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An analytical �hk��-oriented k·p method is developed in this paper and applied to calculate the optical
transition strength of zinc-blende semiconductor quantum wells. The optical matrix elements and the hole
effective masses are presented in analytical forms. Calculations are performed for In0.53Ga0.47As/ InP quantum
wells oriented in arbitrary growth directions. The in-plane polarization angle is adopted as a key parameter in
the calculations performed to explore the variation of the optical transition strength in the well plane. The
theoretical results indicate that the largest optical anisotropy of the optical matrix elements in the well plane
appears in the �110� surface.
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I. INTRODUCTION

Recent advances in growth technologies now enable the
growth of high-quality semiconductor heterostructures on
substrates with orientations other than the conventional �001�
direction.1–3 Furthermore, the advances made in modern
crystal growth technologies for various substrate orientations
have motivated a particularly interesting, and that is mainly
due to its unique optical and electronic properties. Impor-
tantly, one of the unique properties is the optical anisotropy
in quantum-confined semiconductor systems. It has been pre-
dicted theoretically1,3–7 that semiconductor heterostructures
grown on a substrate with a low symmetry orientation will
exhibit anisotropic characteristics. Furthermore, in-plane an-
isotropy has been confirmed experimentally for epitaxial lay-
ers grown on substrates of various orientations, including
�110�,8,9 �113�,3,10 and �112�11 substrates.

General �hk��-oriented planes provide a further crucial
degree of freedom which gives device designers a greater
flexibility when tailoring the band structure of the semicon-
ductor heterostructures used in advanced optical devices.12–15

However, low-symmetry planes will result in the anisotropy
of the optical matrix elements on the growth surface.1,3,4,6

These non-�001�-oriented planes yield an alteration of the
crystal symmetry in the different growth directions and cause
a modification of the valence band structure. Many of the
optoelectronic devices used in modern optical telecommuni-
cation systems require a polarization-independent operation.
However, laser diodes are designed in such a way that op-
eration in the polarization direction reduces the threshold
current.14 Therefore, detailed studies of the in-plane optical
anisotropy phenomenon are required.

In the theoretical derivation of semiconductors and their
heterostructures, the k·p approach16,17 tends to be the most
widely adopted since its calculations and application are
relatively straightforward. As an alternative to the conven-
tional k·p method, an analytic expression for the k·p
Hamiltonian7,18,19 can be obtained by expanding the Hamil-
tonian of the bond orbital model18–20 �BOM� in a Taylor
series with respect to the wave vector k and then truncating
the series to the second order in k. This analytical k·p

method indicates more physical meanings in the lattice sym-
metry and easier manipulations in the mathematical calcula-
tions used to investigate the optical anisotropy in any
�hk�� - oriented quantum well �QW� than the conventional
k·p method.4,6,15,21 With various refinements, the analytical
k·p method can provide sophisticated results and can be
used to study many problems, including the effects of optical
and magnetic fields, and the piezoelectric effects of external
stress and internal strain, etc. Therefore, the analytical k·p
method is expected to be widely adopted due to its concep-
tual simplicity, operational efficiency, and applied versatility.
Importantly, the analytical k·p method provides practical
formula, which can also be used by experimentalists.

The calculations in the current study are performed ana-
lytically with the k·p approach, taking the inherent lattice
symmetry of the bulk material into account. Explicit math-
ematical expressions for the optical transition strength of
zinc-blende semiconductor QWs are presented. Specifically,
one of the goals of the present study is to derive a general
quantitative description of the optical transition strength rela-
tive to the �hk��-, and particularly the �11��-, substrate sur-
faces. This study also calculates the effective masses of the
hole as a function of the substrate orientation. The effects of
arbitrary substrate orientations on the optical properties of
zinc-blende semiconductor QWs are explored in detail.

II. THEORETICAL METHOD

In an analytical formalism, the k·p matrix elements can
be written as7,18,19

Hk·p�k���,� = �
j

�1 − 1
2 �k · R j�2 + ik · R j����,��j� , �1�

where ��=s ,x ,y ,z� denotes s-like or p-like basis functions, k
is a wave vector, R j with j=0–12 is the position vector of the
on-site lattice �j=0� or one of the 12 nearest-neighbor lat-
tices �j=1–12�, and ���,��j� is an interaction parameter be-
tween bond orbitals of symmetry type �� �located at the
relative origin R�� and � �located at one of the lattice sites
R=R j +R� with �j=1–12�. A total of seven interaction pa-
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rameters, ���,�, exist, namely, Es , Ep , Ess , Esx , Exx , Exy,
and Ezz, which are listed in Table I.7,18,19

The present study applies a conceptually straightforward
approach to derive an analytical expression for the momen-
tum matrix elements, Mk·p�k���,�. The first-order derivative
of the k·p Hamiltonian with respect to the wave vector k is
given by7,22

�� · Mk·p�k���,� = �� · ��Hk·p�k���,�/�k�

= �
j

�− �k · R j�Rj,� + iRj,�����,��j� , �2�

where �� is the unit vector of the �-polarization optical field,
� �=x ,y, or z� is the polarization direction of the optical field,
and Rj,� is the �-component of the jth position vector, R j.

