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Microwave measurements �frequency shifts and Q changes� of Si:As samples in the vicinity of the metal-
insulator transition have been made with two different helical resonators and a cylindrical cavity in the
frequency range 124 MHz to 13.9 GHz at temperatures to 1.5 K on samples from 0.72Nc to 2.45Nc �Nc

=8.6�1018/cc�. The resonators were calibrated with a constantan �Cu0.55Ni0.45� sample exhibiting close to
Drude behavior. The measurements are in the regime ���kT� �EF−Ec����p and are far into the Hagen-
Rubens regime ����1�, but where the skin depth � is less than the sample thickness t for metallic samples.
Any significant “perfect conductor” contribution to �� /� is ruled out by calculations and the experimental
results. The ratio R= ��� /�� /��1/Q� directly yields the transverse dielectric response 	t�N ,� ,T�. The 	t�T
�1.5 K� values are consistent with a large Drude contribution −��p��2 plus a positive interband contribution
primarily from 1s-A1-1s-T2 impurity band transitions. The Drude component is consistent with the scaling
behavior of 
dc�N ,T→0�.
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I. INTRODUCTION

One of the classical systems for the study of the metal-
insulator transition �MIT� has been doped Si and Ge and
numerous experiments have demonstrated the scaling behav-
ior of the dc conductivity, the Hall coefficient, the conduc-
tion electron-spin resonance �CESR� excess linewidth, and
the diffusivity D�Ni ,T→0� for metallic samples �N�Nc

where Nc is the critical density at T=0�. These results have
been discussed in various reviews.1–3 For insulating samples
�N�Nc� the characteristic temperatures T0 and T0� associ-
ated with Mott and Efros-Shklovskii variable range hopping
�VRH� have been shown to scale to zero as n→nc. The
critical behavior of VRH for these MIT systems has been
discussed4 earlier. The dielectric response 	�N ,� ,T� and mi-
crowave conductivity of barely metallic samples in the criti-
cal regime has not received attention although there have
been several studies5–7 of the microwave behavior of insulat-
ing samples. Of particular relevance for this work are the
infrared results8 of Gaymann et al. for Si:P which show both
the expected plasma contribution consistent with Boltzmann-
Drude �BD� behavior and the effect of interband transitions.
Microwave measurements of amorphous Si1−xNbx very close
to the critical point xc have demonstrated9 
�� ,T��1/2

in the quantum limit ���kT. There were early
measurements10 of n and p-doped Ge that included metallic
samples. Mahaffey and Jerde11 reported results for Na-
ammonia solutions through the critical mole fraction show-
ing large negative values of 	 �−102�	�−104� characteris-
tic of Drude behavior. This study presents results for Si:As
showing the scaling behavior of the transverse dielectric re-
sponse 	t�N�Nc ,� ,T� versus reduced density N /Nc−1 in a
frequency range where the response should contain a plas-
mon contribution plus an interband contribution. These re-
sults are consistent with 	t�N ,� ,T→0� �N /Nc−1�p with
p=0.3±0.1 for N /Nc−1�1.0, or in qualitative agreement
with the scaling of 
dc�N ,T→0�. With the BD model this
suggests the carrier relaxation time � and the drift mobility in

zero magnetic field do not scale and that Ni, �p
2, and 
dc all

scale with the same exponent.
Numerous microwave measurements have been made on

semiconductors, ferrites, the high temperature superconduct-
ors as well as conventional superconductors, charge density
wave systems, one-dimensional organic polymer systems,
and two-dimensional electron �hole� systems by a variety of
techniques and many of these measurements have been re-
viewed by Dressel and Grüner12 �DG�. The microwave mea-
surements of superconductors requires high sensitivity to
measure the small changes in absorption and changes in the
complex surface impedance Zs=Rs+ iXs with temperature
and Sridhar and Kennedy13 employed a high-Q supercon-
ducting cavity at 4.2 K �Qc�107� to measure Y1Ba2Cu3Oy

and La1.85Sr0.15CuO4 over a T-range 4.2 to 100 K employing
a sapphire rod and a heater to vary the sample temperature.
For barely metallic n-type Si samples the ��1/Q� and �� /�
shifts are three orders of magnitude larger and adequate sen-
sitivity is obtained from Cu wall resonators with Q’s at low-
T of order 104. We have employed both helical resonators
�HR� �without the capacitative gap employed in the study of
insulating Si:As and Si:P �Ref. 7�� and cylindrical cavity
TE01n modes. By placing the disk sample directly inside the
helix centered on a lossless dielectric rod one can translate
the sample between the nodes and antinodes of the field
components inside the helical resonator �HR�. With the disk
samples of diameter d �d / t�40� the Er field plays the domi-
nant role in determining �� /� in the HR while for the cy-
lindrical cavity �CC� TE01n modes E� is the dominant field
component.

