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We systematically investigate electron transport through double quantum dots with particular emphasis on
interference induced via multiple paths of electron propagation. By means of the slave-boson mean-field
approximation, we calculate the conductance, the local density of states, and the transmission probability in the
Kondo regime at zero temperature. It is clarified how the Kondo-assisted transport changes its properties when
the system is continuously changed among the serial, parallel and T-shaped double dots. The obtained results
for the conductance are explained in terms of the Kondo resonances influenced by interference effects. We also
discuss the impacts due to the spin-polarization of ferromagnetic leads.
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I. INTRODUCTION

Recent intensive investigations of electron transport
through quantum dot �QD� systems have uncovered correla-
tion effects in nanoscale systems. In particular, the
observation1,2 of the Kondo effect in QD systems3–7 opened a
path for the investigation of strongly correlated electrons,
which has stimulated further experimental and theoretical
studies in this field.8 More recently, a variety of QD systems,
such as an Aharonov–Bohm ring with QD, double quantum
dot �DQD� systems, etc., have been fabricated. An interest-
ing feature in these systems is the interference effects in-
duced via multiple paths of electron propagation.9 For ex-
ample, such interference effects have been clearly observed
in the Aharonov–Bohm ring with a QD.10–14

When electron correlations due to the Kondo effect are
affected by such interference, transport properties exhibit re-
markable properties. There have been a number of theoreti-
cal works on DQD systems in this context. For example, it
was pointed out that the DQD system shows the dramatic
suppression of the Kondo-assisted transport due to the inter-
ference when the DQD is arranged in the parallel
geometry,15–22 whereas such interference effects do not ap-
pear in the serial DQD.16,23–30 More recently, slightly differ-
ent DQD systems with the parallel geometry, where the two
dots are connected via the exchange coupling19 or the
tunneling,20,21 have been studied. It has been pointed out that
the Kondo-assisted transport in these cases exhibits different
properties from the above simple DQD case without the in-
terdot coupling. The T-shaped DQD �Refs. 31–36� is another
prototype of such correlated systems, for which the special
arrangement of the DQD provides an additional path of elec-
tron propagation, giving rise to the interference effects. This
system also shows somewhat different transport properties
from the parallel DQD case, but the detailed analysis has not
been done systematically. In any case, the interplay of the
Kondo effect and the interference provides intriguing phe-
nomena due to electron correlations in the DQD systems. It
is thus interesting to systematically study how the interfer-
ence together with the Kondo effect affects characteristic
transport properties in a variety of DQD systems.

Motivated by the above hot topics, we investigate Kondo-
assisted transport properties in DQD systems, when the ge-

ometry of the system is systematically changed among the
serial, parallel, and T-shaped DQD. We pay particular atten-
tion to the Kondo effect under the influence of the interfer-
ence due to different paths. We also discuss the DQD sys-
tems with ferromagnetic �FM� leads. This is stimulated by
the recent extensive study of spin-dependent transport
through a QD coupled to the FM leads in the context of
spintronics.37–48 Since the Kondo effect is sensitive to the
internal spin degrees of freedom, notable phenomena caused
by the FM leads are expected to appear in transport proper-
ties.

This paper is organized as follows. In the next section, we
introduce the model and briefly summarize the formulation
based on the Keldysh Green function method. Then, in Sec.
III, we calculate the local density of states �DOS� and the
linear conductance at zero temperature by the slave-boson
mean-field approximation49,50 for the serial, parallel, and
T-shaped DQD systems. We discuss characteristic transport
properties induced by the Kondo effect under the influence
of interference. The effect of the spin polarization due to the
FM leads is also addressed. A brief summary is given in the
last section.

II. MODEL AND METHOD

We consider a DQD system shown schematically in Fig.
1.15–22,51 In the following discussions, the intradot Coulomb

FIG. 1. DQD system connected by the interdot tunneling tc:
�m,m�

� ��=L ,R and m=1,2� represents the resonance width due to
transfer between the mth dot and the �th lead for an electron with
spin �. By changing the ratio of tunneling amplitudes, we continu-
ously change the system among the serial, parallel and T-shaped
DQD.
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interaction is assumed to be sufficiently large, so that double
occupancy on each QD is forbidden. This assumption allows
us to use a slave-boson representation49,50 of correlated elec-
trons in the dots. In this representation, the creation �annihi-
lation� operator of electrons in the dot m �m=1,2�, dm�

† �dm��,
is replaced by dm�

† → fm�
† bm �dm�→bm

† fm��, where bm �fm�� is
the slave-boson �pseudofermion� annihilation operator for an
empty state �singly occupied state�. We can thus model the
system in Fig. 1 with a N�=2� fold degenerate Anderson
Hamiltonian