The linear combinations of the Hk·p�k���,� �Mk·p�k���,��
and the spin-orbit coupling coefficients yield the
Hk·p�k���,� �Mk·p�k���,�� with �� ,k	 basis functions, where
�= �S	��=±1/2 , �3/2 , ±3/2	, and �3/2 , ±1/2	. The k·p
Hamiltonian, Hk·p�k���,�, is presented in Appendix A.

The expansion for the QW state �n ,k
	 is written as

�n,k
	 = �
�,kz

F��n,k
,kz���,k	 , �3�

where n is a label for the subband index of the QW, k=k


+kzẑ, and F��n ,k
 ,z� is the so-called envelope function of the

QW state and is given by the following Fourier transform:

F��n,k
,z� � �
kz

F��n,k
,kz�eik·R. �4�

The momentum matrix element between subband states
�n� ,k
	 and �n ,k
	 is given by23

�� · Mn�,n�k
�

= �
��,�,kz

F���n�,k
,kz�*��� · Mk·p�k���,��F��n,k
,kz�,

= �� · �
��,�

� dz F���n�,k
,z�*O��,��k
,z�F��n,k
,z�

+ dz F���n�,k
,z�*Q��,��k
,z��− i
d

dz
F��n,k
,z��� ,

�5�

where the superscript � denotes the Hermitian conjugate, the
explicit expressions of the matrix elements O��,��k
 ,z� and
Q��,��k
 ,z� are given in Appendix B.

The Hamiltonian for arbitrary crystallographic orienta-
tions is obtained by rotating the �001� Hamiltonian from the
�x ,y ,z� lattice coordinate system to the �x� ,y� ,z�� coordinate
system. Here, the z� axis is the direction normal to the
growth surface, �hk��. An appropriate transformation matrix
for this rotation is written as24

U = �cos � cos � cos � − sin � sin � − sin � cos � cos � − cos � sin � sin � cos �

cos � cos � sin � + sin � cos � − sin � cos � sin � + cos � cos � sin � sin �

− cos � sin � sin � sin � cos �
� �6�

where the angles � �=tan−1�h2+k2 /�� and � �=tan−1k /h�
represent the polar and azimuthal angles, respectively, of the
z� direction relative to the �x ,y ,z� lattice coordinate system.
The rotation is specified by its angles � ,� ,�. The growth
direction, z�, is determined by the rotation of the � and �
angles, while the in-plane direction is governed by the rota-
tion of the � angle.

Let �kx� ,ky� ,kz�� and �kx ,ky ,kz� be the components of a
vector k in the �x� ,y� ,z�� and �x ,y ,z� coordinate systems,
respectively. The relationship between these components is
given by a rotational matrix, U, i.e.,

�kx�

ky�

kz�
� = �U11 U21 U31

U12 U22 U32

U13 U23 U33
��kx

ky

kz
� , �7�

where Uij with i , j=1–3 are elements of the rotational ma-
trix, U. From Eq. �7�, the x� , y�, and z� directions are ex-
plicitly represented as expressions in the crystallographic co-
ordinate system.

TABLE I. The interaction parameters �in units of electron-volts�.

Es Ep Ess Esx Exx Exy Ezz

InP 9.260 −4.157 −0.682 0.317 0.484 0.701 −0.016

GaAs 12.990 −4.785 −0.956 0.344 0.565 0.821 0.065

InAs 14.851 −4.646 −1.203 0.360 0.554 0.822 0.054
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III. RESULTS AND DISCUSSION

A. Intrinsic optical anisotropy of zinc-blende semiconductors

The momentum matrix element, M, is expressed in terms
of an expected value of a momentum operator, p̂
= �Px ,Py ,Pz�. The component of M parallel to the light’s
electrical field contributes to the light waves as a gain or loss
by the square of the scalar product �� ·M�2, where � is a
vector denoting the direction of the light polarization. The
squared momentum matrix elements of zinc-blende semicon-
ductors can be written as25

�� · M�c-hh
2 = 1

2 �1 − cos2 ��Pc�
2 �8a�

for the c-hh interband transition, and as

�� · M�c-lh
2 = � 1

6 + 1
2 cos2 ��Pc�

2 �8b�

for the c-lh interband transition, where c , hh, and lh denote
the conduction, heavy-hole, and light-hole bands, respec-
tively, � is the angle between the electron wave vector, k,

and the light-polarization vector, �, and Pc� is a momentum
matrix parameter between the orbital “s” and “p” states. Ow-
ing to the symmetry phenomenon of the p-like functions, the
interband matrix elements are given as

Pc� = ��S�Px�X	� = ��S�Py�Y	� = ��S�Pz�Z	� , �9�

while all the remaining matrix elements are equal to zero.
Figures 1�a� and 1�b� illustrate the c-hh and c-lh transition

strengths for arbitrary polarization light, respectively. The
results indicate a strong polarization dependence of the
electron-light interaction. It can be seen that the inter-band
transition strength is dependent only on the angle � between
the vector � and the vector k.