The characteristic energies for barely metallic samples are
the Fermi energy 	F=EF−Ec �Ec the mobility edge�, the ther-
mal energy kT, the plasma energy ��p, and the photon en-
ergy. The data described herein are in the regime ���kT
�	F���p. Since both 	F and �p scale to zero as N→Nc
one cannot approach Nc too closely to keep kT�	F �for
Tmin=1.5 K and Nmin=1.05Nc kTmin/	Fmin�0.1 for Si:As�.
For ���kT the diffusive correction from e-e interactions
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is negligible.14 The data measured cover a range
124–2010 MHz in two different helical resonators �HR� and
to 13.9 GHz with a CC. At 13.9 GHz and 1.5 K �� /kT
�0.4. For all metallic samples, �, and T, ���1 �Hagen-
Rubens regime�, suggesting no �-dependence from the
Drude model itself. However, there can be �
�N ,� ,T� cor-
rections from e-e interactions, interband transitions, or from
insulating portions of the sample within a skin depth � or so
of the surface. Frequency measurements probe a length scale
L�= �D /��1/2=� / �3���1/2 where D is the diffusivity �D
=vF

2� /d for a degenerate metal and the mean-free-path �
=vF��. All the measurements are in the classical regime �
�L���= �2/�
��1/2. The metallic sample data is in the
skin depth regime �� t, where t is the disk sample thickness.
As N decreases toward Nmin � approaches t and corrections
are required resulting from interference between the waves
entering the two flat surfaces of the disk. These corrections
have been calculated15 and are negligible for �� t /5 �i.e., the
13.9 GHz CC data�.

II. BACKGROUND

Microwave measurements in the low frequency Hagen-
Rubens regime ����1� for metals would normally be in the
classical skin depth regime. In this regime the complex con-
ductivity 
=
1+ i
2 and dielectric response 	=	1+ i	2 �	1

=1−4�
2 /� ;	2=4�
1 /�� of metals is to be given approxi-
mately by Boltzmann-Drude behavior with possible correc-
tions to 	1 from interband contributions. DG refer to this
classical regime as the homogeneous limit where the depen-
dence of 
�q ,�� on q is very small and give the expression


�q,�� = �Nie
2�/m*��1/�1 − i����

��1 − 1/5�qvF��2/�1 − i���2 + ¯ � , �1�

where the correction to Drude behavior depending on qvF�
�� /�. For the Si:As metallic samples studied in this work
0.002���0.02 cm and 0.8���4 nm and qvF��2�10−4.
Hence standard q-dependent corrections to Drude theory are
totally negligible, however, other corrections might arise be-
cause of the fact the samples are inhomogeneous just above
the critical density nc and because of interband corrections to
	1�N ,� ,T� from low-lying excited states. In general one ex-
pects to have

	1 = 	h − ��p��2/�1 + ����2� + �	ib�N,�,T� , �2�

where 	h is the host dielectric constant and the interband
contribution �	ib can only be ascertained from a Kramers-
Kronig analysis of the interband conductivity �
ib�N ,�� ,T�.

In the Hagen-Rubens regime the plasmon Drude contribu-
tion −��p��2 to 	1 depends critically on the collision time,
which might be different from the bulk � which enters 
dc
=Nie

2� /m* because of extra surface scattering. Table I shows
the relevant parameters for Cu, Al, constantan, Si:As, and
Si:P where rs= �3/4�Ni�1/3, a0=�2 /me2, �p

2=4�Nie
2 /m*,

and ��� is the bulk resistivity in micro ohm cm �as T→0 for
Si:As and Si:P�. Ni is the density of itinerant electrons. The
values of �p� for Cu and Al are overestimates because of the
use of the bulk � from 
dc. The Cu and Al values are in-

cluded since they were measured by Diehl, Wheatley, and
Castner16 �DWC� and Song and Castner �SC�.15 However,
Cu0.55Ni0.45 samples were used for the calibration because
they led to more accurate measurements of ��1/Q� than the
Cu and Al samples and ought to closely exhibit Drude be-
havior. For Cu0.55Ni0.45 ��� is very weakly dependent on T
�always in the classical skin depth regime at all T� and ��p��2

is only about one order of magnitude larger than for SiAs
and SiP.