H = �
k�,�

�k��ck��
† ck�� + �

m,�
�m�fm�

† fm� +
tc

N
�
�

�f1�
† b1b2

†f2�

+ h.c.� +
1

�N
�

k�,m,�
�V�m�ck��

† bm
† fm� + h.c.�

+ �
m

�m��
�

fm�
† fm� + bm

† bm − 1� . �1�

The first and second terms in the Hamiltonian �1� represent
the electronic states in the leads and the dots, where
ck��

† �ck��� is the creation �annihilation� operator of an elec-
tron with energy �k�� and spin � in the lead � ��=L ,R�. The
coupling between the two dots �between the lead and the dot�
is given by the third �fourth� term in the Hamiltonian �1�.
The last term with the Lagrange multiplier �m is introduced
so as to incorporate the constraint imposed on the slave par-
ticles, ��=↑,↓fm�

† fm�+bm
† bm=1. The mixing term V�m� in the

Hamiltonian �1� leads to the linewidth function

�m,n�
� ��� = ��

k�

V�m�V�n�
* 	�� − �k��� . �2�

In the wide band limit, �m,n�
� ��� is reduced to an energy-

independent constant �m,n�
� .

According to Ref. 51, we interpolate the serial DQD and
parallel DQD by continuously changing x=�1,1�

R =�2,2�
L with

the resonance width �1,1�
L �=�2,2�

R � fixed as unity. Note that at
x=0 the model is reduced to the DQD connected in series
�serial DQD, Fig. 2�a��, and at x=1 the parallel DQD. Simi-
larly, we modify the tunneling amplitudes in a different way,
i.e., we change y=�2,2�

R =�2,2�
L by keeping the resonance

width �1,1�
L �=�1,1�

R � fixed as unity. Then we can naturally

interpolate the parallel DQD �y=1� and the T-shaped DQD
�y=0�, where only one of the two dots is connected to the
leads, as shown in Fig. 2�b�.

To analyze the model, we apply the mean-field approxi-
mation to the slave-boson treatment,49,50 in which boson
fields are approximated by their static mean values,

bm�t� /�N→ 	bm�t�
 /�N= b̃m. We introduce the renormalized

quantities Ṽ�m�=V�m�b̃m, t̃c= tcb̃1b̃2, and �̃m�=�m�+�m. The

mean-field values of b̃1, b̃2, �1, and �2, are determined by the
following set of self-consistent equations, which are derived
by the equation of motion method for the nonequilibrium
Keldysh Green functions:16,25

b̃1�2�
2 − i�

�
� d�

4�
G1,1�2,2��


 ��� =
1

2
, �3�

��̃1�2�� − �1�2���b̃1�2�
2 − i�

�
� d�

4�
�� − �̃1�2���G1,1�2,2��


 ��� = 0.

�4�

In the above equations, G1,1�2,2��

 ��� is the Fourier transform

of the Keldysh Green function G1,1�2,2��

 �t− t��

� i	f1�2��
† �t�f1�2���t��
. Equation �3� represents the constraint

imposed on the slave particles, while Eq. �4� is obtained
from the stationary condition that the boson field is time
independent at the mean-field level. From the equation of
motion of the operator fm�,6,25,52 we have the explicit form of
the Green function

G1,1�2,2��

 ��� =

2i

D����2
��fL����̃1,1�2,2��

L + fR����̃1,1�2,2��
R ��� − �̃2�1�� + i�̃2,2�1,1����� − �̃2�1�� − i�̃2,2�1,1���

+ �fL����̃1,2�2,1��
L + fR����̃1,2�2,1��

R ��� − �̃2�1�� + i�̃2,2�1,1����t̃c + i�̃2,1�1,2��� + �fL����̃2,1�1,2��
L + fR����̃2,1�1,2��

R �

��t̃c − i�̃1,2�2,1����� − �̃2�1�� − i�̃2,2�1,1��� + �fL����̃2,2�1,1��
L + fR����̃2,2�1,1��

R ��t̃c − i�̃1,2�2,1����t̃c + i�̃2,1�1,2���� ,

�5�

with �̃m,n�
� = b̃mb̃n�m,n�

� and �̃m,n�= �̃m,n�
L + �̃m,n�

R �m ,n=1,2 and �=L ,R�, where the denominator of Eq. �5� is

FIG. 2. �a� Serial DQD system, which is a special case of
Fig. 1 ��1,1�

R =�2,2�
L =0�. �b� T-shaped DQD system realized at

�2,2�
L =�2,2�

R =0 in Fig. 1.