Truncating the k·p Hamiltonian in a matrix form and re-
taining only the �8 band gives the 4	4 Luttinger–Kohn
Hamiltonian. At kx�=ky�=0,26 the 4	4 k·p Hamiltonian for
holes in an epilayer �or bulk� grown along the �hk�� - direc-
tion �in the basis ordering �3/2 ,3 /2	 , �3/2 ,1 /2	 , �3/2 ,
−1/2	 , �3/2 ,−3/2	� is given by

Hk·p�kx� = ky� = 0� = �Ep + 8Exx + 4Ezz� −
a2

4
kz

2� 4

3
�2Exx + Ezz� 	 �

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
� + ��Exx − Ezz − 2Exy�sin2 ��2 − 
� −

2

3
�Exx

− Ezz�� 	 �
1 0 0 0

0 − 1 0 0

0 0 − 1 0

0 0 0 1
� + �Exx − Ezz − 2Exy�� 1

�3
sin �� 	 �

0 S T 0

S* 0 0 T

T* 0 0 − S

0 T* − S* 0
�� , �10�

where


 = sin2 ��cos4 � + sin4 � + 1� , �11a�

S = �cos � + i sin ���2 cos ��1 − 
� − i sin2 �� 1
2 sin 4��� ,

�11b�

T = − �cos � + i sin ��2 sin ��2�cos4 � + sin4 �� − 


+ i cos �� 1
2 sin 4��� , �11c�

and “a” is the lattice constant.
According to the secular expression given in Eq. �10�, the

explicit forms of the eigenvalues and eigenvectors, which
coincide exactly with analytical results of Merkulov et al.,27

are given by

E± = �Ep + 8Exx + 4Ezz�

−
a2

4
kz

2�4

3
�2Exx + Ezz� ±

1
�3

�Exx − Ezz − 2Exy�� sin ��
�12�

for the doubly degenerate eigenvalues, and by

��±	 =
1

N�
�G ± ��
�S* + T�

�− S + T*�
�G ± ��

� �13�

for the corresponding eigenvectors, where

G =
�Exx − Ezz − 2Exy�sin2 ��2 − 
� − 2

3 �Exx − Ezz�

�Exx − Ezz − 2Exy�
1
�3

sin �

,

�14a�
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� = �G2 + SS* + TT*, �14b�

and

N2 = 2�G ± ��2 + ��S* + T��2 + ��− S + T*��2. �14c�

Note that throughout this paper, the upper sign �+� refers to
hh, while the lower sign �−� refers to lh.

From Eq. �12�, it is possible to derive the following ana-
lytical formula for the effective hole-masses �m±�� along the
growth direction �z� axis�. Expressed in terms of BOM pa-
rameters, ���,�, the effective hole masses �m±�� for both
hh�+� and lh�−� along the �hk�� growth-direction and wave-
vector kz� can be written in units of free electron mass, �m�,
as

1

m±�
=

a2

22�4

3
�2Exx + Ezz� ±

1
�3

�Exx − Ezz − 2Exy�� sin �� .

�15�

The orientation-dependent effective hole masses along the
�hk��-growth direction can be examined using Eq. �15�. The
calculated results of the hh and lh effective masses as a
function of the growth direction are shown in Figs. 2�a� and
2�b�, respectively, for In0.53Ga0.47As expitaxial layers. The hh
effective mass is found to have a strong dependence on the

FIG. 1. Optical transition strengths of �a� c-hh and �b� c-lh
transitions as a function of the angle between the electron wave
vector and the polarization vector for zinc-blende semiconductor
materials.

FIG. 2. Longitudinal effective masses in �hk�� In0.53Ga0.47As
epitaxial layers for �a� hh and �b� lh transitions as a function of
arbitrary growth direction in three-dimensional space.
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substrate orientation. However, this is not the case for the lh
effective mass. It is shown that the hh effective mass exhibits
a maximum value in samples grown along the �111� direc-
tion, and a minimum value in samples grown along the �001�
direction.

The �hk��-oriented Hamiltonian in the QW structure at
the zone center can be obtained by setting kz�=−i�� /�z�� and
adding a QW potential profile in Eq. �10�. In the next section,
this study adopts an infinite-barrier-height approximation, in
which kz� can take only discrete values of n� /L, where n is
the subband index and L is the well width.4,28 Therefore, the
analytical k·p formalism can be applied to explore the
orientation-dependent characteristics of the semiconductor
QWs at the zone center. The matrix of this �hk��-oriented
Hamiltonian becomes diagonal when the azimuthal angle �
is equal to 45° �when h=k=1� and the polar angle � is equal
to 0° �when �=� or sin−1�2/�3�54.7° �when �=1�, cor-
responding to the two cases where the QWs are oriented to
the �001� or �111� surface, respectively. Therefore, the hh and
lh states at the zone center along the �001�-growth and �111�-
growth directions are given by the pure eigenstates of the z
component of the angular momentum, mj. For orientations
other than �001� and �111�, the nonzero off-diagonal matrix
elements imply that the hh and lh states are mixtures of mj
= ±1/2 and mj = ±3/2 components, even at the zone center.
The effect of zone-center mixing yields the anisotropy prop-
erties such as hole mass and optical transition strength. An
analysis shows that this phenomenon can be attributed to a
low-symmetry perturbation of the crystal lattice.