A. The expression for the frequency shift produced
by a sample

Using Maxwell’s equations with and without a sample
Müller17 derived an early expression for the frequency shift
when a sample is placed inside a resonant cavity. This ex-
pression also arose independently during World War II �MIT
Rad. Lab18 and Cornell19 reports�. The derivation has been
given by Hauser,20 who termed the expression the “Bethe-
Schwinger” expression. The fractional frequency shift pro-
duced by a sample is

� − �0

�
= −

�
s

�E0 · �� · E + H0 · �� · H�dV

� �	0E0 · E + �0H0 · H�dv

, �3�

where E0 and H0 are the fields without the sample ��0� and
E and H are the fields after the sample is added ���. ��
= ��−1�	0 while ��= ��−1��0 are only nonzero inside the
sample and the �s in the numerator is only over the sample.
The denominator in Eq. �3� is just the stored energy W inside
the HR. For paramagnetic metals and doped semiconductors
the magnetic susceptibility will be very small and the mag-
netic contribution to ��−�0� /� will be negligible because
��=4���0 is so small. In two early semiconductor
studies21,22 only ��1/Q� was measured for spherical samples
in order to determine the resistivity at room temperature in
the skin depth regime at X-band frequencies. No effort was
made to determine the frequency shift in these studies. The
magnetic term in �s in Ws is negligible. The paramagnetic
metal case ���10−6� differs substantially from the ferrite
case23–26 �NiZn, MnMg, etc.� studied extensively after World
War II. For the ferrite case �� was large and samples �both
spheres and disks� were placed at an H antinode. The objec-
tive was to determine the tensor components of � �rather
than 	�. Spencer et al.27 and also Waldron28 have considered
the criteria for the applicability of cavity perturbation theory

TABLE I. Plasmon parameters for various metals.

rs /a0 ��� m* /m �p� ��p��2

Cu �RT� 2.67 1.6 1.3 490 2.4�105

Al �RT� 2.07 2.5 1.4 222 4.9�104

Cu0.55Ni0.45 4.13 52 1.3 29 842

SiAs �2Nc� 45.4 2777 0.26 8.86 78.6

SiP �2Nc� 60.0 3846 0.26 9.70 94.1
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represented by Eq. �3�. Spencer et al. concluded that the
earlier criterion on the stored energy �W /W�1 was too
strong and that a weaker criterion �� /��1 is sufficient.
Waldron mentions the sample shape dependence and that
spherical samples must be kept away from the cavity walls to
avoid reflection effects on E and H. For disk samples he
suggests E and H cannot be accurately determined, except in
the limit of zero thickness. He notes the approximation that
E in the disk is the same as E0 in the absence of the disk.
However, at the surface of the disk SC15 employed for the
tangential component Et�r ,z�=E0,t�r ,z� and for the normal
component En�r ,z�=E0,n /	n from the conventional boundary
conditions on E �also H�. This is nearly the same as Wal-
dron’s discussion for 	n�1. Waldron notes the disk
thickness/diameter ratio t /d needs to be kept small. In our
case t /d�0.01 for the Cu0.55Ni0.45 calibration sample and
t /d�0.03 for the metallic Si:As samples. The fields E and H
decay rapidly for the skin depth �� t and lead �see SC15 and
Eq. �13a� below� to �� /�−�	t−1�� for �� t rather than
the �� /�Vs /Vc= �d /a�2t /L dependence.