Y. TANAKA AND N. KAWAKAMI PHYSICAL REVIEW B 72, 085304 �2005�

085304-2



D���� = �� − �̃1� + i�̃1,1���� − �̃2� + i�̃2,2��

− �t̃c − i�̃1,2���t̃c − i�̃2,1�� . �6�

From the renormalized parameters determined self-
consistently in Eqs. �3� and �4�, we obtain the DOS for the
dot-1 and dot-2 as

�1�2�,���� = −
b̃1�2�

2

�
Im�� − �̃2�1�� + i�̃2,2�1,1��

D����
� . �7�

By applying the Landauer formula in steady state, we can
derive the current I through the two dots6,25,52

I =
2e

h
�
�
� d��fL��� − fR����T���� , �8�

where the transmission probability is given by

T���� =
2

D����
�t̃c���̃1,1�

L �̃2,2�
R + ��̃2,2�

L �̃1,1�
R �

+ ��̃1,1�
L �̃1,1�

R �� − �̃2�� + ��̃2,2�
L �̃2,2�

R �� − �̃1���2.

�9�

We can thus compute the linear conductance GV=0
=dI / dVV=0 by

GV=0 =
2e2

h
�
�

T��� = 0� . �10�

III. NUMERICAL RESULTS

In this section, we discuss transport properties at zero
temperature for the DQD systems with the serial, parallel,
and T-shaped geometries. We also show the results obtained
for the DQD systems connected to spin-polarized leads.

A. From serial to parallel DQD

Let us first discuss how the interference affects Kondo-
assisted transport when we continuously change the system
from the serial �x=0� to parallel �x=1� DQD. For simplicity,
we deal with the symmetric dots in the Kondo regime with
�1=�2=−3�0. The bandwidth of the leads is taken as D
=60�0, where �0=�1,1

L =�2,2
R �unit of energy�, and the Fermi

level of the leads is chosen as the origin of energy.

1. Nonpolarized leads

We begin with the DQD system coupled to nonpolarized
leads: a brief report on this part can be found in Ref. 21. We
should also mention two closely related works presented re-
cently by Zhang et al.19 and Dong et al.,20 who treated trans-
port properties of similar models with nonpolarized leads.
Here, we briefly summarize our results, which will make
clear how distinctly the interference appears in the parallel
DQD with and without the spin polarization.

Figure 3 shows the linear conductance GV=0 as a function
of x for several values of the interdot coupling tc. Starting
from the serial DQD �x=0�, we see that the conductance has
a maximum around x=0.3 for tc=1.5, whereas it monotoni-
cally decreases for tc=1 or takes a tiny minimum structure
around x=0.8 for tc=0.5. In any case, as the system ap-
proaches the parallel DQD �x�1�, the conductance is con-
siderably suppressed. These characteristic properties come
from the Kondo effect modified by the interference, which is
clearly seen in the local DOS and the transmission probabil-
ity shown below.

The local DOS of the dots around the Fermi energy �
=0 is shown in Fig. 4�a� for a typical value of tc=1.5. For the
serial case �x=0�, the Kondo resonance has a small splitting
caused by the interdot coupling tc.

16,23–28 The Kondo tem-
perature in this case is roughly estimated as 0.02�0, as seen
in the inset of Fig. 4�a�. As x increases, one of the resonances
�lower-energy side�, which is composed of the “bonding”
Kondo state of the DQD, becomes sharp around the Fermi
energy, while the other “antibonding” Kondo state �higher-
energy side� is broadened above the Fermi level.15,19–21,34,51

This tendency results from the fact that the bonding state is
almost decoupled from the leads while the antibonding state
is still tightly connected to the leads as x→1. As a result, the

FIG. 3. Linear conductance as a function of x=�1,1�
R =�2,2�

L ,
where we set �2,2�

R =�1,1�
L =1.

FIG. 4. �a�DOS for tc=1.5: x=0.2, 0.5, and 0.8. Inset shows the
DOS at x=0. �b� The transmission probability T��� for tc=1.5. �c�
Enlarged picture of �b� around �=0.
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renormalization of each Kondo temperature occurs: for in-
stance, the Kondo temperature for the narrower �wider� reso-
nance is about 0.01�0 �0.2�0� at x=0.5.

Such two modified Kondo resonances also appear in the
transmission probability T��� �Fig. 4�b��. A remarkable point
is that the sharp resonance in T��� around the Fermi energy
in Fig. 4�b� becomes asymmetric and acquires a dip structure
�more clearly seen in Fig. 4�c��. The asymmetric peak, which
may be regarded as a Fano-like structure, is caused by the
interference between two conduction channels having two
distinct Kondo resonances. This type of interference plays a
crucial role to determine the Kondo-assisted conductance in
DQD systems.15,19–21,34,51 With the increase of x, the maxi-
mum of the asymmetric resonance of T��� in Fig. 4�c� passes
through the Fermi energy, from which we see why the linear
conductance GV=0 for tc=1.5 in Fig. 3 has a maximum
around x=0.3 and then decreases. When we choose different
values of tc�=1.0,0.5�, analogous interference effects occur,
reducing the conductance substantially when the system ap-
proaches the parallel DQD. Therefore, we see that apart from
the detailed dependence, the characteristic behavior of the
conductance in Fig. 3 is due to the Kondo-assisted transport
modified by the interference effects.

