons that
have passed through the source junction of SET 1�2�. Al-
though the count variables have no effect on the resonator
dynamics, they play an important role in the analysis of the
noise properties of the SETs.

The resonator is assumed to be a simple harmonic oscil-
lator with frequency �0 and effective mass m. The quantum
of energy associated with the resonator, ��0, is assumed to
be the smallest energy in the problem, so that it is always
much less than the energies associated with the voltages ap-
plied across the SET islands, eV1 and eV2, to ensure that
quantum effects in the resonator’s dynamics can be ne-
glected. The relevant charge states for the SETs are assumed
to have Ni and Ni+1 excess electrons on island i=1,2. We
choose the origin of resonator position x such that x=0 is the
equilibrium position of the resonator �i.e., the minimum in its
potential� when there are N1 and N2 electrons on SET islands
1 and 2, respectively. If there are N1�2�+1 electrons on island
1�2�, the equilibrium position of the resonator is shifted by
the electrostatic force to x=x1�2�, and if both islands contain
an extra electron, then the equilibrium position of the reso-
nator is shifted to x=x1+x2. The lengths x1 and x2 are essen-
tially measures of the strength of the interaction between the
SETs and the resonator, and they are given by x1�2�
=−�e�C1�2�rVrg / �d1�2�C1�2��m�0

2�, where C1�2�� is the total ca-
pacitance of SET island 1�2� and d1�2� is the separation be-
tween SET island 1�2� and the resonator measured along the
direction of increasing x �hence the signs of x1 and x2 will be
opposite for the setup in Fig. 1�.

Transitions between the charge states of the SET islands
are described by the rates for electron tunneling forward
�positive charge moving from source to drain�, �, or back-
ward, �, through the source �drain� tunnel junctions of is-
lands 1 or 2, which are written as �1S�1D�

± and �2S�2D�
± . Ac-

cording to the orthodox model,19 these electron tunneling
rates depend on the differences in the electrostatic energy of
the system before and after the tunneling events. The reso-
nator affects the tunnel rates because its motion changes the
gate capacitance of the SET islands and hence the electro-
static energy differences. Assuming that the thermal energies
of the electrons in the SETs, and the energies associated with
the electromechanical couplings, m�0

2x1�2�
2 , are both much

less than the energy scale set by the voltages, eV1�2�, then the
backward tunnel rates can be set to zero and the forward

FIG. 1. Schematic circuit diagram for the two-SET resonator
system. The central box represents the resonator and the outer boxes
represent the two SET islands containing N1 and N2 electrons.
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tunnel rates can be written in an intuitive way as4,5

�1�2�S
+ = �1�2�S −

m�0
2x1�2�x

e2R1�2�S
, �1�

�1�2�D
+ = �1�2�D +

m�0
2x1�2�x

e2R1�2�D
, �2�

where �1�2�S , �1�2�D are the position-independent parts of the
tunnel rates, and R1�2�S�D� is the resistance of the relevant
SET tunnel junction. Notice that we have assumed that the
coupling is weak enough that it can be treated linearly.4

We are now in a position to set up the master equations
for the system. However, the overall number of parameters
describing the system remains rather large, making it diffi-
cult to extract the essential features of the dynamics. Hence,
we will make a few further simplifying assumptions. We
choose to consider only the case where the couplings of the
SETs to the resonator are equal and opposite, x2=−x1, and
we assume that the resistances of all the tunnel junctions
have the same value, R. Finally, we assume that the SETs are
tuned to the current peaks through the gate voltages so that
the position-independent parts of the tunneling rates through
the source and drain junctions of each SET are equal. As
long as the charging energies are larger than the voltages
�e2 /2C1�2���eV1�2��, the orthodox model predicts tunnel
rates at the current peak that are proportional to the source-
drain voltages:20,21 �1�2�S=�1�2�D=V1�2� / �2eR�.

