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We investigate the possibility of trapping quasiparticles in hybrid structures composed of a magnetic quan-
tum well placed a few nanometers below a ferromagnetic micromagnet. We are interested in two different
micromagnet shapes: cylindrical �microdisk� and rectangular geometry. We show that in the case of a micro-
disk, the quasiparticles are localized in all three directions and therefore zero-dimensional states are created. In
the case of an elongated rectangular micromagnet the quasiparticles can move freely in one direction, hence
one-dimensional states are formed. After calculating the magnetic field profiles produced by the micromagnets,
we analyze in detail the light absorption spectrum for different micromagnet thicknesses and different distances
between the micromagnet and the semimagnetic quantum well. We argue that the discrete spectrum of the
localized states can be detected via spatially resolved low-temperature optical measurement.
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I. INTRODUCTION

Currently, there is an increasing interest in using the spin
of particles, in addition to their charge, as the basis for new
types of “spin electronics.”1–3 In this work we show that the
spin degrees of freedom can be utilized for achieving spatial
localization of charged quasiparticles �electrons, holes, or
trions4,5�, as well as of neutral complexes, such as
excitons.4,6

In this paper we consider a hybrid structure consisting of
a CdMnTe/CdMgTe quantum well �QW� structure at a
small, but finite distance from a ferromagnetic micromagnet.
Due to the Zeeman interaction, the inhomogeneous magnetic
field produced by the micromagnet acts as an effective po-
tential that can “trap” spin polarized quasiparticles in the
QW. In this paper we explore two specific types of micro-
magnets: one with cylindrical7 and one with rectangular8–10

symmetry. In both cases the thickness of the micromagnets is
of the order of a few hundreds of nanometers and their lateral
dimension is of the order of microns. We will show that in
both geometries the micromagnets are very effective in lo-
calizing quasiparticles. For the microdisk, the quasiparticles
are localized below the center of the disk in all three spatial
directions. For the rectangular micromagnet, the quasiparti-
cles are localized below the poles of the ferromagnet and the
localization occurs only in two spatial dimensions. Thus in
the latter case the quasiparticles can move quasifreely in one
direction.

The choice of the diluted magnetic semiconductor
�CdMnTe� QW instead of the classical one �i.e., CdTe� is
motivated by the desire to achieve more efficient spin traps,
leading to clear localization effects. Related phenomena and
spintronic applications have recently been explored in mag-
netic semiconductor/superconductor hybrid structures.11 In
diluted magnetic semiconductor �DMS� materials the ex-
change interaction between delocalized band electrons and
localized magnetic ions �Mn++ ions in the case at hand� leads
to a splitting between band states for different spin compo-
nents �for a review of relevant properties of DMS see Ref.

12�. The so-called giant Zeeman spin splitting has been ex-
tensively investigated in the 1980s in II-VI based DMSs.13 A
consequence of this effect is the huge effective g factor for
most DMS materials. For example, Dietl14 et al. reported an
electron g factor of about 500 in a sub-Kelvin experiment in
a CdMnSe, which implies a value of about 2000 for the g
factor of a hole in this material. According to our previous
calculations10 such values for the effective g factors can in
fact result in the confinement of quasiparticles in a small
lateral region inside QW. The actual details of the optical
response will depend in a sensitive way on the values of the
electron and hole g factors. Our focus on QW structures
instead of normal films has both experimental and theoretical
motivations. From the experimental point of view, we would
like to avoid the complications caused by the metal-DMS
interface. To satisfy this criterion, the QW should be placed
at a finite distance from the micromagnet. However, the local
magnetic field inside the QW diminishes as the distance d
between the micromagnet and the QW increases. Thus, we
need to compromise in the value of d in order to have a high
magnetic field in the QW and, at the same time, to avoid
interface contamination effects. There are also two theoreti-
cal motivations that require the QW to be relatively narrow.
First, because of the quantum confinement, the heavy and
light hole states �degenerate in the bulk at the � point� be-
come nondegenerate in the QW geometry. This means that
the low-energy absorption spectrum is simplified for the QW.
Second, in the narrow QW we can assume that the local
magnetic field is uniform throughout the width of the QW,
which again simplifies the calculation. On the other hand, for
practical reasons the QW cannot be too narrow, since the
linewidth of the optical resonances increases15 with decreas-
ing width of the QW �LQW�.

In Fig. 1 we present a schematic sketch of the energy
states in a DMS QW that can be used for discussing the
presence of ferromagnetic micromagnet on the top of the
quantum structure. The QW is grown in the �001� direction,
chosen here as the ẑ axis. Without the micromagnet, the main
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absorption edge is observed between the states of the heavy
hole HH1 �with a pseudospin of −3/2 in units of �� and the
electron E1 �with a spin of −1/2� with a �+ circularly polar-
ized light. In the absence of magnetic field, E1 and HH1 are
twofold degenerate with respect to the spin, and the first
optical transition in the �− polarization is at the same energy
as for the �+ transition. After depositing the micromagnet,
we expect that new states will appear below E1 and above
HH1. These new states are no longer spin degenerate, since
the presence of a local magnetic field lifts the Kramers de-
generacy. It is important to note that the spin of the states
below E1 remains −1/2, and above HH1 states the spin main-
tains a pseudospin of −3/2. Our main prediction is the fol-
lowing: the experimentally observable transitions between
these new states will appear in the absorption or photolumi-
nescence spectrum below the main absorption edge and will
be active for �+ circularly polarized light.16 We will focus on
the optical absorption, because it provides a mapping of all
states. Our results, however, are equally well suited for pho-
toluminescence experiments.