Here we make a brief comment on the related work by
Zhang et al.,19 who treated an analogous DQD system �two
dots are connected via the exchange coupling J�. We have
confirmed that for a given choice of the interdot coupling tc
in the present model and J in their model, the conductance
exhibits similar interference effects. However, there are sev-
eral different properties between these two models. For ex-
ample, in the serial-DQD limit �x=0�, the former �latter�
model has a finite �vanishing� conductance. Also, the gate-
voltage control of the dot levels shows an opposite tendency:
the increase of the dot-level enhances �suppresses� the effect
of the interdot coupling tc �J�. These different properties
come from the fact that the former model allows charge fluc-
tuations between the dots while the latter model prohibits
them. We will come back to this point later again in the
discussions of the T-shaped DQD.

2. Spin-polarized leads

We next discuss the influence of the spin-polarized leads
on the conductance, where the leads L and R have the same
orientation of spin polarization. The spin polarization of the
leads gives rise to the difference in the DOS between up-spin
and down-spin conduction electrons, so that the resonance

width �m,n�
� should be spin dependent. To represent how

large the strength of the spin polarization is, we introduce the
effective spin-polarization strength p, following the defini-
tion given in the literature37–47,53,54

p =
�m,m�

� − �m,m�̄
�

�m,m�
� + �m,m�̄

� �0  p  1� . �11�

This definition of p is equivalent to the condition imposed on
�m,m�

� ,

�m,m↑
L�R� = �1 + p��m,m

L�R�p=0,

�m,m↓
L�R� = �1 − p��m,m

L�R�p=0, �12�

for up-spin �majority-spin� electrons and down-spin
�minority-spin� electrons, respectively. We think that the
above simple assumption captures some essential effects due
to the polarization of the leads.

Since the system for small x shows the p dependence
similar to the serial case �x=0� studied elsewhere,46 we dis-
cuss spin-polarized transport at x=0.8, which includes essen-
tial properties inherent in the parallel setup �x�1�.

In Fig. 5 the linear conductance is shown as a function of
the spin-polarization strength p for the interdot coupling tc
=1.5 at x=0.8. As p increases, the contribution of down-spin
electrons to the total conductance begins to increase, giving
rise to a maximum around p=0.6, whereas the contribution
of up-spin electrons decreases monotonically. The above be-
havior due to the spin-polarization is explained in terms of
the modified Kondo resonances and the asymmetric structure
of T��� around the Fermi energy. Shown in Fig. 6�a� is the
DOS of up-spin and down-spin electrons for p=0.6, which is
compared with that for p=0. The introduction of the spin
polarization of leads broadens the Kondo resonance of up-
spin electrons whereas it sharpens that of down-spin elec-

FIG. 5. Linear conductance as a function of the spin-
polarization strength p for tc=1.5 and x=0.8. The contribution from
up-spin and down-spin electrons is also shown.

FIG. 6. �a� DOS of up-spin and down-spin electrons connected
to normal leads �p=0� and ferromagnetic leads �p=0.6�. We assume
tc=1.5 and x=0.8. Inset: Enlarged picture around �=0. �b� Trans-
mission probability T��� of up-spin and down-spin electrons.
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trons. Such change in the widths of the Kondo resonances
�inset of Fig. 6�a�� modifies the asymmetric nature of the
transmission probability T���, as seen in Fig. 6�b�: the asym-
metric structure in T��� of up-spin electrons for p=0.6 is
smeared, while that of down-spin electrons gets sharp. The
transmission probability at the Fermi energy for up-spin elec-
trons thus decreases with the increase of p, so that the con-
tribution of up-spin electrons to the conductance goes down
monotonically. However, the conductance of down-spin elec-
trons takes a maximum when the asymmetric peak of T���
reaches the Fermi energy, as shown in Fig. 5. Similar con-
siderations can be applied to other choices of the parameters
tc=0.5 and 1.0. In any case in the Kondo regime, the spin
polarization changes the asymmetric structure of T��� more
significantly for down-spin �minority-spin� electrons, making
their contribution to the conductance more dominant.