The most obvious way to describe how the state of the
system evolves would be to derive master equations for
the four distributions, PN1,N2

n1,n2 �x ,u ; t�, PN1+1,N2

n1,n2 �x ,u ; t�,
PN1,N2+1

n1,n2 �x ,u ; t�, and PN1+1,N2+1
n1,n2 �x ,u ; t�. However, in practice

it proves more convenient to work with an alternative set of
distributions composed of

Pn1,n2�x,u;t� = PN1,N2

n1,n2 �x,u;t� + PN1+1,N2

n1,n2 �x,u;t�

+ PN1,N2+1
n1,n2 �x,u;t� + PN1+1,N2+1

n1,n2 �x,u;t�, �3�

PN1+1
n1,n2�x,u;t� = PN1+1,N2

n1,n2 �x,u;t� + PN1+1,N2+1
n1,n2 �x,u;t�, �4�

PN2+1
n1,n2�x,u;t� = PN1,N2+1

n1,n2 �x,u;t� + PN1+1,N2+1
n1,n2 �x,u;t� , �5�

and PN1+1,N2+1
n1,n2 �x ,u ; t�. These distributions are found to

evolve according to the following set of master equations,
written in dimensionless form:

�Pn1,n2

�t
= �2x

�Pn1,n2

�u
− u

�Pn1,n2

�x
− �2 �

�u
�PN1+1

n1,n2 − PN2+1
n1,n2�

+ ��1

2
− 	x��PN1+1

n1−1,n2 − PN1+1
n1,n2�

+ ��2

2
+ 	x��PN2+1

n1,n2−1 − PN2+1
n1,n2� , �6�

�PN1+1
n1,n2

�t
= �2�x − 1�

�PN1+1
n1,n2

�u
+ �2

�PN1+1,N2+1
n1,n2

�u
− u

�PN1+1
n1,n2

�x

+ ��1

2
+ 	x�Pn1,n2 − �1PN1+1

n1,n2

+ ��2

2
+ 	x��PN1+1,N2+1

n1,n2−1 − PN1+1,N2+1
n1,n2 � , �7�

�PN2+1
n1,n2

�t
= �2�x + 1�

�PN2+1
n1,n2

�u
− �2

�PN1+1,N2+1
n1,n2

�u
− u

�PN2+1
n1,n2

�x

+ ��2

2
− 	x�Pn1,n2 − �2PN2+1

n1,n2

+ ��1

2
− 	x��PN1+1,N2+1

n1−1,n2 − PN1+1,N2+1
n1,n2 � , �8�

�PN1+1,N2+1
n1,n2

�t
= �2x

�PN1+1,N2+1
n1,n2

�u
− u

�PN1+1,N2+1
n1,n2

�x

+ ��1

2
+ 	x�PN2+1

n1,n2 + ��2

2
− 	x�PN1+1

n1,n2

− ��1 + �2�PN1+1,N2+1
n1,n2 , �9�

where position and time have been scaled by x1 and eR /V
=1/�, respectively, with the average voltage V= �V1+V2� /2
introduced to preserve the natural symmetry of the equations.
The dimensionless electromechanical coupling is given by
	=m�0

2x1
2 / �eV�, the resonator frequency is expressed in di-

mensionless units as �=�0 /�, and the dimensionless tunnel
rates, �1 ,�2, are defined by the relations �1 /2=�1S�D� /� and
�2 /2=�2S�D� /�.