This paper is organized as follows: In Sec. II we present
the general theoretical approach and analyze the g-factor an-
isotropy of the hole states. In Sec. III A we show the results
obtained for the absorption coefficient of the microdisk/
semiconductor QW structure as a function of a few key pa-
rameters, and in Sec. III B we present the analysis for the
rectangular micromagnet/semiconductor QW structure. Fi-
nally, we present a detailed discussion and explore the ex-
perimental consequences of our results.

II. THE THEORETICAL MODEL

The goal of this section is to derive effective Hamilto-
nians for both micromagnet geometries. We begin by consid-
ering separately the electron in the valence band and in the
conduction band. We then discuss the Zeeman interaction
between the local magnetic field produced by the micromag-
net and the quasiparticle spin. At the end of this section we

discuss the experimentally observed anisotropy of the hole g
factor �gh�.

Our starting point is the Luttinger Hamiltonian17 HL of the
valence electron in the k representation �note that we are
working in the electron representation of the valence band�,
within the base of the four-component spinor �†

= ��+3/2
* ,�−1/2

* ,�+1/2
* ,�−3/2

* �,

HL = � Ha Hb

Hb* THa � , �1�

where the matrices Ha and Hb can be written schematically
as

Ha = �Hh − c

− c Hl
� , �2�

Hb = �− b 0

0 b
� , �3�

and where c= �−�2 /2m0��3��2�kx
2−ky

2�−2i�3kxky� and
b= �−�2 /2m0�2�3�3kz�kx− iky�. The symbol THa denotes the
Ha matrix with interchanged diagonal elements. Note that b
is proportional to kz, a property that we will use later in the
discussion. The OX, OY, and OZ axis correspond to the
�1,0,0�, �0,1,0�, and �0,0,1� crystallographic directions and
the spin is quantized along �0,0,1�. Using the substitution

k� ⇒−i�� , the Hamiltonian in the k� representation is trans-
formed to the r� representation.

Now we consider the QW structure. We choose our four-
component spinor wave function in the following form:

��r�� =�
�3/2�r��
�−1/2�r��
�1/2�r��
�−3/2�r��

	 =�
fh�z��+3/2�x,y�
f l�z��−1/2�x,y�
f l�z��+1/2�x,y�
fh�z��−3/2�x,y�

	 , �4�

where ��x ,y�’s are not yet determined, and fh�z� and f l�z�
are ground-state functions of the following set of
Schrödinger eigenequations,

��2��1 − 2�2�
2m0

d2

dz2 + VQW
h �z�� fh�z� = �hfh�z� , �5�

��2��1 + 2�2�
2m0

d2

dz2 + VQW
h �z�� f l�z� = �l f l�z� , �6�

where �h and �l are the ground-state energies. In Eqs. �5� and
�6� m0 / ��1−2�2� and m0 / ��1+2�2� are the z components of
heavy hole and light hole effective masses and VQW

h �z� is a
potential energy of the QW coming from discontinuity of the
edge of the valence band. We assume this potential to be
rectangular �see Fig. 1�,

VQW
h �z� = 
 0 for �z� � LQW/2

− Vh for �z� 	 LQW/2.
� �7�

The functions fh�z� and f l�z� that satisfy Eqs. �5� and �6� are
real-valued even functions fulfilling the relation

fh

*�z�pzf l�z�dz=0. These properties of fh and f l can be used

FIG. 1. �Color online� In the absence of a micromagnet we
expect the main absorption edge �MAE� between heavy hole �HH1�
and electron �E1� energy states �full lines�. Both energy states show
twofold spin degeneracy without external magnetic field. After the
deposition of the micromagnet, new states appear below the E1 state
and above the HH1 state �dashed lines�. The spin degeneracy is
lifted in each new energy state. In a QW structure the heavy hole
states and the light hole states �e.g., HH1 and LH1� are split even
without external magnetic field.
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as follows: In the subspace of Hilbert space spanned by our
trial wave function HL, Eq. �1� is written as a new 4
4

matrix H̃L,

H̃L = �H̃a H̃b

H̃b TH̃a
� , �8�

where

H̃a = � Hh − cIhl

− cIhl
* Hl

� , �9�

and

H̃b = �0 0

0 0
� . �10�

Ihl in Eq. �9� is the overlap integral, defined by Ihl

�
fh
*�z�f l�z�dz. We can write the matrix H̃b in the form

given by Eq. �10�, as the term b in �3� reduces to zero be-
cause of the relation 
fh

*�z�pzf l�z�dz=0. Furthermore, in the r�

representation the two quantities Hh and Hl in the matrix H̃a

take the following form:

Hh =
�2

2m0
��1 + �2�� d2

dx2 +
d2

dy2� + �h, �11�

Hl =
�2

2m0
��1 − �2�� d2

dx2 +
d2

dy2� + �l, �12�

and

c =
�2

2m0

�3��2� d2

dx2 −
d2

dy2� − 2i�3
d

dx

d

dy
� . �13�

After making these approximations the wave function �̃ sat-

isfying H̃L�̃=Eh�̃ has only two nonvanishing components,

�̃�r�� =�
�+3/2�x,y�
�−1/2�x,y�

0

0
	 �14�

and

�̃�r�� =�
0

0

�+1/2�x,y�
�−3/2�x,y�

	 . �15�

The Zeeman interaction due to the local magnetic field pro-
duced by the micromagnet mixes both states and lifts their
degeneracy.

