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Zitterbewegung and its effects on electrons in semiconductors
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An analogy between the band structure of narrow gap semiconductors and the Dirac equation for relativistic
electrons in vacuum is used to demonstrate that semiconductor electrons experience a Zitterbewegung (trem-
bling motion). Its frequency is w;~&,/fi and its amplitude is Az, where )\Zzh/m;u corresponds to the
Compton wavelength in vacuum (Sg is the energy gap, mz is the effective mass, and u= 1.3 X 10% cm/s). Once
the electrons are described by a two-component spinor for a specific energy band there is no Zitterbewegung
but the electrons should be treated as extended objects of size A The magnitude of A, in narrow gap
semiconductors can be as large as 70 A. Possible consequences of the above predictions are indicated.
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It was noted in the past that the E(k) relation between the
energy E and the wavenumber k for electrons in narrow-gap
semiconductors (NGS) is analogous to that for relativistic
electrons in vacuum.'~* The analogy was also shown to hold
for the presence of external fields which was experimentally
confirmed on InSb.> This “semirelativity in semiconductors”
is valid for time dependent phenomena as well, so that the
cyclotron resonance of conduction electrons in InSb could be
interpreted in terms of the time dilatation between a moving
electron and an observer.’ The semirelativistic phenomena
appear at electron velocities of 10’—10% cm/s, much lower
than the light velocity c. The reason for this is that the maxi-
mum velocity # in semiconductors, which plays the role of ¢
in vacuum, is about 108 cm/s.

Until presently the semirelativistic considerations for
semiconductors were concerned with phenomena related
mostly to classical mechanics. The purpose of this contribu-
tion is to investigate the quantum domain described by the
Hamiltonian for energy bands in NGS, which bears close
similarity to the Hamiltonian for relativistic electrons in
vacuum. The effects we predict should be much more readily
observable in NGS than in vacuum so this investigation is of
interest not only for the solid state physics but also for the
high energy physics.

We begin with the k-p approach to InSb-type
semiconductors.® Taking the limit of large spin-orbit energy
A, the resulting dispersion relation for the conduction and the
light-hole bands is E= tE, where
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Here &, is the energy gap and m:; is the effective mass at the
band edge. This expression is identical to the relativistic re-
lation for electrons in vacuum, with the correspondence:
Eg— 2mc? and mé%mo. The electron velocity v in the con-
duction band described by Eq. (1) reaches the saturation
value as p increases. This can be seen directly by calculating
v;=JE,/dp; and taking the limit of large p;, or by using the
analogy c=(2m002/2m0)1/2—>(5§/2m;)”2=u. Taking the ex-
perimental parameters £, and m, we calculate a very similar
value of u~1.3X10% cm/s for different III-V compounds.
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Now we define an important quantity

)\Z =T% (2)

which we call the length of Zitterbewegung for reasons given
below. Here we note that it corresponds to the Compton
wavelength \.=%/myc for electrons in vacuum. Let us sup-
pose that we confine an electron to the dimensions Az
~N,/2. Then the uncertainty of momentum is Ap.=#/Az
and the resulting uncertainty of energy AE~(Ap,)?/ ZmS be-
comes AE 22m$u2=€g. Thus the electron confined to Az
~\,/2 has the uncertainty of energy larger than the gap, so
that it “does not know” whether it belongs to the conduction
or to the valence band.

Next we consider the band Hamiltonian for NGS. It is
derived within the model including I'¢ (conduction), I' (light
and heavy hole), and I'; (split-off) bands and it represents an
8 X 8 operator matrix.” We assume, as before, A>€g and
omit the free electron terms since they are negligible for
NGS. The resulting 6 X 6 Hamiltonian has +£,/2 terms on
the diagonal and linear p; terms off the diagonal, just like in
the Dirac equation for free electrons. However, the three
6 X 6 matrices ¢&; multiplying the momentum components p;
do not have the properties of 4 X4 Dirac matrices, which
considerably complicates calculations. For this reason,
with only a slight loss of generality, we take p.#0 and
Py=py=0. In the d&; matrix, two rows and columns corre-
sponding to the heavy holes contain only zeros and they can
be omitted. The remaining Hamiltonian for the conduction
and the light hole bands reads

N B
H=ub;p.+ Eé'g,B, (3)

where &; and ,@' are the well-known 4 X 4 Dirac matrices.’
The Hamiltonian (3) has the form appearing in the Dirac
equation and in the following we can use the procedures of
relativistic quantum mechanics (RQM).