The coupled set of master equations contains all the in-
formation about the dynamics of the system and can be used
to extract information both about the motion of the resonator
and about the noise properties of the SETs. In exploring the
behavior of the system, we will concentrate on the effects of
varying three parameters: the reduced frequency of the reso-
nator, �, the electromechanical coupling 	, and the ratio of
SET voltages V1 /V2 �which also changes �1 /�2�. However,
because of the underlying assumptions in the model, these
parameters cannot be varied arbitrarily. In particular, the
range of values for the voltages V1 and V2 is bounded below,
and the strength of the electromechanical coupling is
bounded above, by the requirement that the energy changes
involved in electron tunneling are dominated by the SET bias
voltages rather then the position-dependent correction, i.e.,
eV1�2�
m�0

2x1�2�
2 , or equivalently 	 /�1�2��1. The range of

values of bias voltages is bounded above by the requirement
that the number of accessible charge states for each SET
should be limited to two, which essentially means that the
charging energy of the SET islands should be the largest
energy scales in the problem, i.e., e2 /2C1�2���eV1�2�. In
what follows, when we discuss variations in the system pa-
rameters, we will implicitly be assuming that the variation is

NOISE PROPERTIES OF TWO SINGLE-ELECTRON… PHYSICAL REVIEW B 72, 085324 �2005�

085324-3



always within the range discussed. For example, when we
consider the case where V1
V2, we nevertheless assume that
e2 /2C1�2���eV1
eV2
m�0

2x1
2.

III. RESONATOR DYNAMICS

The dynamics of the resonator is governed by the evo-
lution of the probability distribution P�x ,u ; t�
=�n1,n2Pn1,n2�x ,u ; t�. The equation of motion for P�x ,u ; t�
forms part of an apparently complex set of four coupled
equations �Eqs. �6�–�9��. However, equations of motion for
moments of the resonator’s probability distribution are
readily obtained from the master equations. Furthermore, the
master equations can be solved numerically using the tech-
niques described in Ref. 4.

The behavior of the first moments of the resonator are
described by a set of four coupled differential equations:

	ẋ
 = 	u
 , �10�

	u̇
 = − �2�	x
 − 	P
N1+1 + 	P
N2+1� , �11�

	Ṗ
N1+1 =
�1

2
+ 		x
 − �1	P
N1+1, �12�

	Ṗ
N2+1 =
�2

2
− 		x
 − �2	P
N2+1, �13�

where the electron-resonator moments are defined using the
notation

	¯
N1�2�+1 = �
n1,n2

� dx� du�¯�PN1�2�+1
n1,n2 �x,u;�� �14�

and

	P
N1�2�+1 =� � dx du �
n1,n2

Pn1,n2
N1�2�+1. �15�

The full solution of this set of equations offers little insight,
but if we make some approximations based on the realistic
assumption that the resonator frequency is much lower than
the electronic tunneling rate �i.e., ��1�, then a simple equa-
tion of motion for the average position of the resonator about
its fixed point can be derived:

	ẍ
 = − �2�1 −
	

�1
−

	

�2
�	x
 − 	�2� 1

�1
2 +

1

�2
2�	ẋ
 , �16�

as discussed in the Appendix. It is clear that the resulting
equation of motion for the average position of the resonator
is essentially just that of a damped harmonic oscillator with a
shifted frequency, ��=��1−	��1

−1+�2
−1��1/2, and a damping

constant SET=1+2, where 1�2�=	�2 /�1�2�
2 .

The form of the equation of motion for 	x
 strongly sug-
gests that the resonator will have a well-defined steady state,
and indeed this is what is found when the master equations
�Eqs. �6�–�9�� are integrated numerically. Furthermore, nu-
merical integration also reveals that for 	 /�1 ,	 /�2�1 the

steady-state probability distribution is very well approxi-
mated by a Gaussian, something that is readily verified by
calculating the steady-state values for higher moments of the
resonator. Thus, we can characterize the steady state of the
resonator by the variances in the position and velocity, �x2

and �u2.
We can calculate equations of motion for the second mo-

ments in a similar way to that employed in Ref. 4. For ex-
ample, the equation of motion for 	x2
 is obtained by multi-
plying Eq. �6� by x2 and then integrating over x and u in the
same way as for the first moments. Setting the rate of change
of the second-order moments to zero �i.e., 	x2
=0, etc.� leads
to a coupled set of algebraic equations for the steady-state
values of the second moments. For ��1, we find that the
variances �x2= 	x2
− 	x
2 and �u2= 	u2
− 	u
2 obey equiparti-
tion. When we are also in the weak coupling limit �	 /�1�2�
�1� the variances �in dimensionful units� are