B. From parallel to T-shaped DQD

We now discuss how the Kondo-assisted transport
changes its character when the system is changed continu-
ously from the parallel DQD to the T-shaped DQD. For this
purpose, we change the resonance widths y=�2,2�

L =�2,2�
R by

keeping �1,1�
L =�1,1�

R fixed as unity. At y=0, the dot-2 is de-
coupled from two leads and is connected only to the dot-1
via tunneling tc �T-shaped geometry shown in Fig. 2�b��. On
the other hand, the system with y�1 exhibits properties
characteristic of the parallel DQD. In the following calcula-
tion, we assume �1,1�

L =�1,1�
R and take �0= �1,1

L p=0
+ �1,1

R p=0 as the unit of energy.

1. Nonpolarized leads

In Figs. 7�a� and 7�b� the DOS is shown in the Kondo
regime with �1=�2=−3.0. For y=0.8, the DOS has the
Kondo resonance with the double-peak structure both for the

dot-1 and the dot-2, where one of the two peaks is sharp
around the Fermi energy while the other is broad above the
Fermi energy. We have already encountered such situation in
the previous subsection for the system close to the parallel
dot �x�1�. However, when the system approaches the
T-shaped DQD �y→0�, quite different behavior emerges. As
y decreases, the Kondo resonance of the dot-1 gradually be-
comes symmetric with a sharp dip structure at ��0, whereas
the DOS of the dot-2 develops a single Kondo peak located
at the same position as the dip structure in the DOS of the
dot-1. This change in the DOS can be interpreted as follows.
When y�1 �close to the parallel geometry� the two reso-
nances are composed of the bonding and antibonding Kondo
states. On the other hand, for y�0 �T-shaped geometry�,
they are composed of the Kondo states at the dot-1 and the
dot-2, where the former �latter� has a broad �sharp�
resonance.31–36 As y decreases, the double-peak structure of
the Kondo resonances gradually changes its properties be-
tween the two limits mentioned above. It should be noticed
that in the T-shaped case, the DOS of the dot-1 itself devel-
ops a dip structure by interference effects with the dot-2,31–36

in contrast to the case of the parallel geometry.
Figure 7�c� shows the corresponding transmission prob-

ability T��� for several choices of y. As in the previous sub-
section, T��� for y=0.4 and 0.8 has the asymmetric peak
with the dip structure. However, the dip of T��� always stays
around �=0, whose position is determined by the Kondo
state of the dot-2, so that the conductance is almost zero �not
shown here� irrespective of the change of y.

So far, we have fixed the dot levels so as to keep the
system in the Kondo regime. We now discuss what happens
when the energy levels of the dots are altered by the gate-
voltage control. To be specific, we focus on the T-shaped
DQD �y=0�.31–36 We first change �1 of the dot-1 by keeping
that of the dot-2 fixed as �2=−3.0.

Figure 8�a� shows the DOS of the dot-1 plotted as a func-
tion of �1. The increase of �1 causes the broadening of the
Kondo resonance and enhances charge fluctuations. Accord-
ingly, the dip structure in the DOS of the dot-1 shifts above
the Fermi energy and gets more asymmetric. As a result, the
conductance gets large with the increase of �1, as shown in
Fig. 9. This is contrasted to the single dot case, where the

FIG. 7. DOS of �a� dot-1 and �b� dot-2 around the Fermi energy.
�c� The corresponding transmission probability T���. We set tc=2
and �1=�2=−3.0.

FIG. 8. DOS of the dot-1 for the T-shaped DQD �y=0�: �a� �2

=−3.0 and �b� �1=−3.0. The interdot coupling is chosen as tc=2.0.
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increase of �1 decreases the conductance. When the level �2
of the dot-2 is altered, slightly different behavior appears. In
this case the increase of �2 does not directly enhance charge
fluctuations of the dot-1, but mainly increases the renormal-
ized tunneling t̃c because electron correlations between two
dots get somewhat weaker. This merely enlarges the splitting
of the double peaks in the DOS of the dot-1 �Fig. 8�b��, and
thus the conductance is still very small, as seen in the region
of �
−1 in Fig. 9. However, as �2 approaches the Fermi
level, the enhanced t̃c finally causes charge fluctuations of the
dot-1, and then increases the linear conductance. In this way,
the gate-voltage control of �1 and �2 appears in slightly dif-
ferent ways. Nevertheless, both exhibit a similar tendency in
the gate-voltage dependence of the conductance, which is
opposite to the single-dot case.

Although we have restricted our discussions to the
T-shaped DQD here, similar arguments about the gate-
voltage control of the dot levels can be straightforwardly
applied to other cases such as the parallel DQD.

To conclude this subsection, we wish to mention some
similarities and differences between the present T-shaped
DQD and a side-coupled QD that has been studied
theoretically55–59 and experimentally.60 In both models, there
exists the interference effect due to the T-shaped geometry
including the side-coupled QD, which is essential to control
transport properties. Namely, the coexistence of a direct tun-
neling without a side-dot and an indirect tunneling via a
side-dot results in an asymmetric transmission probability. In
contrast to the T-shaped DQD, where both of the two dots
are highly correlated, the side-coupled QD is supposed to
have electron correlations only in the side dot. In this sense,
we would say that the charge-fluctuation regime with ��0
in the T-shaped DQD, where electron correlations are some-
what suppressed in the dot-1, may exhibit properties similar
to those in the side-coupled QD system.