The electron velocity is z=(1/i%)[z,H]=ués;. The eigen-
values of &; are x1, so that the eigenvalues of 7 are, para-

doxically, +u. In order to determine d;(7) we calculate &(r)
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by commuting &z with H and integrating the result with re-
spect to time. This gives Z(7) and we calculate z(f) integrating
again. The final result is (cf. Refs. 9 and 10)

2 i —2iHt
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where AO=&3(O)—upZ/I:I. There is 1/I:1=E;2H. The first two
terms of Eq. (4) represent the classical electron motion. The
third term describes time dependent oscillations with a fre-
quency of w;~ & /. Since Ay= 1, the amplitude of oscilla-

tions is hu/ZI:I%h/Zmz;u:)\Z/Z. In RQM the analogous os-
cillations are called Zitterbewegung (ZB, trembling motion),
which explains the name given above to A,. We note that the
ZB goes beyond Newton’s first law since we have a noncon-
stant velocity without a force. In RQM it is demonstrated
that the ZB is a result of interference between states of posi-
tive and negative electron energies.

In order to investigate the case of a definite sign of en-
ergy, we expand the multiband Hamiltonian of Ref. 7 into an
effective one-band Hamiltonian for the I'y conduction band
(here we assume quite generally p # 0). We do this by solv-
ing the initial set of six equations for the envelope functions
(for A> €g) by substitution, i.e., expressing the valence func-
tions f3---f¢ by the conduction functions f; and f, for
spin-up and spin-down states, respectively. When doing this
we account for the changed normalization condition (see
Refs. 11 and 12). The final result is
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where P=p+e¢A is the canonical momentum, V is an exter-
nal potential, o is the Pauli spin operator, up is the Bohr
magneton, B is an external magnetic field, and g* is the
Landé spin factor. The first four terms represent the effective
Pauli equation, the fifth is a nonparabolic correction to the
energy, the sixth is an effective spin-orbit interaction, and the
last one is the effective Darwin term.'?> The Hamiltonian (5)
is in relativistic analogy to v?/c* expansion of the Dirac
equation, known from RQM (see Ref. 14).

The effective Darwin term can be interpreted in terms of
ZB. If an electron oscillates around the position r, the poten-
tial energy can be expanded as follows: V(r+Ar)=V(r)
+Ar- VV+(Ar-V)(Ar- V)V/2. On average the odd powers
of Ar vanish and the last term is (Ar)>V?V/6. It becomes
equal to the effective Darwin term in Eq. (5) if (Ar)?
=(3/4)\%, which corresponds to Az=\,/2. This is in agree-
ment with our previous arguments. However, once the elec-
tron is described by a two-component spinor for a specific
energy band, as in Eq. (5), the quantity Ar is not the ampli-
tude of ZB anymore. We discuss this below.

The four-component wave functions resulting from Eq.
(3) can be transformed exactly into two-component functions
for positive (or negative) electron energies. For free electrons
this is done by applying the Foldy-Wouthuysen (FW) unitary
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transformation.’> In our one-dimensional treatment the trans-
formation reads

E,+ BH

is _
[2E,(E, + mou?) ]2

(6)

The transformed wave functions W' (z) are obtained from the
initial functions W(z') by the following integration:

W’(z):fl((z,z’)‘lf(z’)dz’, (7)
where
K(z,z')=$j<ﬁ>m%<l+§>
X exp[ipé(zT_Z,)}dpé. ()

The kernel K(z,z') is not a point transformation. Suppose we
are interested in the eigenfunction of position Z. In the initial
representation this function is W(z')=8(z' —z), and it fol-
lows from Eq. (7) that the transformed function is K(z,z).
The integral of K(z,z,) over Z=z—z, axis is unity. To get an
idea of the extension of K(z,z,), we calculate its second mo-
ment and after some manipulations we obtain (see Ref. 16)