Even though the fields can change outside the sample be-
cause of currents and charges inside the sample these
changes in E and H outside the sample make no contribution
to the numerator in Eq. �3�. Since �	−1� can be very large
and negative for a good metal �−3.37�104 for Al at 293 K�
from the plasma contribution this leads to large positive fre-
quency shifts that are much larger than the filling factor
Vs /VHR. It is this argument and the associated experimental
results for metals that conflict with the “perfect conductor”
contribution ���−�0� /�0�pc discussed by many authors.29–33

From Eq. �3� it might appear that there is no contribution to
the frequency shift from the interior of the metal where E
and H are 0, namely when the sample thickness t��. Sig-
nificant attention has to be given to the “perfect conductor”
contribution29–33 to the frequency shift. Klein et al.31 give the
expression

��/�0 = �Zs + lim	
	→���/�0, �4�

where � is the resonator constant and the second term repre-
sents an additive constant representing the excluded volume
of the field by the sample as the sample approaches the per-
fect conductor limit. This term is known for a sphere and is
given by 1.5A�Vs /Vc� where A is a constant of order unity
depending on the field configuration. This result predicts a
result proportional to the volume Vs of the sample. However,
this prediction is at odds with data for Cu disks �DWC�.16

Furthermore, Eq. �3� produces a result much larger than the
second term in Eq. �4� that is proportional to 		1−1	�. Within
the Drude model this term continues to increase as 
→�
even as � �
�−1/2→0. However, within the Drude model
there is a minimum �min of order of the plasma wavelength.
The various problems with the “perfect conductor” approxi-
mation will be discussed elsewhere in more detail.

The resonant frequencies �0 given in E&M texts for a
cavity resonator are given for the perfect conductor case ��
=0�. For normal conductor �Cu� walls with a finite � one can
calculate the downward frequency shift �a−�0

=−�1/2
����sHt
2ds /�	0E2dV�. For the cylindrical cavity

TE01n modes this yields

��a − �0�/�0 = − �1 + i���/2���k1/k�2/a + �k3/k�2/L� , �5�

where a is the radius and L the length and k1=3.832/a and
k3=n� /L with k2=k1

2+k3
2. For the TE012 mode with

�Cu�RT� /2a=1.5�10−5 the fractional frequency shift is less
than 1.2�10−5. The imaginary part of Eq. �4� ��− i�� leads
to the Q0 of the resonator such that 1 /Q0=Im��a−�0� /�0.
This frequency shift is negligible compared to the measured
fractional shifts of order 10−2. Note that the empty cavity
frequency is this �a. Such shifts also occur for the HR, but
are much harder to calculate. They are negligible compared
to the measured frequency shifts and those calculated from
Eq. �3�.

B. The perfect conductor scenario „�=0…

Slater29 has given the expression �2=�a
2�1+��Ha

2

−Ea
2�dV� where the integral is over the perturbed boundary.

If the perturbed boundary is a region where Ha is large and
Ea near zero one will get a positive frequency shift. In the
opposite limit Ha�0 and Ea is large one gets a negative
shift. In this approach it is the excluded field that determined
the frequency shift. If one employs the Slater expression one
obtains a shift ��−�a� /�a=A�Vs /Vc� when Ha is a maxi-
mum, Vs /Vc is the filling factor of the sample with volume Vs
in a resonator of volume Vc. A is a coefficient of order unity
which depends on the integration over Ha

2. For the fields in
a cylindrical cavity for TE01n modes one calculates
this “perfect conductor” diamagnetic contribution
��=�0�1+�m�=0,�m=−1� using Eq. �3� and the field Hz

= �k1 /k�J0�k1r�sin k3z �k1=3.832/a, k3=n� /L for a cylinder
or radius a and length L�. At the antinode �k3z= �� /2�, etc.�
one obtains the result for a disk sample of radius rs and
thickness t

���/�pc� = �rs
2/a2��t/L�
�J0

2�k1rs� + J1
2�k1rs��/J0

2�k1a���k1/k�2,

�6�

where k1
2+k3

2=k2. For our Cu0.55Ni0.45 with k1rs=1.12 the
coefficient of Vs /Vc is 4.5. This is to be compared with a
diamagnetic shift 2.47 Vs /Vc obtained by Zhai et al.33 for a
spherical sample placed at the center of the TE011 mode. For
Vs /Vc=2.5�10−4 one obtains fractional frequency shifts of
9.4�10−4, 6.5�10−4, and 4.4�10−4 for the modes n=1, n
=2, and n=3, respectively. These shifts are not totally neg-
ligible but are less than 2% of the observed frequency shifts.
Note that if one used the susceptibility �m�10−6 character-
istic of a real paramagnetic metal any magnetic field contri-
bution from Eq. �3� would be totally negligible compared to
electric field contributions. In addition for real metals with a
skin depth � the field would only be excluded in an effective
thickness teff= t−2�.