2. Spin-polarized leads

We finally discuss the T-shaped DQD connected to the
ferromagnetic leads, where the leads L and R have the same
orientation of spin polarization. We will see below that the
gate-voltage control discussed above is helpful to understand
the characteristic p dependence of the conductance. Here we
consider the case of �1=−1.5, �2=−3.0, and tc=2.0, where
the conductance is finite even at p=0, as shown in Fig. 9.
Figure 10 shows the DOS of the dot-1 connected to nonpo-

larized leads �p=0� and spin polarized leads �p=0.8�. The
width of the Kondo resonance �with a sharp dip� is changed
by the spin polarization of the leads, so that the DOS of the
dot-1 for up-spin �majority spin� electrons is broadened
while that for down-spin �minority spin� electrons gets sharp.
Accordingly, charge fluctuations of the up-spin �down-spin�
electrons are somewhat enhanced �suppressed�. Following
the analysis done for the gate-voltage control �Fig. 9�, we
naturally expect that the contribution of up-spin �down-spin�
electrons to the total conductance gets large �small� under the
influence of the spin polarization. We have indeed confirmed
this tendency in the conductance, where up-spin �down-spin�
currents are increased �decreased� as a function of p, as
shown in Fig. 11. Notice that this result is contrasted to the p
dependence in Fig. 5. The difference, as mentioned above,
comes from the fact that the double structure of the Kondo
resonances is composed of the bonding and anti-bonding
Kondo states �the dot-1 and dot-2 Kondo states� in the case
of Fig. 5 �Fig. 11�, respectively. To see the difference be-
tween Figs. 5 and 11 more clearly, we recall that in Fig. 11
the increase of p merely changes the resonance width and
thus increases �decreases� T��=0� for up-spin �down-spin�
electrons, which results in the linear increase �decrease� of
the conductance as a function of p. On the other hand, as
mentioned before, in the case of Fig. 5, the introduction of p
not only changes the width of the asymmetric resonance in
T��� but also shifts its peak position for down-spin electrons,
which leads to the nonmonotonic p dependence of the con-
ductance for down-spin electrons. This consideration clari-
fies why we have encountered the different p dependence of
the conductance in Figs. 5 and 11.

FIG. 9. Linear conductance as a function of the bare energy
level: we change �1 �filled circles�, by keeping �2=−3.0 fixed, while
we change �2 �open circles� by keeping �1=−3.0 fixed. The interdot
coupling for these plots is tc=2.0. For reference we plot the con-
ductance for the single dot system �tc=0� as filled triangles.

FIG. 10. DOS of the dot-1 for the T-shaped DQD: nonpolarized
leads �p=0� and spin-polarized leads �p=0.8�. We choose �1

=−1.5, �2=−3.0, and tc=2.0. Inset: DOS of the dot-1 drawn in a
wider energy range.

FIG. 11. Linear conductance as a function of the strength of the
spin-polarization p. The contribution from up-spin and down-spin
electrons is also shown.
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IV. SUMMARY

We have studied the transport properties of the DQD sys-
tems with particular emphasis on the interplay of the Kondo
effect and the interference effect. For this purpose we have
observed how the Kondo-assisted conductance alters its
properties when the system is changed from the serial to
parallel geometry, and from the parallel to T-shaped geom-
etry.

For the serial DQD, it is known that the Kondo resonance
may have a double-peak structure due to the interdot tunnel-
ing, which somehow reduces the conductance. In this case,
however, there is no interference effect. On the other hand,
when the system approaches the parallel DQD, there appear
two distinct channels of electron propagation via the bonding
and antibonding dot states, which respectively form the sharp
and broad Kondo resonances. The interference between these
two Kondo resonances gives rise to the asymmetric dip
structure in the transmission probability, which reduces the
conductance significantly. We have seen that the T-shaped
DQD exhibits somewhat different properties. In this case, the
DOS of the dot-1 connected to the leads has a broader reso-
nance and develops a sharp dip structure in it as a conse-
quence of interference with the dot-2 having a much sharper
Kondo resonance. Therefore, the DOS as well as the trans-
mission probability always have the dip structure at the
Fermi level, thus giving a very small conductance in the
Kondo regime.