m �u2 = m�0�
2 �x2 =

e

4

�2
2V1 + �1

2V2

�1
2 + �2

2 , �17�

where �0�=���. Bearing in mind that if only SET 1�2� were
present, the system would �in this weak coupling limit� have
an effective temperature of the form4 eV1�2� /4, we can re-
write the variances in terms of an effective temperature that
is an average of the effective temperatures associated with
each of the SETs:

m �u2 = kBTSET = kB
T11 + T22

�1 + 2�
, �18�

where kBT1�2�=eV1�2� /4. These results show that in the weak-
coupling limit the effective temperature and damping con-
stant for the resonator coupled to two SETs take exactly the
same form as those obtained previously for a resonator
coupled to one SET and an external heat bath, characterized
by its own temperature and damping constant.4 Thus for the
two-SET resonator system we can think of each of the two
SETs as acting on the resonator as an independent heat bath.

For the particular case when the two SETs are identical
�i.e., V1=V2�, then the ratio of the variances of the resonator
position when coupled to just one of the SETs, �x�1�

2 , to that
when it is coupled to both SETs, �x�2�

2 , takes the form

�x�2�
2

�x�1�
2 =

1 − 	

1 − 2	
. �19�

For 	�1 it seems that adding a second SET �identical to the
one already coupled to the resonator� has almost no effect on
the resonator’s state. However, although the variances of the
resonator are almost unaffected by adding �or removing� an
identical SET, the value of the damping due to the SET elec-
trons doubles when a second SET is added.

In practice, the dynamics of a nanomechanical resonator
would also be affected by thermal fluctuations arising from
its surroundings, which can be characterized by a tempera-
ture, Te, and damping constant, e. However, in what fol-
lows, we will assume that the dynamics of the resonator is
dominated by the SET back-action so that e�SET and Te
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�TSET and hence neglect the effects of these additional fluc-
tuations on the SET noise characteristics. This back-action-
dominated regime is expected to be accessible experimen-
tally for resonators with lengths �10 �m or longer, as
discussed in Ref. 4.

IV. NOISE PROPERTIES

Motion of the resonator affects the tunnel rates of the
electrons in both the SETs and hence can induce correlations,
not just in the current flowing in the individual SETs, but
also between the currents in the two SETs, known as auto-
correlations and cross correlations, respectively. The power
spectrum of the autocorrelation function gives the current
noise in one of the SETs, while the current noise of the
combined currents of the two SETs is given by a combina-
tion of the power spectra of the autocorrelations and cross
correlations. We begin this section by outlining how the
zero-frequency current noise in one of the SETs of the two-
SET resonator system can be obtained. Then we analyze the
noise in one of two SETs coupled to a resonator, and com-
pare it with the noise in a single SET coupled to a resonator
that is held in a fixed thermal state rather than one deter-
mined by the back-action of the SETs. Finally, we examine
the cross correlations in the currents of the two SETs induced
by being coupled to a resonator, and hence calculate the
noise in their combined current.

A. Current noise in one SET

The zero-frequency current noise of SET 1, SI1I1
�0�, is

equal to the noise in the tunnel current across either of its
junctions. Considering the source junction for concreteness,
we have22,23

SI1I1
�0� = 2e2 d

d��n1

n1
2Pn1��� − ��

n1

n1Pn1����2�
�→�

,

�20�

where

Pn1��� = �
n2

� dx� du Pn1n2�x,u;�� .

Substituting for the rates of change of the distributions from
the master equations �Eqs. �6�–�9��, we can rewrite the ex-
pression for the noise, in units of time where �=1, as

SI1I1
�0�

= lim
�→�

22�e2��1

2
	n1
N1+1 − 	

	xn1
N1+1

x1
� − I1

2�� + eI1� .