Equation �3� can be employed to obtain the diamagnetic
��−�0� /� contribution for a cylindrical cavity with the per-
fect diamagnet of radius a− placed at z=0 where the only
TE01n mode field is Hr. The result is �� /�= �k3 /k�2�t /L�,
which is the identical result obtained from the frequency ex-
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pression for the TE01n modes when the length is shortened
from L to L− t for t�L. On the other hand if the same
sample is placed at the antinode of E� �Hz� the diamagnetic
contribution is �k1 /k�2�t /L�. For a real metal with finite 

and skin depth � the E� contribution is 		t−1	�2� /L� and the
diamagnetic contribution is reduced from t to t−n� where
n�2. The ratio for a real metal is the 		t−1	�� / t� / �k1 /k�2,
which will be much larger than 1 when 		t−1	�� / t��1. For
the samples employed in this research with rs /a=0.293
the “perfect conductor” diamagnetic contribution is
4.5�rs /a�2�t /L��k1 /k�2. The �� /� from the first term in Eq.
�3� would indeed be less than the diamagnetic contribution if
one used a “spherical” sample with d� t. However, with the
disks employed with d / t�110 for Cu0.55Ni0.45 and 35–45 for
the SiAs samples the diamagnetic contribution to �� /� is
small, but not totally negligible. The data presented in DWC
for Cu disks �see Fig. 11� of thickness t in a HR showed
�� /�dp for 4.76�d�11.1 mm with p increasing from
3.5 to 3.8. DWC concluded this result was consistent with
the field Er in the HR plus a rim correction �d3t�. DWC in
Fig. 10 also showed small thickness corrections for HR
modes n=1 and n=2 for Cu disks of constant d and t ranging
from 0.126 to 0.508 mm. If the “perfect conductor” diamag-
netic contribution was dominant one would have had
��� /��pc t. The DWC data forces one to conclude the dia-
magnetic contribution is small.

The fields for a perfect infinite helix have been given by
Pierce34 and are readily adapted for the standing wave case.
There are no pure transverse TE or TM modes. The great
advantage of the HR is the nondegenerate modes. However,
the fields inside the HR are complicated by the finite length,
the conducting end plates, and the fact that one end of the
helix is shorted to the Cu shield. It is these complications
that require the use of appropriate metals to calibrate the HR.

Ong35 has calculated �� /� for an isotropic ellipsoidal
shaped sample in a CC in the skin depth regime starting with
the “Bethe-Schwinger” expression. Ong employs the depo-
larization factor N analogous to the extended quasistatic
�EQS� case of Champlin and Krongard36 and obtains the re-
sult

�/Nz + ��/� = − ��1/2Q� , �7�

where �=	0E0
2Vs /4W and Nz is the depolarization factor in

the z direction �E0 �z, but in our case E0 is transverse and � to
r or ��. In the good metal limit ��1/2Q���� /� and Ong’s
result leads to �� /��−� /Nz, which is very different from
the result we obtain starting with Eq. �3�. For Ong’s TTF-
TCNQ case � /Nz�1.8�10−4, or a factor of 100 smaller
than our Si:As values. However, our result for ��1/Q� is
consistent with Ong’s result �his Eq. �36��. Our treatment
�SC15� matches boundary conditions �E0,t=Et, corresponding
to Nt=0; E0,z=	�Ez and Nz�1� and predicts the very large
�� /� that are observed. For our case � is a tensor and our
results appear inconsistent with Eq. �11� in Ref. 35.

C. The 1/Qs loss due to the sample

The most common approach to the calculation of 1 /Qs is
to determine the imaginary part of �� /�, as calculated from

Eq. �3�. In many cases this may be a reasonable approxima-
tion, but it may not be correct when the fields E and H differ
substantially from E0 and H0 in Eq. �3�. When one inserts a
metal sample into a resonant cavity there can be substantial
changes in the fields which may be hard to accurately deter-
mine. In general one expects

1/Qs = TPdis/W = �2�/�W�Rs� Ht
2ds , �8�

where T is the period, Pdis is the power dissipated, Rs is the
surface impedance �1/
� in the classical skin depth regime�,
and Ht is the transverse magnetic field at the surface of the
metal sample. The stored energy is now W�	0�E2dv
+�0�H2dv+ �	−	0��sE