It has been shown that the gate-voltage control causes two
main effects via the change of the dot levels: the increase of

the dot level induces charge fluctuations and also causes the
renormalization of the effective interdot coupling. These ef-
fects make the characteristic behavior of the conductance
quite different from that for the single dot case. In particular,
it has been demonstrated in the T-shaped case that the gate-
voltage �i.e., dot level� control leads to a tendency contrary
to the single-dot case: the conductance increases with the
increase of the bare level of the dot, reflecting the Kondo
effect influenced by the interference effect.

We have also discussed the impact of the FM leads on
transport properties. The change in the Kondo resonances
due to the spin polarization of the FM leads modifies the
asymmetric structure in the transmission probability, so that
the spin-dependent currents may flow depending on the spin-
polarization strength p. It has been shown that the spin-
dependent conductance is quite sensitive to the geometry of
DQD, implying that the interference of electrons plays a cru-
cial role to determine the transport properties.

Experimentally, the Kondo effect in DQD systems has
been observed recently.22,30 It is thus expected that the inter-
ference effects will be systematically studied in a variety of
DQD systems including the T-shaped DQD. We also hope
that the spin-dependent conductance in such correlated DQD
can be controlled by spin-polarization in the near future.

ACKNOWLEDGMENT

The work is partly supported by a Grant-in-Aid from the
Ministry of Education, Culture, Sports, Science and Technol-
ogy of Japan.

1 D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-
Magder, U. Meirav, and M. A. Kanster, Nature �London� 391,
156 �1998�; D. Goldhaber-Gordon, J. Göres, M. A. Kastner, H.
Shtrikman, D. Mahalu, and U. Meirav, Phys. Rev. Lett. 81,
5225 �1998�.

2 S. M. Cronenwett, T. H. Oosterkamp, and L. P. Kouwenhoven,
Science 281, 540 �1998�.

3 T. K. Ng and P. A. Lee, Phys. Rev. Lett. 61, 1768 �1988�.
4 L. I. Glazman and M. E. Raikh, JETP Lett. 47, 452 �1988�.
5 A. Kawabata, J. Phys. Soc. Jpn. 60, 3222 �1991�.
6 Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 �1992�; Y.

Meir, N. S. Wingreen, and P. A. Lee, ibid. 70, 2601 �1993�;
A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50,
5528 �1994�.

7 A. Oguri, H. Ishii, and T. Saso, Phys. Rev. B 51, 4715 �1995�.
8 For review, see L. P. Kouwenhoven, D. G. Austing, and S.

Tarucha, Rep. Prog. Phys. 64, 701 �2001�; S. M. Reimann and
M. Manninen, Rev. Mod. Phys. 74, 1283 �2002�.

9 For review, see G. Hackenbroich, Phys. Rep. 343, 463 �2002�.
10 A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys.

Rev. Lett. 74, 4047 �1995�.
11 R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky, and

H. Shtrikman, Nature �London� 385, 417 �1997�.
12 W. G. van der Wiel, S. De Franceschi, T. Fujisawa, J. M. Elzer-

man, S. Tarucha, and L. P. Kouwenhoven, Science 289, 2105

�2000�.
13 Y. Ji, M. Heiblum, D. Sprinzak, D. Mahalu, and H. Shtrikman,

Science 290, 779 �2000�.
14 K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye, Phys. Rev.

Lett. 88, 256806 �2002�.
15 W. Izumida, O. Sakai, and Y. Shimizu, J. Phys. Soc. Jpn. 66, 717

�1997�.
16 R. López, R. Aguado, and G. Platero, Phys. Rev. Lett. 89,

136802 �2002�; Phys. Rev. B 69, 235305 �2004�.
17 D. Boese, W. Hofstetter, and H. Schoeller, Phys. Rev. B 66,

125315 �2002�.
18 Y. Utsumi, J. Martinek, P. Bruno, and H. Imamura, Phys. Rev. B

69, 155320 �2004�.
19 G.-M. Zhang, R. Lü, Z.-R. Liu, and L. Yu, e-print cond-mat/

0403629.
20 B. Dong, I. Djuric, H. L. Cui, and X. L. Lei, J. Phys.: Condens.

Matter 16, 4303 �2004�.
21 Y. Tanaka and N. Kawakami, Proceedings of the International

Symposium on Mesoscopic Superconductivity and Spintronics
2004 �unpublished�.

22 J. C. Chen, A. M. Chang, and M. R. Melloch, Phys. Rev. Lett. 92,
176801 �2004�.

23 T. Aono, M. Eto, and K. Kawamura, J. Phys. Soc. Jpn. 67, 1860
�1998�.

24 A. Georges and Y. Meir, Phys. Rev. Lett. 82, 3508 �1999�.

INTERFERENCE EFFECTS ON KONDO-ASSISTED… PHYSICAL REVIEW B 72, 085304 �2005�

085304-7



25 R. Aguado and D. C. Langreth, Phys. Rev. Lett. 85, 1946 �2000�.
26 C. A. Büsser, E. V. Anda, A. L. Lima, M. A. Davidovich, and G.