B. Momentum matrix elements under infinite-barrier-height
approximation

When adopting an infinite-barrier-height and envelope-
function approximations, the QW envelope functions for the
conduction and valence bands become simple sinusoidal
waves. Thus the overlap integral of the envelope functions is
always unity for the allowed interband transitions. Conse-
quently, the momentum matrix elements are independent of
the envelope functions, which are expressed only as cell-
periodic parts in the Bloch functions.3–5 Furthermore, an-
other approximation used in this section is that the hole ei-
genatates are independent of the well width of the QWs, and
thus the linear-combination coefficients of the hole eigen-
states expanded in the �3/2 , ±3/2	 and �3/2 , ±1/2	 basis set
are well-width independent. In this approximation, the differ-
ence in the k·p parameters of the well and the barrier layers
is neglected, which is essential for interface mixing between
heavy-hole and light-hole eigenstates.3,5,28 By using the hole
eigenstates as the new basis set, the �hk��-oriented Hamil-
tonian at the �8 band in Eq. �10� becomes diagonal. In the
presented approximations, the squared momentum matrix el-
ements at the zone center for the x� , y�, and z� polarizations
can be calculated as3–5,28

�Mx��
2 =

1

N2�−
1
�2

�G ± �� +
1
�6

�− S + T*��2

Pc�
2

+
1

N2� 1
�2

�G ± �� −
1
�6

�S* + T��2

Pc�
2 , �16a�

�My��
2 =

1

N2�−
1
�2

�G ± �� −
1
�6

�− S + T*��2

Pc�
2 +

1

N2�
−

1
�2

�G ± �� −
1
�6

�S* + T��2

Pc�
2 , �16b�

and

�Mz��
2 =

2

3N2 ��− S + T*��2Pc�
2 +

2

3N2 ��S* + T��2Pc�
2 ,

�16c�

respectively.
Meanwhile, the squared momentum matrix elements can

also be expressed as

�Mx��
2 = � 1

N2��b2

3
+ � d

�3
− f�2

+
c2

3
+

e2

3 � 	 Pc�
2 ,

�17a�

�My��
2 = � 1

N2��b2

3
+ � d

�3
+ f�2

+
c2

3
+

e2

3 � 	 Pc�
2 ,

�17b�

and

�Mz��
2 =

4

3
� 1

N2��b2 + c2 + d2 + e2� 	 Pc�
2 , �17c�

respectively, where

b = 2 cos � cos ��1 − 
� + 1
2sin � sin2 � sin 4� , �18a�

c = 2 sin � cos ��1 − 
� − 1
2cos � sin2 � sin 4� , �18b�

d = �sin2 � − cos2 ��sin ��2�cos4 � + sin4 �� − 
�

+ cos � sin � cos � sin � sin 4� , �18c�

e = − 2 cos � sin � sin ��2�cos4 � + sin4 �� − 
�

+ 1
2 �sin2 � − cos2 ��cos � sin � sin 4� , �18d�

f = �G ± �� , �18e�

and

� = �G2 + b2 + c2 + d2 + e2. �18f�

Figures 3 and 4 show the calculated results �in units of
Pc�

2 � of the squared optical matrix elements �by setting �
=0°� as a function of the substrate orientation for the c-hh
and c-lh transitions, respectively. Due to the symmetry of the
eight octants, these figures show only the first octant in three-
dimensional space. From the two figures, it is clear that the
optical properties of the QWs are sensitive to the crystallo-
graphic directions of the epitaxial growth. In these squared
matrix elements, it is noted that the following conservation
rule exists as:
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�Mx��c-h
2 + �My��c-h

2 + �Mz��c-h
2 = 1Pc�

2 , �h = hh or lh�

�19a�

and a sum rule exists as

�Mx��c-hh
2 + �Mx��c-lh

2 = 2
3 Pc�

2 , �19b�

�My��c-hh
2 + �My��c-lh

2 = 2
3Pc�

2 , �19c�

and

�Mz��c-hh
2 + �Mz��c-lh

2 = 2
3 Pc�

2 . �19d�

FIG. 3. Squared optical matrix elements �in units of Pc�
2 � of the

c-lh transition in In0.53Ga0.47As QWs for �a� x�, �b� y�, and �c� z�-
polarization light. FIG. 4. Squared optical matrix elements �in units of Pc�

2 � of the
c-hh transition in In0.53Ga0.47As QWs for �a� x�, �b� y�, and �c� z�-
polarization light.
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The conservation and sum rules are in accordance with
the predicted results of Eqs. �8a� and �8b�. Note that in the
calculation of the optical transitions Merkulov et al. take into
account the mixing of heavy and light holes for the nonzero
in-plane wave vector. Notably, this mixing results in nonzero
probabilities of some optical transitions �for large values of
an in-plane wave vector�, which are forbidden in a simplified
approximation used in this subsection.27

Figures 5�a�–5�c� show the polar plots of the c-hh and
c-lh transition matrix elements on the �110�, �113�, and �123�
well planes, respectively, as a function of the in-plane polar-
ization angle, �. From these figures, it is clear that the in-
plane transition matrix elements �Mx��

2 have an elliptical dis-

tribution with the twofold symmetry axis in these QW
planes. From a mathematical perspective, �b2+c2+d2+e2�
and f2 terms in the in-plane matrix element, �Mx��

2, are inde-
pendent of the in-plane angle, �, and hence, the strength
variation of the in-plane matrix element is proportional to the
term “d”. Meanwhile, a factor �cos � sin �� appears in the
term d, and therefore the optical twofold axis is not coinci-
dent with the �=0 principal axis of the QW plane. However,
this factor disappears in the �11�� family since sin 4�=0.
Hence, the tilted twofold optical axis occurs in the �123� QW
plane, but not exists in the �110� or �113� planes, as can be
seen in Figs. 5�a�–5�c�. Since the �001� and �111� QWs be-
long to high symmetry point groups, their optical matrix el-
ements have an isotropic curve in the QW plane, whose
layer-plane curves are deliberately not shown in the figures
in order to maintain clarity.