2dV+ ��−�0��sH
2dV, where the lat-

ter two integrals are usually negligible when the skin depth �
is negligible compared to other dimensions. This stored en-
ergy differs from the denominator in Eq. �3� and the differ-
ence grows as E and H differ from E0 and H0. When a
metallic sample is at the antinode of E� and Hz for TE01n
modes in a cylindrical cavity one has Ht in Eq. �5� given by
Ht=1/Rs Et �Hr and E�� which is required to have a Poynting
vector into the metallic disk. In the absence of the metallic
sample at this antinode Hr would be zero and E�=E�,0. It is
more difficult to determine exactly how E� changes in the
presence of the metallic disk sample but if E� still behaves as
the fields do in a cylindrical cavity there will be no change in
the fractional frequency shift given by Eq. �3� because both
numerator and denominator will be changed by the same
amount. At this antinode the drastic change in the field is the
Hr necessary for a nonzero Pdis. On the other hand, if the
metallic disk is positioned at the node of E� and Hz �antinode
of Hr� then the drastic change in the fields will be in E�.

With a metallic disk in a cylindrical cavity at the antinode
of E� �Hz� a circular current is induced in the metallic disk
which leads to a magnetic dipole m normal to the disk. The
fields from this oscillating dipole are determined from the
vector potential A�= ��0m /4��r / �r2+z2�3/2 and B=curl A
and E�=−�A� /�t. These fields make no contribution to the
numerator in Eq. �3�, nor to the dissipation Pdis in Eq. �7�
because E� from m is out of phase with the original E�,0 in
the cylindrical cavity and Br from m is zero in the plane of
the sample �z=0�. However, these fields are not small and
can contribute to the stored energy W in Eq. �8� but will not
contribute to the denominator in Eq. �3�. For a good conduc-
tor at microwave frequencies the fields from the dipole can
be big enough at microwave frequencies to constitute an im-
portant correction to the calculation of 1 /Qs. This induced
dipole field is drastically reduced in the HR because the prin-
cipal transverse E-field is Er, which yields radial currents and
no dipole m. The very much smaller E� is of magnitude
�vp /c�Er and is reduced by the factor vp /c=0.018 for the
larger HR. This is one of two significant advantages of the
HR, namely �1� the principal E field component is Er, which
does not lead to an induced magnetic dipole in a metallic
disk, and �2� that the HR modes are nondegenerate and well
separated, in contrast to the TE01n and TM11n of a cylindrical
cavity. In addition the HR, as a slow wave device, allows
microwave measurements to be made at low-temperature
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with reasonable length scales down to the hundreds of MHz
regime. The offsetting complication is the more complex
fields within the HR and the need to calibrate it with some
well characterized metal.

D. Impedance approach to resonant circuit analysis

DG have given a description in terms of the impedance of
the sample Zs=Rs+ iXs placed in a resonant circuit with a
characteristic impedance Zc= �L /C�1/2 and an unperturbed
resonant frequency �0. Rs is the surface resistance of the
sample while Xs is the surface reactance. When the fre-
quency changes from �0 to � and the quality factor from Q0
to Q it is possible to relate these changes to Rs and Xs giving

�� − �0�/�0 = Xs/Zcg0 �9�

and

��1/Q� = 1/Q − 1/Q0 = 2Rs/Zcg0.

Note that the ratio of �� /�0 to ��1/Q� yields Xs /2Rs, which
is a characteristic of the sample and is independent of the
resonant circuit characteristic impedance Zc and the geomet-
ric factor g0 which depends on the size and shape of the
resonator and sample. Zs can be expressed in terms of the
complex conductivity of the sample 
1+ i
2. Neglecting
magnetic effects ����0� one obtains Zs= ��0� /ci�
1

+ i
2��1/2 and this result allows a determination of Rs and Xs.
The ratio Xs /Rs is

− Xs/Rs = 
��
1
2 + 
2

2�1/2 + 
2�/��
1
2 + 
2

2�1/2 − 
2��1/2

= ��1 + sin 2��/�1 − sin 2���1/2, �10�

where sin 2�=
2 / �
1
2+
2

2�1/2. The ratio for a good metal in
the Hagen-Rubens regime ����1,
2�
1�, the ratio r����
in Eq. �10� approaches unity. However, the ratio R
= ��� /�� /��1/Q� obtained with the Bethe-Schwinger ex-
pression in Eq. �3� yields R4�
2 /�=1−	1. This differs
from the ratio in Eq. �10�. The experimental values Rexpt for
various good metals and for the MIT system Si:As will be
compared with these two different theoretical expressions.
One can separately solve of Xs and Rs to obtain

Xs = − 1/��
1
2 + 
2

2�1/2 �11�

and

Rs = r����/��
1
2 + 
2

2�1/2,

where the skin depth �=c / 
2�����
1
2+
2

2�1/2+
2��1/2.
The difference between the fractional frequency shift in Eq.
�9� and the Bethe-Schwinger result is that Xs in Eq. �11� is
not proportional to 
2.