1
J 72K (z,20)dZ = Z)‘é' 9)

Thus the extension of the transformed eigenfunction of po-
sition is |z—z| =\z/2. One can show that in the transformed
state there is no Zitterbewegung since the FW transformation
eliminates the negative energy components of the wave
functions.!” All in all, following the interpretation estab-
lished in RQM, we are confronted with the following choice.
(1) We deal with a pointlike electron described by a four-
component function, which experiences the ZB with the ra-
dius of N\,/2. (2) The electron is described by a two-
component spinor for either positive or negative energy and
there is no ZB, but the electron is smeared to an object of the
radius A,/2. It is this smearing that enters into the effective
Darwin term in Eq. (5), as this equation describes electrons
using two-component spinors for positive energies. In other
words, the Darwin term is a direct consequence of smearing.

The above result has far reaching consequences. In most
cases electrons in a specific band are described by effective
band parameters obtained with the use of the Luttinger-Kohn
(LK) transformation.'® In fact, our Eq. (5) can also be ob-
tained by this method. The LK transformation separates en-
ergy bands and it corresponds directly to the Foldy-
Wouthuysen transformation in RQM. For the FW
transformation the expansion parameter is Spy=p/2mgc
=kN./2, while for the LK transformation it is S;x
=fik/(2myE,)">=k\ /2. Once again we find the correspon-
dence between A, and A\,. It follows from the above reason-
ing that electrons in a given energy band described by the
one-band effective mass approximation are not point par-
ticles, but rather we should attribute to them the effective
size Ny.
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Clearly, the magnitude of N\, is essential. There is A\,
=)\C(c/u)(m0/m;) 20.89(m0/m;) A since, as mentioned
above, u=~1.3X10% cm/s for various materials. We esti-
mate: for GaAs (m;z0.067m0) N,~13 A, for InAs (m;
~0.024my) \,~37 A, for InSb (m;=0.014my) \,~64 A.
Thus in contrast to vacuum (A, =3.86 X 1073 A) the length of
7B in semiconductors can be quite large and one can confine
electrons to the dimensions of N, using quantum wells,
wires, dots, or external fields. For an electron in a magnetic
field the magnetic radius is L=(%/eB)">~80 A at B=10 T,
and it is fairly easy to achieve L <<\, for NGS.

It may appear unreasonable to ascribe to an electron the
size of, say, 70 A. However, it is well-known that the values
of 1/ mg and gz; in very narrow gap semiconductors can be
100 times larger than the corresponding values for free elec-
trons. The special property of A;=#/ mgu is that it cumulates
the largeness of l/mg and of 1/u for semiconductors, as
compared to 1/mg and 1/¢ for vacuum.

The Zitterbewegung length A\, appears in the description
of interband tunneling. The tunneling in vacuum from the
Dirac sea of electrons with negative energies to the empty
states of electrons with positive energies in the presence of a
linear potential V(z)=eFz has been treated by RQM.!'%2° The
tunneling probability is proportional to exp(—W), where W
=mmic?/ehF=(m/2)(zo/\.), in which zy=2mc?/eF is the
tunneling length. This probability becomes appreciable at
critical electric fields F., such that zo/A.~1, which gives
FL.,=2m%c3/eﬁ~2.6 X 10'® V/cm. Fields of this intensity
are not available in terrestrial conditions. For semiconductors
the corresponding probability of tunneling between the light-
hole and the conduction bands is described by the exponen-
tial factor W= sz/zm(*)”z/ 2\2ehF =(m/2)(zo/N,), where 2
=&,/eF is the corresponding tunneling length.*' Now the
critical field, at which zo/N,=~1, is F' Z=€§/2m31/2/ v2eh. This
is of the order of 10° V/cm, which agrees with the field
intensities used in semiconductor tunnel diodes.

In fact, N, can be measured directly. We write Eq. (1) in
the form

E= +hu(\* + k>, (10)

For k*>0 this formula describes the conduction and the
light-hole bands. But for imaginary values of k there is k*
<0 and Eq. (11) describes the dispersion in the energy gap.
This region is classically forbidden but it can become acces-
sible through quantum tunneling. Figure 1 shows the data for
the dispersion in the gap of InAs, obtained by Parker and
Mead?? from tunneling experiments with double Schottky
barriers. The solid line indicates the fit using Eq. (10). The
value of N\, is determined directly by k, for which the energy
is zero: \,*=k%. The fit gives \;~41.5 A and u=1.33
X 10% cm/s, in good agreement with the above estimation
for InAs. Similar data for GaAs give A\, between 10 and
13 A, again in good agreement with the above estimation.