Generally, the in-plane optical anisotropy, �, of
�hk��-oriented QWs is defined as

� =
�Mx��

2 − �My��
2

�Mx��
2 + �My��

2 , �20�

where �Mx��
2 and �My��

2 are the squared momentum matrix
elements for the polarization parallel to the in-plane x� direc-
tion and y� direction, respectively. Furthermore, the in-plane
optical anisotropy, �, can be written as

� =
− 2�3 df

b2 + c2 + d2 + e2 + 3f2 �21�

for the �hk�� QWs.
By setting �=45°, the anisotropy, �, of the �11�� QWs

can be expressed as

� =
2�3�cos2 � − sin2 ��sin ��1 − 3

2sin2 ���G� ± ���

�4–3 sin2 ���1 − 3
2sin2 ��2 + 3�G� ± ���2

,

�22�

where

�� = �G�
2

+ �4–3 sin2 ���1–3 sin2 �/2�2 �23a�

and

G� =
�Exx − Ezz − 2Exy�sin2 ��2 − 3

2sin2 �� − 2
3 �Exx − Ezz�

�Exx − Ezz − 2Exy�
1
�3

sin �

.

�23b�

To identify the maximum � value for each QW plane,
theoretical calculations are performed for all of the in-plane
angles �� :0° �360° �. Figures 6�a� and 6�b� illustrate the
maximum � values of the c-hh and c-lh transitions for each
�hk�� QW plane, respectively, as a function of the substrate
orientation in the first octant. Meanwhile, Fig. 7 indicates the
� peak values of the c-hh and
c-lh transitions for each �11� QW plane. The � value reaches
its peak value on the �110� QW plane and its equivalent
planes for both the c-hh and c-lh transitions. Moreover, the
calculation results reveal that no in-plane anisotropy of the

FIG. 5. Squared optical matrix elements �in units of Pc�
2 � of the

in-plane polarization light for both the c-hh and c-lh transitions in
�a� �110�, �b� �113�, and �c� �123� In0.53Ga0.47As QWs as a function
of the in-plane polarization angle.
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optical matrix elements is induced for structures grown on
�001� or �111� substrates. As can be readily observed from
Eq. �22�, the in-plane optical anisotropy, �, is equal to zero
for the �001� and �111� planes, corresponding to angles � of
0 and sin−1�2/�3, respectively. Other than the �001� and
�111� planes, the anisotropy, �, belongs to an in-plane two-
fold symmetry, owing to the fact that the � value is in period
of the in-plane angle by 180°. The anisotropy, �, is a result of
the microscopic symmetry of the QW lattice. Since the �001�
and �111�-oriented QWs belong to the D4h and D3d high-
symmetry point groups, respectively, their polarization prop-
erties of the optical matrix elements are isotropic in the layer
plane. Furthermore, other QW orientations have only low
twofold symmetry, e.g., D2h for �110�, and hence, their po-
larization properties are presented in anisotropy on the QW
planes. A fundamental consequence of symmetry reduction is
that the interplay of the zone-center mixing leads to aniso-
tropy. Generally speaking, the degree of anisotropy is af-
fected by the geometrical arrangement of the lattice struc-

FIG. 6. In-plane optical aniso-
tropy maximum of the �a� c-hh
and �b� c-lh transitions for each
�hk�� In0.53Ga0.47As QW plane as
a function of the substrate orienta-
tion in the first octant. Note that
the anisotropy maximum for each
well plane is identified by consid-
ering all of the in-plane polariza-
tion angles ��=0°–360° �.

FIG. 7. In-plane optical anisotropy of the c-hh and c-lh transi-
tions for each �11�� In0.53Ga0.47As QW plane as a function of the
substrate orientation in the first octant.
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ture, which is a necessary consequence of the lower
symmetry.

Without the approximations adopted in this section,3,5,28

the momentum matrix elements, and thus the optical aniso-
tropy �, are dependent on the well width of the QWs, even
for an infinite-barrier-height case. The optical anisotropy is,
in general, expected to increase with decreasing the well
width for narrow wells, but not obviously for wide wells, as
calculated for �110� QWs using the six-band Luttinger–Kohn
Hamiltonian by Kajikawa.29 Note that the conservation and
sum rules are satisfied for the entire well-width range in the
infinite-barrier-height case.

C. Momentum matrix elements under finite-barrier-height
reality

In reality, the barrier height of the QWs is finite. Adopting
this finite-barrier-height reality, Figs. 8�a�–8�d� present the
squared optical matrix elements for the 60 Å width �001�,
�111�, �110�, and �113�-oriented In0.53Ga0.47As/ InP QWs
without strain effects included, respectively. In these figures,
c1, hh1, and lh1 denote the first subband of the conduction,
heavy-hole, and light-hole bands, respectively. Furthermore,
the band offsets of the conduction and valence bands in these
In0.53Ga0.47As/ InP QWs are 143 and 346 meV, respectively.
At low values of the in-plane wave vector, the in-plane band-
mixing effect is small, and hence, almost pure states exist.