Now we consider the conduction band. We assume that
the dispersion relation of the conduction electron is parabolic

He = EG −
�2

2m0
�el� d2

dx2 +
d2

dy2 +
d2

dz2� + VQW
el �z� , �16�

where EG is the energy gap of a QW, m0 /�el is the electron
effective mass, and VQW

el is the potential energy coming from

the discontinuity of the conduction band �see Fig. 1�

VQW
el �z� = 
 0 for �z� � LQW/2

Vel for �z� 	 LQW/2
� . �17�

For the electron we assume the following factorized trial
wave function:

�el = � fel�z��+�x,y�
fel�z��−�x,y�

� , �18�

where the function fel�z� is the solution of the one-
dimensional Schrödinger equation

�−
�2�el

2m0

d2

dz2 + VQW
el �z�� fel�z� = �elfel�z� . �19�

Both functions �± fulfill the following eigenequation:

H̃e�±�x,y� � �−
�2�el

2m0
� d2

dx2 +
d2

dy2� + �el��±�x,y�

= Ee�±�x,y� . �20�

The Zeeman Hamiltonian used for both the conduction
and the valence electrons can be written as

HZ�r�� = �Bs�ĝef fB� �r�� , �21�

where ĝef f is a tensor, �B is the Bohr magneton, B� �r�� is the
local magnetic field produced by the micromagnet, and s� is

the spin-1
2 operator. For the conduction band ĝef f =ge1̂

�diag�ge ,ge ,ge� and for valence electron ĝef f =gh1̂

�diag�gh ,gh ,gh�, where 1̂ is the 3
3 identity matrix. For
the conduction electron, the spin-1

2 operator in the basis of
the Bloch states is a 2
2-matrix proportional to the Pauli
matrices. For the valence electron the spin operator is a 4

4-matrix, as shown in Ref. 18. In addition to the previous
approximations we assume that the QW is narrow, and we
rewrite Eq. �21� as

H̃Z�x,y� = �Bs�ĝef fB� �x,y,z = d� , �22�

where d is the distance between the QW and the micromag-
net.

Summarizing, the original Hamiltonians were transformed
into the two-dimensional effective Hamiltonians of the va-
lence �Hh� and of the conduction electron �He�

Hh�x,y� = H̃L�x,y� + H̃Z�x,y� , �23�

He�x,y� = H̃e�x,y� + H̃Z�x,y� . �24�

The procedure for diagonalizing these Hamiltonians is as
follows: first, the magnetic field produced by the micromag-
net is calculated by solving the magnetostatic Maxwell
equations,19 either by using a magnetization distribution de-
termined from micromagnetic simulations7 �in the case of the
disk� or by assuming that the micromagnet can be repre-
sented by a uniformly magnetized domain �in the case of
rectangular micromagnet�. Then, the electronic spectrums of
the conduction band and the valence band are calculated by
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approximating the Schrödinger eigenequations with finite
difference algebraic equations. In the case of the microdisk,
the algebraic equations are generated on a two-dimensional
grid and Eqs. �23� and �24� are solved directly. In the case of
the rectangular micromagnet—because of its large elonga-
tion in the y direction �Dy =2 �m�—we can make the ansatz
that the quasiparticle is free to move in this direction so the
plane wave form of the wave function is assumed in y direc-
tion. Thus, in the case of a rectangular micromagnet the finite
difference equations are generated only on a one-
dimensional grid.

Given the calculated eigenvalues and eigenfunctions, we
use Fermi’s golden rule to obtain the absorption coefficient16

�±�
� �
1



�
i,j

��ej�px ± ipy�hi��2���
 − �Eei
− Ehi

�� ,

�25�

where ��ei� ,Eei
� and ��hj� ,Ehj

� are the eigensolutions of the
conduction band and valence band Hamiltonians, He and Hh,
respectively. The Coulomb interaction between the electrons
and the holes leads to the creation of long-lived excitons,
which in turn generate sharp individual optical lines. We as-
sumed that the exciton states are formed and that the MAE

corresponds to the 1S exciton transition in the QW without
the micromagnet. In the following figures we have taken the
zero energy at the 1S exciton main absorption peak. To cre-
ate the final spectrum, each optical line we calculate is
broadened by a Gaussian function with a linewidth of
1 meV. This is a reasonable approximation for a typical ex-
perimental resolution.

Anisotropy of the hole g factor

The Zeeman splitting of the valence band edge depends
on the direction of the magnetic field with respect to the
growth direction of the quantum well.20 In order to demon-
strate this we consider two configurations: a constant mag-

netic field parallel to the plane of the quantum well, B� =Be�x;

and a constant magnetic field perpendicular to this plane, B�

=Be�z.