Chiappe, Phys. Rev. B 62, 9907 �2000�.
27 W. Izumida and O. Sakai, Phys. Rev. B 62, 10260 �2000�.
28 T. Aono and M. Eto, Phys. Rev. B 63, 125327 �2001�.
29 R. Sakano and N. Kawakami, e-print cond-mat/0502413.
30 H. Jeong, A. M. Chang, and M. R. Melloch, Science 293, 2221

�2001�.
31 T.-S. Kim and S. Hershfield, Phys. Rev. B 63, 245326 �2001�.
32 K. Kikoin and Y. Avishai, Phys. Rev. Lett. 86, 2090 �2001�; Phys.

Rev. B 65, 115329 �2002�.
33 Y. Takazawa, Y. Imai, and N. Kawakami, J. Phys. Soc. Jpn. 71,

2234 �2002�.
34 C. A. Büsser, G. B. Martins, K. A. Al-Hassanieh, A. Moreo, and

E. Dagotto, Phys. Rev. B 70, 245303 �2004�.
35 V. M. Apel, M. A. Davidovich, E. V. Anda, G. Chiappe, and C. A.

Busser, e-print cond-mat/0404691.
36 P. S. Cornaglia and D. R. Grempel, Phys. Rev. B 71, 075305

�2005�.
37 B. Wang, J. Wang, and H. Guo, J. Phys. Soc. Jpn. 70, 2645

�2001�.
38 P. Zhang, Q.-K. Xue, Y. P. Wang, and X. C. Xie, Phys. Rev. Lett.

89, 286803 �2002�.
39 N. Sergueev, Q.-f. Sun, H. Guo, B. G. Wang, and J. Wang, Phys.

Rev. B 65, 165303 �2002�.
40 J. Ma, B. Dong, and X. L. Lei, e-print cond-mat/0212645.
41 R. López and D. Sánchez, Phys. Rev. Lett. 90, 116602 �2003�.
42 J. König and J. Martinek, Phys. Rev. Lett. 90, 166602 �2003�.
43 J. Martinek, Y. Utsumi, H. Imamura, J. Barnaś, S. Maekawa, J.

König, and G. Schön, Phys. Rev. Lett. 91, 127203 �2003�.

44 J. Martinek, M. Sindel, L. Borda, J. Barnaś, J. König, G. Schön,
and J. von Delft, Phys. Rev. Lett. 91, 247202 �2003�.

45 B. Dong, H. L. Cui, S. Y. Liu, and X. L. Lei, J. Phys.: Condens.
Matter 15, 8435 �2003�.

46 Y. Tanaka and N. Kawakami, J. Phys. Soc. Jpn. 73, 2795 �2004�.
47 M.-S. Choi, D. Sánchez, and R. López, Phys. Rev. Lett. 92,

056601 �2004�.
48 A. N. Pasupathy, R. C. Bialczak, J. Martinek, J. E. Grose, L. A.

K. Donev, P. L. McEuen, and D. C. Ralph, Science 306, 86
�2004�.

49 P. Coleman, Phys. Rev. B 29, 3035 �1984�.
50 A. C. Hewson, The Kondo Problem to Heavy Fermions �Cam-

bridge University Press, Cambridge, 1993�.
51 M. L. Landron de Guevara, F. Claro, and P. A. Orellana, Phys.

Rev. B 67, 195335 �2003�.
52 H. Haug and A.-P. Jauho, in Quantum Kinetics in Transport and

Optics of Semi-Conductors, edited by M. Cardona et al.
�Springer-Verlag, Heidelberg, 1998�.

53 M. Julliere, Phys. Lett. 54A, 225 �1975�.
54 J. C. Slonczewski, Phys. Rev. B 39, 6995 �1989�.
55 Y.-L. Liu and T. K. Ng, Phys. Rev. B 61, 2911 �2000�.
56 K. Kang, S. Y. Cho, J.-J. Kim, and S.-C. Shin, Phys. Rev. B 63,

113304 �2001�.
57 M. E. Torio, K. Hallberg, A. H. Ceccatto, and C. R. Proetto, Phys.

Rev. B 65, 085302 �2002�.
58 A. A. Aligia and C. R. Proetto, Phys. Rev. B 65, 165305 �2002�.
59 I. Maruyama, N. Shibata, and K. Ueda, J. Phys. Soc. Jpn. 73,

3239 �2004�.
60 M. Sato, H. Aikawa, K. Kobayashi, S. Katsumoto, and Y. Iye,

e-print cond-mat/0410062.

Y. TANAKA AND N. KAWAKAMI PHYSICAL REVIEW B 72, 085304 �2005�

085304-8