�21�

The calculation of the zero-frequency noise thus reduces
to the calculation of the limiting behavior of two electron-
resonator moments. The long-time limits of the moments are
readily obtained analytically using an extension of the equa-
tion of motion method discussed in Ref. 5. Substituting these
values for the moments into Eq. �21� gives an expression for

the zero-frequency current noise. However, the resulting ex-
pression is hard to interpret. Hence in order to obtain a more
accessible expression, we expand in the coupling parameter
	=m�0

2x0
2 /eV and then make the simplifying assumption �

�1. Up to order 	, the resulting expansion is

SI1I1
�0�

2eI0
=

1

2
+

�1
2�2

4��1 + �2�2

2��1
2 + �2

2�3

	

�2 , �22�

where we have scaled the noise by I0, the average current of
the SET, without coupling to the resonator. The first term in
the expansion, 1 /2, is just the Fano factor of SET 1 �which
in this case has equal tunnel rates across both junctions� in
the noninteracting limit. The expansion is compared with the
full analytical expression in Fig. 2; the agreement is very
good for 	�1, as one would expect.

The presence of the resonator affects the current noise
because fluctuations in its motion, caused by interactions
with the electrons in either SET, generate correlations in the
current. The expansion in terms of 	 shows clearly that the
current noise increases with increasing coupling, measured
by 	. However, the expansion also shows that the noise is
extremely sensitive to the value of �, diverging in the limit
�→0. The explanation for this behavior is that the zero fre-
quency current noise is controlled by the fluctuations in the
state of the resonator that decay on a time scale of the order
of the damping time, 1 /SET. This damping time is deter-
mined by the back-action, and also diverges in the limit �
→0. The fact that the intrinsic damping of the resonator,
SET, vanishes as �→0 means the fluctuations do not decay
and therefore the current noise diverges. This idea can be
tested directly by comparing the current noise of the two-
SET resonator system with that of a SET coupled to a reso-
nator whose damping �and temperature� is determined solely
by coupling to an external thermal bath �i.e., the back-action
of the SETs on the resonator is neglected�.

The back-action of the SET on the resonator arises from
the displacement of the equilibrium position of the resonator

FIG. 2. �Color online� Current noise through one of two SETs
coupled to a resonator plotted as a function of the coupling strength,
	. The approximate expression for the current noise �Eq. �22�� and
the noise of a SET coupled to a resonator whose state is controlled
solely by a coupling to an external bath with fixed or variable
damping are also shown for comparison. For each plot we have set
�=0.1 and V1=V2.
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caused by changes in the occupancy of the SET islands.
When these displacements are neglected, the motion of the
resonator can still affect the electron tunneling rates of the
SET, but the resonator is no longer affected by the electrons.
We calculate the zero frequency noise in the same way as
before but without the back-action terms, instead assuming
that the resonator is coupled to an external equilibrium ther-
mal bath, characterized by a temperature Te and a damping
constant e. With all other parameters held constant, the cur-
rent noise diverges as 1/e, showing that the divergence in
the current noise is indeed due to the damping going to
zero.24

The noise obtained for the fully coupled system and the
no-back-action model are compared in Fig. 2. Two particular
choices of parameters for the external bath are shown: one
with a fixed value of the bath damping, e, and one with e
chosen to match the 	-dependent effective value of the
equivalent fully coupled case �i.e., e=SET�. In both cases,
we choose the temperature of the bath to match the small-
coupling value of the equivalent fully coupled case �i.e., we
set Te=TSET, which is independent of 	�. The noise for the
no-back-action case is almost linear in 	 when the value of
e is varied to match that of the equivalent fully coupled
case, but only has a small linear term when instead e is kept
constant. This shows that in the fully coupled case, it is the
fact that the damping depends on 	 that gives a linear �rather
than 	2� dependence of the current noise.