Consequently, the band edge transition strengths of Figs.
8�a�–8�d� agree well with the predictions for the relative
transition strength suggested by Figs. 1�a� and 1�b�: Transi-
tions from c1-hh1 favor TE modes, while transitions from
c1-lh1 favor TM modes. TE and TM denote the light polar-
ized parallel and perpendicular to the well plane, respec-
tively. The c1-hh1 transition strength is large for TE modes,
but vanishes for TM modes near the zone center. In contrast
to other band edge transitions, the c1-lh1 transition strength
of the TM modes reaches a maximum relative to any polar-
ization light. Away from the zone center, the situation be-
comes more complicated due to the band mixing effects at
finite in-plane wave vector. In contrast to Figs. 1�a� and 1�b�,
the total transition strength of the three orthogonal polariza-
tion directions is no longer conserved in a given subband
transition, but decreases as the in-plane wave vector in-
creases. The mixing effect between the various subbands re-
sults in a redistribution of the total transition strength among
the various subband transitions.25 Therefore, the c1-hh1 band
edge transition of the TM mode is forbidden, but it picks up
some finite transition strength away from the band edge. Ow-
ing to the redistribution of the total transition strength among
the various subband transitions, some forbidden transitions
can be observed.

Zone center mixing exists particularly in the low symme-
try �110� and �113� QWs. Therefore, the in-plane anisotropy
observed in Fig. 7 is also evident near the zone center in

FIG. 8. Squared optical matrix elements �in
units of electron-volts� of the c1-hh1 and c1
-lh1 transitions for �a� �001�, �b� �111�, �c� �110�,
and �d� �113� In0.53Ga0.47As/ InP QWs as a func-
tion of the in-plane wave vector.
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Figs. 8�a�–8�d�. For both the c1-hh1 and c1-lh1 transitions,
the largest in-plane polarization of the optical matrix ele-
ments is located on the �110� QW plane, while the subsidiary
polarization is found on the �113� QW plane. However, the
in-plane polarization of the optical matrix elements is not
found on the �001� and �111� QW planes due to the high
symmetry of these particular planes. This observation is con-
sistent with previous experimental results.3,8,10 The present
calculations reveal the obvious occurrence of zone-center
mixing, which yields significant anisotropy effects.

D. Other factors in optical anisotropy

The local symmetry effect at the atomic scale is generally
neglected in the k·p calculations due to the unit-cell-scale
basis.16–19 In zinc-blende semiconductors, k·p terms of te-
tragonal symmetry �odd-in-k terms� exist.30–32 These terms
correspond to the reduction of symmetry from Oh to Td. The
inversion asymmetry of the tetragonal bonds in zinc-blende
semiconductors is shown to result in the anisotropy of the
band structure in the vicinity of the � point and, conse-
quently, in the anisotropy of the optical properties near the
zone center.33,34 The ionic tetragonal bonds in zinc-blende
semiconductors play an important role in defining the near
band-edge optical properties. When optical and/or external
electrical fields interact with the permanent dipole moment
of zinc-blende bonds, the interaction brings the inherent
asymmetry of the tetragonal bonding states into the Hamil-
tonian. Thus field-induced optical anisotropy exists in zinc-
blende structures.33,34

The epitaxial layer is commonly strained as a result of
misfit with the substrate. The lattice-mismatch-generated
strain reduces the symmetry of the zinc-blende crystal from
cubic to tetragonal.30,35 Furthermore, the strain breaks the
crystal symmetry, which leads to tetragonally distorted unit-
cells, zone-center mixing among the different band states,
and built-in piezoelectric fields. As a consequence, strain-
induced effects can produce additional optical anisotropy in
zinc-blende semiconductor systems.1,36

When considering valence band warping �i.e., the aniso-
tropy of in-plane effective mass of holes�, the �hk�� QWs
exhibit additional in-plane anisotropy of the optical proper-
ties, even for the �001� and �111� QWs. The reason for this is
that the probabilities of the interband transitions depend on
the reduced density of states, which is expressed as the ef-
fective mass of the interaction carriers. These phenomena
have been observed in hot-photoluminescence experiments
and have also been investigated theoretically.30,37,38 For elec-
trons excited from the valence to the conduction bands with
linearly polarized laser light, the anisotropically angular dis-
tribution in number, momentum, and energy of the photoex-
cited hot electrons reflects the warping of the valence band.
As a consequence, this distribution determines the in-plane
optical anisotropy of the luminescence arising from the re-
combination of hot electrons with neutral acceptor
states.30,39,40 Furthermore, this valence band warping yields
an energy spread of the resulting luminescence at neutral
acceptors by hot electrons excited by the different polarized-
direction lights. Valence band warping also depends on the
frequency of the resulting luminescence.41