Our results should lead to two categories of observable
effects. The first is related to the final electron size. For ex-
ample, electron-electron interaction in narrow quantum wells
or small quantum dots should be affected by the final elec-
tron size. The interaction of electrons with phonons will have
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FIG. 1. Energy-wave vector dependence in the forbidden gap of
InAs. Various symbols show the experimental data of Parker and
Mead (Ref. 22) for five InAs samples; the solid line is a theoretical
fit using Eq. (10). The determined parameters are A,=41.5 A and
u=1.33x10% cm/s.

a nonlocal character and there will be a cutoff of the inter-
action for phonon wavelengths X <\,.2#?> The effective Dar-
win term belongs to this group; it should be observable in
shifts of the ground donor energies. The second category is
associated with the question: what happens when electrons
are confined to dimensions smaller than A,? It is often stated
in RQM that “a measurement of the position of a particle,
such as an electron, if carried out with greater precision than
the Compton wavelength, would lead to pair production.”?®
This phenomenon is related to our initial reasoning that for
such an electron the uncertainty of energy is larger than the
gap. It is clear, however, that the pairs created in this way
can only be virtual, otherwise their recombination would
lead to the production of energy out of nothing. It appears
that the virtual carriers could be observed, for example, in
screening effects. A different point of view is also possible.
One can say, a confinement is equivalent to an infinite po-
tential well of the width Ar<<\, in one or more dimensions
and the electron will simply occupy the lowest energy level
in such a well. One thing is certain. If an electron is confined
to dimensions Ar <\, its energy (or its uncertainty) is of the
order of Eg, which means that the one-band description is
inadequate. We are then forced to use the multiband k-p
description with all its consequences.

In our theoretical treatment we used two simplifications.
The first is the use of the three-level model of band structure.
This model is accurate near the band edges of NGS and it is
valid up to the inflection point on the E(k) curve.?’ Second,
we assumed that p,=p,=0 in the calculation of ZB and of
the smearing. This was done for technical reasons, the diffi-
culty being that the degeneracy of the valence I'y bands
couples light and heavy holes. However, since the conduc-
tion band is spherical [see Eq. (1)], it is clear that our results
for the direction z are approximately valid for the other two
directions as well. The isotropy of the Darwin term in Eq. (5)
confirms this conclusion. Our simplifying assumption A
>¢&,, although not quite justified for some materials, pre-
serves the essential spin properties of electrons in NGS. We
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add that another group of NGS, namely the lead salts PbTe,
PbSe, and PbS, is characterized by the 4 X4 band Hamil-
tonian closely resembling the Dirac Hamiltonian.>?8

To summarize, we used the band structure of narrow gap
semiconductors to show that, even in absence of external
fields, semiconductor electrons experience the Zitter-
bewegung (trembling motion) with the characteristic fre-
quency of w;=&,/f and the amplitude of )\Z:h/m;u. If the
electrons are described by two-component spinors for a
given energy band (which is usually the case) there is no ZB
but the electrons should be treated as objects of size A, The
magnitude of A, in NGS can be as large as 70 A. Observable
consequences of these predictions are divided into those re-
lated to the final electron size and those resulting from the
electron confinement to dimensions smaller than \,. Such
observations would lead to a deeper understanding of elec-
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trons in solids, but they would also shed light on some still
unobserved predictions of relativistic quantum mechanics
and quantum field theory for electrons in vacuum.

Note added in proof. Recently a paper has been published
that also makes reference to the Zitterbewegung?’. However,
the Hamiltonian used in Ref. 29 is that of spin splitting (the
Bychkov-Rashba mechanism) which requires structure inver-
sion asymmetry of the system. Thus the oscillations pro-
posed in this work do not have their correspondence for rela-
tivistic electrons in vacuum. This is in contrast to our case.
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