Starting with B� =Be�z, we find it convenient to use a dif-
ferent basis than that used in the previous part of the paper:
the new basis vectors are �†= ��+3/2

* ,�−3/2
* ,�+1/2

* ,�−1/2
* �. In

this new basis, the Luttinger Hamiltonian, Eq. �1� or Eq. �8�,
for the edge of the valence band in the QW is a diagonal
matrix

H =�
+

1

2
gh�BB 0 0 0

0 −
1

2
gh�BB 0 0

0 0 − �lh +
1

6
gh�BB 0

0 0 0 − �lh −
1

6
gh�BB

	 , �26�

where the energy splitting �lh= �El−Eh� is caused by the
quantum well confinement. This splitting is also present in
structures under strain and it can be either positive or nega-
tive as shown in Ref. 18. Looking at the Hamiltonian H, Eq.
�26�, we can see that the energy of the heavy hole �+ 3

2 ,− 3
2

�
splits by �gh�BB�, whereas the energy of the light hole
�+ 1

2 ,− 1
2

� splits by � 1
3gh�BB�, an amount smaller by a factor

of 3.

In order to analyze the second geometry �B� =Be�x�, we
write the Hamiltonian for the valence band edge in a QW as
follows:

H =�
0 0

1

2�3
gh�BB 0

0 0 0
1

2�3
gh�BB

1

2�3
gh�BB 0 − �lh

1

3
gh�BB

0
1

2�3
gh�BB

1

3
gh�BB − �lh

	 .

�27�
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If we omit the mixing between the heavy and light holes
�i.e., if we retain only the bold elements in Eq. �27�� then the
heavy holes do not split, and the light holes split by
� 2
3gh�BB�. We note that the light hole splitting is now two

times larger than in the case of the perpendicular magnetic

field, B� =Be�z, where it was � 1
3gh�BB�. Solving the eigenvalue

problem with Hamiltonian H in Eq. �27�, we obtain four
solutions as a function of the external magnetic field �see
Fig. 2�

Eh
� = −

�lh

2
�

gh�BB

6
+

1

6
�9�lh

2 ± 6�lhgh�BB + 4�gh�BB�2,

�28�

El
� = −

�lh

2
�

gh�BB

6
−

1

6
�9�lh

2 ± 6�lhgh�BB + 4�gh�BB�2.

�29�

When the QW splitting �lh� �gh�BB� then up to terms qua-
dratic in the external field B, Eqs. �28� and �29� can be fur-
ther simplified to

Eh
� �

1

12

gh�BB

�lh
gh�BB , �30�

El
� � − �lh �

gh�BB

3
−

1

12

gh�BB

�lh
gh�BB . �31�

Because the heavy hole does not split, we are left with three
solutions out of the four. In this approximation the energy
level of the heavy hole Eh

� is twofold degenerate and the
light hole splits by an amount proportional to the magnetic
field � 2

3 ��BghB��, as seen in Eq. �31�. These different behav-
iors can be compared in Fig. 2 where we plotted exact values
of Eh

± and El
� using Eqs. �28� and �29�.

In other words, we can say that in a QW, the gh factor of
the first heavy hole states HH1 is highly anisotropic. Conse-

quently, in the Zeeman term given by Eqs. �21� and �22�, the
tensor ĝh=diag�gh ,gh ,gh� can be approximated by ĝh

�diag�0,0 ,gh�. Indeed, only the component of the field par-
allel to the growth direction of the QW splits the HH1 states.
The anisotropy that appears naturally using the Luttinger
Hamiltonian in the QW is observed experimentally.20 We
compared the results of the optical response for both isotro-
pic and anisotropic g factors and found that absorption spec-
tra are similar, especially in the low-energy region of the
spectrum. This result is presented in Sec. III.

III. RESULTS AND DISCUSSION

For the calculations involving both cylindrical and rectan-
gular micromagnets, the following set of Luttinger param-
eters and electron mass was chosen for both the QW and the
barriers: �1=4.14, �2=1.09, �3=1.62, me=m0 /�e=0.096m0.
From Eq. �11�, the heavy hole effective mass in the plane is
m0 / ��1+�2�=0.19m0 and the light hole effective mass in the
plane is equal to m0 / ��1−�2�=0.33m0. A total discontinuity
of bands VT=500 meV, and valence band offset vbo=0.4 is
assumed, which corresponds to a discontinuity in the valence
band of Vh=VT vbo=200 meV, and a discontinuity in the
conduction band of Vel=VT �1−vbo�=300 meV �see Fig. 1�.
We also choose a quantum well width of LQW=20 Å, for
which the splitting between the heavy hole HH1 and the light
hole LH1 energy states is �lh�50 meV. Note that there is
only one bound heavy hole state and only one bound light
hole state for these parameters.

A. Cylindrical micromagnet: A zero-dimensional trap

We investigate a Fe microdisk �with a diameter of R
=1 �m, a thickness Dz=50 nm, and �0Ms=2.2 T� in the
vortex state.7,21 In this state, due to the competition between
the exchange energy and the demagnetization energy, the
magnetization lies in the plane of the microdisk except near
the center, where the local magnetization points out of the
plane �to reduce the exchange energy�, and forms a magnetic
vortex. The diameter of the core �Rc�, to which the nonzero
perpendicular magnetization is confined, extends over only
about 60 nm, as previously calculated.7 It is important to
mention that only the z component Mz of the total magneti-

zation M� produces the “spike” in the magnetic field B� , which
traps the quasiparticles.