IV. CONCLUSIONS

This study has presented the derivation of general expres-
sions for the analytical k·p Hamiltonian which are valid for
arbitrary substrate orientations. Using the analytical k·p
method, this study has also developed explicit mathematical
expressions for the optical transition strength, which enable
the linearly polarized anisotropy to be explored. The origin
of optical anisotropy in quantum wells has been investigated,
and it has been proven theoretically that this phenomenon
can be attributed to low-symmetry perturbations of the zinc-
blende lattice. As expected from qualitative symmetry argu-
ments, the theoretical findings reported in this study are in
good agreement with the experimental results of previous
studies. It has been shown that the �110� quantum well plane
exhibits the largest anisotropy of any substrate plane, while
the �001� and �111� quantum well planes are completely po-
larization independent for the optical matrix elements. Fur-
thermore, the efficient methods presented in this study are
beneficial to the design of optical devices fabricated on any
substrate orientation. One of the main applications of the
present method could also be for the analysis of the polar-
ization properties of hot photoluminescence in quantum well
structures. Finally, the current investigation provides valu-
able guidelines for the design of polarization stabilization
devices, which require polarization control or selectivity.
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APPENDIX A

The matrix elements of the 6	6 k·p Hamiltonian
Hk·p�k���,� �in the basis ordering ��=1–6� corresponding to
�S	��=1/2 , �S	��=−1/2 , �3/2 ,3 /2	 , �3/2 ,1 /2	 , �3/2 ,−1/2	 ,
�3/2 ,−3/2	, respectively� are given by

H11 = H22 = �Es + 12Ess� − Essa
2k2,

H33 = H66

= �Ep + 8Exx + 4Ezz� − ��3Exx + Ezz�/4�a2k2

+ ��Exx − Ezz�/4�a2kz
2,

H44 = H55 = �Ep + 8Exx + 4Ezz� − ��7Exx + 5Ezz�/12�a2k2

− ��Exx − Ezz�/4�a2kz
2,

H13 = �3H15
* = �3H24 = H26

* = − i2�2Esxa�kx + iky� ,

H14 = H25 = i8aEsxkz/�6,

H34 = − H56 =
a2

�3
Exy�kx − iky�kz,

and
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H35 = H46 =
a2

4�3
��Exx − Ezz��kx

2 − ky
2� − i4Exykxky� ,

where the superscript *denotes the Hermitian conjugate.
Note that the k·p Hamiltonian is Hermitian, which results in
Hij =Hji

* with i , j=1–6. Other than the matrix elements de-
picted above, all other elements are equal to zero.

APPENDIX B

�1� x-polarization matrix elements in finite difference
scheme.

The x-polarization matrix �x ·O��,��k
 ,z� in the same basis
ordering as the Hamiltonian is written as

O11 = O22 = − 2a2Esskx,

O33 = O66 = − ��3Exx + Ezz�/2�a2kx,

O44 = O55 = − ��7Exx + 5Ezz�/6�a2kx,

O13 = �3O15
* = �3O24 = O26

* = − i2�2aEsx,

O35 = O46 =
a2

2�3
��Exx − Ezz�kx − i2Exyky� ,

Oij = Oji
* with i, j = 1–6,

and the remaining matrix elements are equal to zero.
The x-polarization matrix �x ·Q��,��k
 ,z� in the same basis

ordering as the Hamiltonian is written as

Q34 = Q43
* = − Q56 = − Q65

* =
a2

�3
Exy ,

and the remaining matrix elements are equal to zero.
�2� y-polarization matrix elements in finite difference

scheme.
The y-polarization matrix �y ·O��,��k
 ,z� in the same basis

ordering as the Hamiltonian is written as

O11 = O22 = − 2a2Essky ,

O33 = O66 = − ��3Exx + Ezz�/2�a2ky ,

O44 = O55 = − ��7Exx + 5Ezz�/6�a2ky ,

O13 = �3O15
* = �3O24 = O26

* = 2�2aEsx,

O35 = O46 = −
a2

2�3
��Exx − Ezz�ky + i2Exykx� ,

Oij = Oji
* with i, j = 1 � 6,

and the remaining matrix elements are equal to zero.
The y-polarization matrix �y ·Q��,��k
 ,z� in the same basis

ordering as the Hamiltonian is written as

Q34 = Q43
* = − Q56 = − Q65

* = − i
a2

�3
Exy ,

and the remaining matrix elements are equal to zero.
�3� z-polarization matrix elements in finite difference

scheme
The z-polarization matrix �z ·O��,��k
 ,z� in the same basis

ordering as the Hamiltonian is written as

O14 = O25 = i
8
�6

aEsx,

O34 = − O56 =
a2

�3
Exy�kx − iky� ,

Oij = Oji
* with i, j = 1 � 6,

and the remaining matrix elements are equal to zero.
The z-polarization matrix �z ·Q��,��k
 ,z� in the same basis

ordering as the Hamiltonian is written as

Q11 = Q22 = − 2a2Ess,

Q33 = Q66 = − �Exx + Ezz�a2,

Q44 = Q55 = − ��5Exx + Ezz�/3�a2,

and the remaining matrix elements are equal to zero.

*Electronic address: chen3018@ms76.hinet.net
1 R. H. Henderson and E. Towe, J. Appl. Phys. 79, 2029 �1996�.
2 Y. Kajikawa, M. Hata, N. Sugiyama, and Y. Katayama, Phys. Rev.