B. Current cross correlations

Having analyzed the zero-frequency current noise of one
of the SETs in the two-SET resonator system, we now turn to
consider the correlations between the currents in the two
SETs induced by the presence of the resonator. The cross
correlation between the two SETs is defined as

KI1I2
��� =

1

2
�	Ĩ1�t�Ĩ2�t + ��
 + 	Ĩ2�t�Ĩ1�t + ��
� , �23�

where Ĩi�t�= Ii�t�− 	Ii
, and the correlation function is as-
sumed to be independent of t. The power spectrum of the
cross correlation is defined as

SI1I2
��� = 2�

−�

�

cos����KI1I2
���d� . �24�

The zero-frequency limit is independent of whether we con-
sider cross correlations in the full currents flowing through
the SETs or in the tunnel currents across either the source or
drain junctions, and is given by

SI1I2
�0� = SI1DI2D

�0� = SI1SI2S
�0� , �25�

=2e2 d

d��n1

�
n2

n1n2Pn1n2��� − ��
n1

n1Pn1����
���

n2

n2Pn2�����
�→�

, �26�

where we have used a generalization of MacDonald’s for-
mula in the last line to recast the expression into a form that
is readily evaluated using the generalized master equations.
Substituting appropriately from the master equations �Eqs.
�6�–�9�� for the rates of change of the probability distribu-
tions, we obtain

SI1I2
�0� = lim

�→�
2�e2��1

2
	n2
N1+1 − 		xn2
N1+1�

+ e2��2

2
	n1
N2+1 − 		xn1
N2+1� − 2I1I2�� . �27�

The moments 	n1
N2+1 �	n2
N1+1� and 	xn1
N2+1 �	xn2
N1+1�
describe the correlations between the resonator, the charge
on SET 2 �1�, and the charge that has passed through SET 1
�2�. They are readily obtained using the same equation of
motion approach employed for the single-SET moments.

The cross-correlation noise, SI1I2
�0�, is shown in Fig. 3 as

a function of the parameters 	 and vd= �V1−V2� / �2V�, which
measures the difference between the voltages. It is clear from
the plot that the cross correlations are positive, reaching a
maximum when the two voltages are equal and increasing
with the coupling, 	.

In order to understand the cross correlation, we can again
make a comparison with the case of a resonator in a fixed
thermal state where the back-action of the electrons on the
resonator is neglected. Without the back-action, with the
state of the resonator controlled by coupling to an external
equilibrium thermal bath, there is no way for the electrons in
the two SETs to influence each other, as they cannot affect
the state of the resonator. The zero frequency component of
the cross correlation with and without the back-action are
compared in Fig. 4, where the temperature and damping as-
sociated with the external bath for the no-back-action case
have been chosen to match those of the fully coupled system,
and it is clear that they coincide up to linear order in 	. We
can think of the electrons in both SETs acting on the resona-
tor to form a dynamical state that then acts back on the
electrons in both SETs to induce correlations. When the
back-action of the electrons on the resonator is neglected,
and it is kept in a thermal state by an external bath, correla-
tions are still induced between the SETs because both SETs
experience the same fluctuations in the resonator’s state. Fig-

FIG. 3. �Color online� The zero-frequency component of the
cross-correlation power spectrum, plotted as a function of 	 and vd,
with �=0.1.
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ure 4 also compares the zero-frequency component of the
cross correlation with the corresponding part of the autocor-
relation that arises from interactions with the resonator,
SI1I1

− �0� / �2eI0�=SI1I1
�0� / �2eI0�−1/2 �see Eq. �22��, for iden-

tical SETs �i.e., vd=0�. It is clear from Fig. 4 that SI1I2
�0� and

SI1I1

− �0� are closely related, even for values of ��0.1 that
approach the limit of the model’s validity, and indeed we find
that in the limit �→0 they become equal.