The magnetic field B� can be calculated using the magne-
tization profile of the vortex7,21 and the magnetostatic Max-
well equations. In Fig. 3 we show the distribution of the

magnetic field B� �x ,y ,d� in the XY plane at a distance d
above the micromagnet, where d is the separation between
the micromagnet and the QW. In the magnetostatic picture,

the magnetic field B� is produced by two magnetic charges �of
diameter Rc� on two surfaces of the micromagnet. These
magnetic charges are separated by a thickness of the micro-
magnet, Dz. At a distance d=10 nm above the micromagnet,

the maximum value of the magnetic field is �B� �max=0.46 T.
The field is nonzero over a distance of 60 to 80 nm from the
center of the disk, as shown in Fig. 3. Such a strongly local-

FIG. 2. �Color online� Top panel: splitting of the heavy hole
�HH1� and light hole �LH1� edges at the � point in a QW vs Bx �we
use the electron representation�. By and Bz are set to zero. Bottom
panel: splitting of the heavy hole and light hole edges in a QW vs
Bz �Bx=0 and By =0�. Solid and dashed lines represent states with
opposite spin. Heavy hole states �3/2 do not split when the mag-
netic field is applied in the plane of the QW as seen on the upper
panel.
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ized magnetic field in both x and y directions, together with
the QW confinement results in a quasiparticle localization in
all three directions. The particle is localized below the center
of the microdisk. We will refer to this system as a zero-
dimensional trap.

In Fig. 4 we show the absorption coefficient for three
distances d between the microdisk and the QW: d=5 nm,
10 nm, and 15 nm. The energy of the photon is measured
relative to the energy of the main absorption peak in the QW
in the absence of a micromagnet �see Fig. 1�. Vertical bars
represent the optical oscillator strengths of the transitions,
and the numbers �ncnv� show that the corresponding line is a
transition between the nv

th hole state and the nc
th electron state.

The eigenenergies of the conduction electron fulfill E1�E2
� ¯ �Enc

�¯ where E1 is the ground state of the conduc-
tion band electron. Eigenenergies of the valence electron
obey E1	E2	 ¯ 	Env

	¯ where E1 is the ground state of
the valence band electron.

The absorption line was obtained after broadening the �
distribution of each transition, Eq. �25�, with a Gaussian
function �the linewidth of each resonance is w=1 meV�. As

expected, the peaks shift to lower energies with decreasing d,
as the maximum value of B, and thus the effective “poten-
tial,” are larger for smaller d. At d=10 nm, the shift between
the �11� transition and the main absorption peak is around
25 meV �we will call this quantity the binding energy�. As is
seen in Fig. 4, the first transition �11� is the most intense, but
we can see that nondiagonal transitions, such as �14�, also
have a relatively large spectral weight. We also see that for
the set of parameters we used in our calculation the two
closely lying lines �22� and �33� merge into a single large
peak in the absorption spectrum.

In Fig. 5 we show the absorption coefficient for two dif-
ferent thicknesses Dz of the microdisk and a value of d fixed
at 10 nm. When the thickness Dz increases from
50 nm to 150 nm, the binding energy increases from
25 meV to 28 meV. The transition �51�, not seen for d
=10 nm in Fig. 4, now becomes visible at Dz=150 nm. On
the other hand, increasing Dz to larger values does not
change the absorption substantially, because the separation
between magnetic charges �Dz� begins to exceed the dimen-
sion of the magnetic charge �Rc�.

To get further insight into the optical transitions we follow
the prescription defined in Ref. 7 and write the conduction
electron two-component spinor as

�m,k
c = fel�z�eim��e−i�gm,k

↑ ���
gm,k

↓ ���
� , �32�

where m=0, ±1, ±2, . . . is the angular momentum quantum
number, k=0,1 ,2. . . is the radial quantum number and we
used cylindrical coordinates �� ,� ,z�. This form of the angu-
lar dependence of the wave function is exact for electrons
described by spherically symmetric bands with quadratic dis-
persion. Assuming that the valence band can also be approxi-
mated by a quadratic dispersion, the hole four-component
spinor has the following form:

FIG. 3. �Color online� Three-dimensional image of the magnetic
field B�x ,y ,z=d� on the XY surface at a distance d above Fe mi-
crodisk. It is assumed that the micromagnet is in the vortex state.
The diameter of the region where the z component of the magneti-
zation Mz is nonzero �the core region� is of the order of Rc

=60 nm, whereas the diameter of the microdisk R is 1 �m, and the
thickness of the disk Dz is 50 nm. Mz, depicted by vertical arrows in
the core region, is very well approximated by a parabolic profile.

FIG. 4. �Color online� Absorption coefficient for three distances
d between the microdisk and the QW with Dz=50 nm. The number
�ncnv� corresponds to transitions between the nc

th electron state and
the nv

th hole state.