B 42, 9540 �1990�.
3 Y. Kajikawa, O. Brandt, K. Kanamoto, and N. Tsukada, J. Cryst.

Growth 150, 431 �1995�.
4 Y. Kajikawa, J. Appl. Phys. 86, 5663 �1999�.
5 Y. Kajikawa, Phys. Rev. B 47, 3649 �1993�.
6 R. H. Henderson and E. Towe, J. Appl. Phys. 78, 2447 �1995�.
7 C. N. Chen, J. Appl. Phys. 96, 7374 �2004�.
8 Y. Kajikawa, M. Hata, T. Isu, and Y. Katayama, Surf. Sci. 267,

501 �1992�.
9 D. S. McCallum, X. R. Huang, and A. L. Smirl, Appl. Phys. Lett.

66, 2885 �1995�.
10 G. Armelles, P. Castrillo, P. S. Dominguez, L. Gonzalez, A. Ruiz,

D. A. Contreras-Solorio, V. R. Velasco, and F. Garcia-Moliner,
Phys. Rev. B 49, 14020 �1994�.

11 R. H. Henderson, D. Sun, and E. Towe, Surf. Sci. 327, L521
�1995�.

12 G. Shechter, L. D. Shvartsman, and J. E. Golub, Phys. Rev. B 51,
10857 �1995�.

13 R. A. Abram and M. Jaros, Band Structure Engineering in Semi-

INTRINSIC OPTICAL ANISOTROPY IN ZINC-BLENDE… PHYSICAL REVIEW B 72, 085305 �2005�

085305-11



conductor Microstructures �Plenum, New York, 1989�.
14 A. Niwa, T. Ohtoshi, and T. Kuroda, IEEE J. Sel. Top. Quantum

Electron. 1, 211 �1995�.
15 J. B. Xia, Phys. Rev. B 43, 9856 �1991�.
16 E. O. Kane, in Semiconductors and Semimetals, edited by R. K.

Willardson and A. C. Beer �Academic, New York, 1966�, Vol. 1,
p. 75.

17 J. M. Luttinger, Phys. Rev. 102, 1030 �1956�.
18 Y. C. Chang, Phys. Rev. B 37, 8215 �1988�.
19 S. F. Tsay, J. C. Chiang, Z. M. Chau, and I. Lo, Phys. Rev. B 56,

13242 �1997�.
20 C. N. Chen, Y. H. Wang, M. P. Houng, and J. C. Chiang, Jpn. J.

Appl. Phys., Part 1 41, 36 �2002�.
21 Z. Ikonic, V. Milanovic, and D. Tjapkin, Phys. Rev. B 46, 4285

�1992�.
22 F. Szmulowicz, Phys. Rev. B 51, 1613 �1995�.
23 Y. C. Chang and R. B. James, Phys. Rev. B 39, 12672 �1989�.
24 W. Ludwig and C. Falter, Symmetries in Physics �Springer-

Verlag, Berlin, 1988�, p. 30.
25 P. S. Zory, Quantum Well Lasers �Academic, San Diego, 1993�, p.

53.
26 A. A. Yamaguchi, K. Nishi, and A. Usui, Jpn. J. Appl. Phys., Part

2 33, L912 �1994�.
27 N. A. Merkulov, V. I. Perel’, and M. E. Portnoi, Sov. Phys. JETP

72, 669 �1991�.

28 M. V. Belousov, E. L. Ivchenko, and A. I. Nesvizhskii, Phys.
Solid State 37, 763 �1995�.

29 Y. Kajikawa, Phys. Rev. B 51, 16790 �1995�.
30 E. L. Ivchenko and G. E. Pikus, Superlattices and Other Hetero-

structures: Symmetry and Optical Phenomena �Springer-Verlag,
Berlin, 1995�.

31 M. Cardona, N. E. Christensen, and G. Fasol, Phys. Rev. B 38,
1806 �1988�.

32 F. G. Pikus and G. E. Pikus, Phys. Rev. B 51, 16928 �1995�.
33 J. B. Khurgin and P. Voisin, Phys. Rev. Lett. 81, 3777 �1998�.
34 J. B. Khurgin and P. Voisin, Semicond. Sci. Technol. 12, 1378

�1997�.
35 G. L. Bir and G. E. Pikus, Symmetry and Strain-induced Effects in

Semiconductors �Wiley, New York, 1974�.
36 Y. Kajikawa, Phys. Rev. B 49, 8136 �1994�.
37 D. N. Mirlin and V. I. Perel’, Semicond. Sci. Technol. 7, 1221

�1992�.
38 D. S. Kainth, M. N. Khalid, and H. P. Hughes, Solid State

Commun. 122, 351 �2002�.
39 M. E. Portnoi, Sov. Phys. Semicond. 25, 1294 �1991�.
40 P. S. Kop’ev, D. N. Mirlin, D. G. Polyakov, I. I. Reshina, V. F.

Sapega, and A. A. Sirenko, Sov. Phys. Semicond. 24, 757
�1990�.

41 J. A. Kash, M. Zachau, M. A. Tischler, and U. Ekenberg, Phys.
Rev. Lett. 69, 2260 �1992�.

CHUN-NAN CHEN PHYSICAL REVIEW B 72, 085305 �2005�

085305-12