These results are at first a little surprising as the cross
correlations between carriers in different leads of a device
are very often negative. Indeed, as long as the voltages ap-
plied are constant and there are no interactions, the cross
correlations must be negative.25–27 However, in our system
although the leads are kept at fixed voltages and contain
noninteracting electrons, the presence of the resonator gen-
erates effective interactions within the device itself �i.e., be-
tween the islands of the SETs�, and hence positive correla-
tions between currents in different leads are possible.
Positive current correlations between leads were also found
for similar systems consisting of parallel quantum dots with
a direct electrostatic interaction between them.14,28

We might also expect the cross correlations to be negative
because the signs of the SET-resonator coupling terms are
opposite, x1=−x2, so that when the resonator moves toward
SET 1 �effectively decreasing the tunneling rate �1S

+ �, it
moves away from SET 2 �increasing �2S

+ �. However, we must
remember that the correlations are between I1S�t� and I2S
�t+�� in the limit �→�, i.e., all motions of the resonator are
averaged out over a long time. The two SETs experience the
same fluctuations in the state of the resonator and, hence,
provided the SETs are identical, these fluctuations induce
essentially the same correlations between the currents of the
two SETs as within the current of each one separately. How-
ever, this will not be the case at finite frequency. In particu-
lar, we would expect strong anticorrelation between the cur-
rents in the two SETs at the resonator frequency.

A simple way to measure the cross correlations in the
currents through the two SETs is to measure the noise in the
combined current of the two SETs, IT= I1+ I2, and compare
the result with the noise in the currents through the indi-
vidual SETs, I1 and I2. The zero-frequency noise of the com-
bined current is given by

SITIT
�0� = �SI1I1

�0� + SI2I2
�0� + 2SI1I2

�0�� . �28�

Thus, measuring the noise in the combined current of the
SETs and comparing it with measurements of the noise in the
individual SETs provides a straightforward way to obtain the
magnitude of the resonator-induced cross correlations.

V. CONCLUSIONS

We have used a classical master equation approach to
investigate the noise properties of two SETs coupled to a
nanomechanical resonator in the regime where the dynamics
of the resonator is dominated by the back-action of the SETs.
Although a classical treatment of the resonator clearly cannot
describe the ultimate limits set by quantum mechanics on
displacement detection,2,8,10,11 it does give important insights
into the measurement back-action.

We have shown that provided the electromechanical cou-
pling is sufficiently weak �	�1� and the resonator frequency
is sufficiently low ���1�, the SETs act on the resonator like
two independent thermal baths, each of which can be char-
acterized by a damping constant and effective temperature,
leading to an overall effective temperature for the resonator
that is an average of the effective temperatures associated
with the individual SETs.

The coupling to the resonator generates positive correla-
tions between the electrons flowing through each of the SETs
individually and hence leads to an enhancement of the low-
frequency current that indeed can become parametrically
large. The noise depends sensitively on both the SET reso-
nator couplings and the effective damping rate of the reso-
nator that arises from interactions with the SET electrons. In
particular, the zero-frequency noise diverges as the damping
rate of the resonator tends to zero. For sufficiently weak
coupling, we found that the magnitude of the noise matches
that which would arise from coupling to a resonator in a
fixed thermal state characterized by an appropriately chosen
temperature and damping rate. These results imply that the
enhancement of the low-frequency noise in the SETs can be
thought of as due to fluctuations in the dynamical state of the
resonator that persist for times of the order of the resonator’s
damping time.