FIG. 5. �Color online� Absorption coefficient for two thick-
nesses Dz of the ferromagnetic microdisk. In magnetostatic lan-
guage, Dz is the distance between magnetic charges. The separation
between the microdisk and the QW was set to d=10 nm.
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�m,k
v = eim��

fh�z�e−3i�gm,k
+3/2���

f l�z�e−2i�gm,k
+1/2���

f l�z�e−i�gm,k
−1/2���

fh�z�gm,k
−3/2���

	 . �33�

The dominant part of the electron and the hole wave function
calculated in our approach is of the form given in Eqs. �32�
and �33�.

In Ref. 7 the intraband optical transitions of the conduc-
tion band were studied. Selection rules for this type of the
transitions imply that the angular momentum quantum num-
ber of the envelope wave function m must be changed by ±1
in �± polarizations ��m= ±1�. On the other hand for inter-
band transitions �m=0 because the initial and the final
Bloch states are of different symmetry: the initial state is of P
symmetry and the final state is of S symmetry. In order to
calculate the �+ absorption coefficient using Eq. �25� we
have to calculate two integrals: ��−3/2 ��↓� and ��−1/2 ��↑�.
Using Eqs. �32� and �33� as an approximation for the true
wave function we have

��−3/2��↓� � � e−im��fh�z�gm,k
−3/2����*fel�z�eim��gm�,k�

↓


���d�rdrdz � �m,m�,

��−1/2��↑� � � e−im��fh�z�gm,k
−1/2����*fel�z�eim��gm�,k�

↑


���d�rdrdz � �m,m�,

from where the conservation of the m number is immediately
obtained: m=m�.

In Table I we show the mapping between the notation of
the hole states used previously nv and the �m ,k� notation. A
similar table can be drawn for the electron states. As an
example, the nondiagonal optical transition �14� shown both
in Fig. 4 or Fig. 5 is relatively strong because both the first
electron state �1� and the fourth hole state �4� have the same
m quantum number, i.e., m=0.

B. Rectangular micromagnet: A one-dimensional trap

In this section we consider a rectangular, flat Fe micro-
magnet in the single-domain state,19 with magnetization
pointing in the x direction.9,10,22 The single-domain state of

the micromagnet with the mentioned size was investigated
by micromagnetic simulations using the OOMMF package.23

Without an external magnetic field the sample does not re-
main as an ordered single domain, but goes into a multido-
main structure instead. The simulations show, however, that
after magnetizing the sample with a field of 1 T and reducing
the field close to 0 T, a value of 0.2 T is sufficient to restore
a state that—for our purposes—is sufficiently close to a
single domain. Because of the magnetic anisotropy of the gh,
this additional field is unimportant for electrons in the va-
lence band, but it does have a slight effect on the conduction
electron spectrum.

In Fig. 6 we present the z component of the magnetic field
below one of the two poles of the micromagnet �Dx=6 �m

Dy =2 �m
Dz, see inset in Fig. 7�. The thickness Dz is a
parameter in our simulations, and we vary this value in the
range from 150 to 500 nm. For large Dx, the local magnetic

field B� �r�� can be thought to be a sum of two fields �one of
them is shown in Fig. 6� produced by the magnetic charges
localized at the two magnetic poles of the micromagnet. The
magnetic field Bz on the second pole has an opposite direc-
tion to this field, and thus “attracts” quasiparticles with the
opposite spin. The top two plots �� and �� in Fig. 6 are for
two different distances, d=10 nm and d=60 nm, keeping a
constant thickness of Dz=150 nm. The two bottom plots ��
and �� are for the same distances, using Dz=500 nm. When
the distance d is increased while keeping the thickness Dz
constant �as we go from � to � or from � to ��, the magnetic
field Bz is seen to decrease, as expected. In contrast, when
the thickness Dz increases for a constant d ��→� or �→��,
the magnetic field Bz is seen to increase. This suggests that,
by depositing thicker micromagnets, larger magnetic fields
can be produced for the same separation between the micro-
magnet and the QW. In Fig. 6, we also show contour plots of
Bz on the XY plane, which indicate the spatial extent of the
magnetic field and its gradient. In all cases ��, �, �, and ��,
we see that Bz is confined to a narrow region in the x direc-
tion and is delocalized in the y direction over the distance of

TABLE I. Mapping of the quantum number n that was used in
Fig. 4 and Fig. 5 to described hole states on the �m ,k� pairs. Only
four states, n=1, . . . ,4, which fulfill E1	E2	E3	E4, are mapped,
and E1 is the ground state of the electron in the valence band.

nv m k

1 0 0

2 −1 0

3 +1 0

4 0 1

FIG. 6. Z component of the magnetic field B� produced by a
rectangular micromagnet at a distance d below its narrow edge. We
show results for two distances, d=10 nm and d=60 nm, and for
two micromagnet thicknesses, Dz=150 nm and Dz=500 nm. Con-
tour plots on the xy planes indicate localization and “strength” of
the z component of the magnetic field.
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two microns. With increasing thickness Dz ��→� or �→��
the “spread” of Bz in the x direction is seen to increase.

Our calculations show that at d=10 nm �Dz=150 nm�, the

maximum value of the magnetic field is �B� �max=0.6 T. This
value is larger than for a microdisk because in the present
case the thickness of the rectangular micromagnet is larger.
We must emphasize that the gradient of the magnetic field24

is as large as 2 mT/Å for d=10 nm, so that a precise deter-

mination of �B� �max or of the magnetic field profile is challeng-
ing even in the simple case of a single-domain phase.

In Fig. 7 we present the absorption spectrum at three dis-
tances d between the QW and the micromagnet: d=10, 20,
and 30 nm. In all three cases the thickness of the micromag-
net was kept at a constant value of Dz=150 nm. As before,
we chose the zero of the energy axis at the main absorption
peak. At d=10 nm, the binding energy is 66 meV, while at
d=60 nm it is smaller by a factor of 2. This follows from the
fact that the further the micromagnet is from the QW, the
smaller is the magnetic field at the QW position �see also
Fig. 6�. Nondiagonal transitions are relatively strong both in
the case of the microdisk and of the rectangular
micromagnet.10 The separation between the peaks decreases
as d increases, because the gradient of the magnetic field
�and equivalently, the gradient of the potential� also de-
creases with increasing d.

In Fig. 8 we show the behavior of the absorption coeffi-
cient for three thicknesses Dz=100, 200, and 300 nm, for the
same micromagnet-QW distance d. With increasing Dz, the
binding energy increases almost linearly. This is seen in Fig.
8 as a linear shift of the �11� transition. An interesting obser-
vation is that the separation between the peaks does not de-
pend on Dz in the range 100–300 nm and for the parameters
that we have used. As in the previous paragraphs the pair

�ncnv� denotes transition between the nv
th hole state and the

nc
th electron state. Contrary to the disk case, for the rectangu-

lar micromagnet only �odd, odd� or �even, even� transitions
are allowed, see Fig. 9.

Let us now return to the anisotropy of the g factor of the
holes that was described in Sec. II. In Fig. 9 we compare the
absorption spectrum calculated for the two approximations:
the isotropic and the anisotropic cases of the gh factor. As an
example we have chosen the rectangular micromagnet for
discussing the magnetic anisotropy of the QW. The electron
g factor is isotropic in both cases. We see that, at least in the
low energy region, the two spectra are the same: the position
of the transition energies as well as the oscillator strengths
are nearly the same for both g factor models. Thus, for the
arrangement discussed in this work �see inset in Fig. 7� and
for the geometrical parameters we have used �such as the
size and the shape of the magnets�, only the z component
of the magnetic field produced by the micromagnet is
important.

FIG. 7. �Color online� Absorption coefficient for distances d
=10, 20, and 30 nm �from top to bottom� between the rectangular
micromagnet �Dz=150 nm, Dx=6 �m, and Dy =2 �m� and the
QW. The binding energy as well as the separation between the
peaks decreases almost linearly with increasing d. In the inset we
show the arrangement of the rectangular micromagnet in a single
domain state. Magnetization is pointing in the x direction.

FIG. 8. �Color online� Absorption coefficient for different thick-
nesses Dz of a rectangular micromagnet. In this case the distance
between the micromagnet and the QW is constant, d=10 nm. Sepa-
ration between peaks is barely distinguishable for all three Dz val-
ues. Note that the absorption peak �11� shifts almost linearly with
Dz.

FIG. 9. �Color online� Comparison of the absorption spectrum
in two models: the isotropic and the anisotropic g factor of the hole.
The electron g factor is isotropic. The top and bottom spectra are
very similar. Calculations done for rectangular Fe micromagnet
with dimensions of Dx=6 �m, Dy =2 �m, Dz=0.15 �m on the top
of a QW structure at a distance d=10 nm apart.
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IV. CONCLUSIONS

We analyzed theoretically the optical response of a hybrid
structure composed of a micromagnet deposited on top of a
diluted magnetic semiconductor quantum well structure.
While we focused on calculating the absorption coefficient,
directly measurable in an optical absorption experiment, the
results of this paper are equally well suited for predicting the
outcome of a photoluminescence experiment.

The calculations were performed for two types of ferro-
magnetic micromagnets: a cylindrical microdisk and a rect-
angular micromagnet. We analyzed the local magnetic field
produced by the micromagnets. In the case of a microdisk,
the magnetic field, together with the QW confinement poten-
tial, traps the quasiparticle �e.g., an exciton� in all three spa-
tial directions. However, a rectangular micromagnet traps
quasiparticles only in two spatial directions, allowing them
to behave as one-dimensional quasiparticles. We described
the approximations we used in our approach, including a
discussion of the anisotropy of the g factor of the hole states.
Then we calculated the absorption coefficients for both
shapes of the micromagnets for various micromagnet-QW
separations and micromagnet thicknesses.

In order to observe zero-dimensional and one-dimensional
states inside the DMS QW it is necessary to produce as
strong a local magnetic field as possible. This can be
achieved, for example, by utilizing materials with high satu-
ration magnetization. Our analysis shows that it is better to
deposit a thicker ferromagnetic layer, since thicker micro-

magnets produce a stronger local magnetic field. As ex-
pected, the growth of a high quality QW relatively close to
the interface between the micromagnetic and the semicon-
ductor is of major importance for optimal quasiparticle local-
ization. Since high values of g factors are of critical impor-
tance for fabricating efficient spin traps, optical localization
is most likely expected to be observed in DMS-based quan-
tum structures at low temperature.