The presence of the resonator also generates positive cor-
relations between the currents in the two SETs. These corre-
lations would be manifest in the current noise of the com-
bined current of the two SETs that would be greater than the
sum of the noise in the individual SET currents. Further-
more, the low-frequency limit of the spectra of the cross
correlations and autocorrelations induced in the SET currents
by the resonator are almost identical for ��1.
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APPENDIX: SOLUTION OF MEAN-COORDINATE
EQUATIONS FOR RESONATOR

In this appendix we derive the effective equation of mo-
tion for the mean coordinate of the resonator �Eq. �16��. The

FIG. 4. �Color online� A comparison of the cross correlation
between the two leads, and the autocorrelation minus the constant
term �SI1I1

− �0� / �2eI0�� plotted as a function of 	 with �=0.1 and
vd=0. Also plotted is the cross correlation without back-action.
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derivation relies on a separation of the time scales associated
with the electrical and mechanical motion such that ��1.
The electron distribution almost relaxes to its equilibrium
value for each position of the resonator. This electron distri-
bution then acts on the resonator, leading to a frequency
shift. This is closely analogous to the Born-Oppenheimer
approximation describing the motion of atomic nuclei and
electron wave functions29 �see Beausoleil et al.30 for a simi-
lar analogy�. However, rather than assume that the resonator
moves infinitely slowly compared to the electrons �i.e., �
=0�, we allow the resonator a small but finite velocity.31 As a
consequence, we find that the evolution of the electron dis-
tributions 	P
N1+1, 	P
N2+1 depend on 	u
 as well as 	x
. As
we shall see, it is this that leads to the damping effect.

We begin be rewriting the coupled equations for the first
moments of the SET-resonator distributions �Eqs. �10�–�13��
in terms of variables centered on the appropriate fixed point

value, e.g., 	P̃
N1+1= 	P
N1+1− 	P
N1+1
fp , and hence obtain

	ẋ̃
 = 	u
 , �A1�

	u̇
 = − �2�	x̃
 − 	P̃
N1+1 + 	P̃
N2+1� , �A2�

	P̃
˙ 
N1+1 = 		x̃
 − �1	P̃
N1+1, �A3�

	P̃
˙ 
N2+1 = − 		x̃
 − �2	P̃
N2+1. �A4�

From Eq. �A3�, we have

	P̃
˙ 
N1+1 = − �1	P̃
N1+1 + 		x̃
 , �A5�

	P̃
¨ 
N1+1 = �1

2	P̃
N1+1 − �1		x̃
 + 		u
 , �A6�

	P̃
�
N1+1 = − �1

3	P̃
N1+1 + �1
2		x̃
 − �1		u


+ 	�2�	P̃
N1+1 − 	P̃
N2+1 − 	x̃
�

� − �1	P̃
¨ 
N1+1, �A7�

where the approximate expression on the last line arises
when we neglect terms of order �2, which we are assuming to
be small.

Solving Eqs. �A7� and �A6� for 	P̃
N1+1, we obtain

	P̃
N1+1�t� =
	x̃

�1

	 −
	u

�1

2	 + e−�1tC , �A8�

where C is a constant that depends on the initial conditions.
If we consider a time scale long compared to the motion of
the electrons but short compared to the motion of the reso-
nator �i.e., neglect the transient behavior�, then the last term
can be dropped and we obtain expression for 	P̃
N1+1 as a
function of 	x
 and 	u
:

	P̃
N1+1�t 
 1/�1� =
	x̃

�1

	 −
	u

�1

2 	 . �A9�

Obtaining a similar expression for 	P̃
N2+1 and inserting these
into Eqs. �A1� and �A2� gives the effective equation of mo-
tion for the resonator quoted in the main text:

	ẍ̃
 = − �2�1 −
	

�1
−

	

�2
�	x̃
 − �2� 	

�1
2 +

	

�2
2�	ẋ̃
 .

Notice that we needed to allow 	P̃
N1+1 to depend on both
	x
 and 	u
 in order to obtain this effective equation of mo-
tion. If, instead, we had included only the 	x
 dependence,
we would have obtained only the frequency shift and not the
damping. The sign of the u term determines whether we have
a damping term or one that drives the oscillator further from
equilibrium.13 Including higher-order derivatives in the cal-
culation of 	P̃
N1+1 leads to additional terms in the expres-
sions for the frequency shift and damping of order �4.
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