Finally, since quasi-one-dimensional states emerge only
below the poles of the rectangular micromagnet and zero-
dimensional states emerge only below the center of the disk,
spatially resolved techniques such as microphotolumines-
cence, microreflectance, or near-field scanning optical mi-
croscopy are preferred for observing the effects presented in
this paper. Since both zero-dimensional and one-dimensional
states are spin polarized, unambiguous identification of the
confined states requires the use of polarization sensitive tech-
niques. Specifically, in the case of a rectangular micromagnet
the states created underneath the opposite poles should have
opposite spin-polarization, which can serve as a convincing
test of the appearance of these new states.

ACKNOWLEDGMENTS

This research was supported by the National Science
Foundation under NSF-NIRT Grant No. DMR 02-10519; by
the U.S. Department of Energy, Basic Energy Sciences, un-
der Contract No. W-7405-ENG-36; and by the Alfred P.
Sloan Foundation �B. J.�.

1 H. Ohno, F. Matsukura, and Y. Ohno, Japan Society of Applied
Physics 5, 4 �2002�.

2 D. Grundler, T. M. Hengstmann, and H. Rolff, Braz. J. Phys. 34,
598 �2004�.

3 S. Kreuzer, M. Rahm, J. Bigerger, R. Pulwey, J. Raabe, D. Schuh,
W. Wegscheider, and D. Weiss, Physica E �Amsterdam� 16, 137
�2003�.

4 P. Kossacki, J. Cibert, D. Ferrand, Y. Merle d’Aubigné, A. Ar-
noult, A. Wasiela, S. Tatarenko, and J. A. Gaj, Phys. Rev. B 60,
16018 �1999�.

5 M. Combescot, O. Betbeder-Matibet, and F. Dubin, Eur. Phys. J.
B 42, 63 �2004�.

6 J. A. K. Freire, F. M. Peeters, A. Matulis, V. N. Freire, and G. A.
Farias, Phys. Rev. B 62, 7316 �2000�.

7 M. Berciu and B. Jankó, Phys. Rev. Lett. 90, 246804 �2003�.
8 J. Kossut, I. Yamakawa, A. Nakamura, G. Cywiński, K. Fronc,

M. Czeczott, J. Wróbel, F. Kyrychenko, T. Wojtowicz, and S.
Takeyama, Appl. Phys. Lett. 79, 1789 �2001�.

9 G. Cywiński, M. Czeczott, J. Wróbel, K. Fronc, A. Aleszkiewicz,
S. Maćkowski, T. Wojtowicz, and J. Kossut, Physica E �Amster-
dam� 13, 560 �2002�.

10 P. Redliński, T. Wojtowicz, T. G. Rappoport, A. Libál, J. K.
Furdyna, and B. Jankó, Appl. Phys. Lett. 86, 113103 �2005�.

11 M. Berciu, T. G. Rappoport, and B. Janko, Nature �London� 435,
71 �2005�.

12 J. K. Furdyna, J. Appl. Phys. 64, R29 �1988�.
13 J. K. Furdyna and J. Kossut, Diluted Magnetic Semiconductors

�Academic, Boston, 1988�.
14 T. Dietl, M. Sawicki, M. Dahl, D. Heiman, E. D. Isaacs, M. J.

Graf, S. I. Gubarev, and D. L. Alov, Phys. Rev. B 43, 3154
�1991�.

15 B. Kuhn-Heinrich, W. Ossau, H. Heinke, F. Fischer, T. Liz, A.
Waag, and G. Landwehr, Appl. Phys. Lett. 63, 2932 �1993�.

16 O. Madelung, Introduction to Solid-State Theory, 3rd ed.
�Springer, New York, 1996�.

17 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 �1955�.
18 M. Abolfath, T. Jungwirth, J. Brum, and A. H. MacDonald, Phys.

Rev. B 63, 054418 �2001�.
19 J. D. Jackson, Classical Electrodynamics, xxi ed. �Wiley, New

York, 1999�.
20 B. Kuhn-Heinrich, W. Ossau, E. Bangert, A. Waag, and G. Land-

wehr, Solid State Commun. 91, 413 �1994�.
21 J. K. Ha, R. Hertel, and J. Kirschner, Phys. Rev. B 67, 224432

�2003�.
22 P. A. Crowell, V. Nikitin, D. D. Awschalom, F. Flack, N. Samarth,

and G. A. Prinz, J. Appl. Phys. 81, 5441 �1997�.
23 See http://math.nist.gov/oommf/, OOMMF User’s Guide, Version

1.0, M. J. Donahue and D. G. Porter, Interagency Report
NISTIR 6376, National Institute of Standards and Technology
Gaithersburg, MD �Sept. 1999�.

24 F. Pulizzi, P. C. M. Christianen, J. C. Maan, T. Wojtowicz, G.
Karczewski, and J. Kossut, Phys. Status Solidi A 178, 33
�2000�.

ZERO- AND ONE-DIMENSIONAL MAGNETIC TRAPS… PHYSICAL REVIEW B 72, 085209 �2005�

085209-9