III. EXPERIMENTAL DETAILS

Many of the experimental details are given in SC and in
DWC. However, a second smaller HR was constructed and
used for measurements in the 440 to 2800 MHz regime
�modes n=1–4�. Furthermore, SC did not discuss the cali-
bration of the Q-change ��1/Q� because the Q changes were

very small for Cu, Al, and Au. It was found necessary to
calibrate the HR �both �� /� and ��1/Q�� with a much
poorer conductor, but one that might be expected to show
Drude behavior in the frequency range of the measurements.
Constantan �Cu0.55Ni0.45� was chosen because of its larger
resistivity � that is virtually independent of T, but which also
remains in the classical skin depth regime over the entire
T-range from RT to 1.5 K. Measurements were also made in
a cylindrical cavity which was obtained by removing the
helix from the HR and employing an insulated end plate to
help damp out the TM11n modes. The D /L ratio was selected
to minimize mode overlap. Measurements were made for
other TE11n modes, but only the TE01n mode results in the
frequency range 11.2 to 16.8 GHz will be discussed. These
data was obtained with a Hewlett-Packard 8750A network
analyzer.

A. Samples

The disk samples were prepared with diamond coring bits
and were selected from 5.08 cm diameter wafers used in
previous dc transport studies.37 Each wafer was profiled with
�RT measurements and an effort was made to select portions
of the wafer with uniform �RT values. Both the outer diam-
eter and the inner hole �0.317 cm diam� were cut at the same
time to improve concentricity of the two circles. This ruled
out making 4-point probe �RT measurements on the final
sample. The samples were then etched with a standard CP-4
etch. The samples and their characteristics are listed in
Table II. The samples in Table II were measured in the
larger HR �VHR=47.24 cm3� and many of them also in the
cylindrical cavity. A second set of smaller samples �d
=0.61±0.01 cm, 0.289� t�0.350 mm� was prepared for
measurement in the smaller HR �VHR=5.147 cm3�. In most
cases these samples were cut from the same wafer as those in
Table II and had nearly the same values of �RT.

IV. EXPERIMENTAL RESULTS

Figure 1 shows the results for f�z�− f0 and ��1/Q� for the
Cu0.55Ni0.45 calibration sample at 77 K for the large HR near
the maximum fmax and the minimum fmin for HR modes 2, 3,

TABLE II. Si:As samples studied.

t �mm� d �cm�
�RT

�� cm� N /Nc

C16 0.519 1.0790 0.0093 0.72

D7 0.381 1.1458 0.0075 1.051

D2� 0.295 1.1429 0.00735 1.062

E14 0.335 1.1480 0.0070 1.099

D14 0.330 1.1445 0.00695 1.108

F4 0.312 1.1443 0.0068 1.137

G7 0.348 1.1387 0.0066 1.174

B18 0.284 1.1455 0.0044 1.993

A2 0.254 1.1463 0.0033 2.486
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and 4. The scatter for the ��1/Q� values is much greater than
for f − f0. Within the experimental uncertainties the values of
��1/Q�max closely coincide with the value fmax− f0. Figure
2�a� gives f − f0 and 1/Q�z� for the TE011 and TE012 modes
for the cylindrical cavity �D /L=1.02�. The f�z�− f0 values
are very accurate while the 1/Q�z� values show a lot of
scatter resulting from the partial overlap of the TE01n and
TM11n modes �and possibly other modes� at certain values of
z which can significantly lower the values of Q�z�. Note also
that as the sample approaches a wall �z=0� or the coupling
probes �z=1.3 in.� the 1/Q�z� values are dramatically in-
creased. To obtain accurate values of 1 /Q�z� for the TE01n

modes one must only take the smallest values 1/Q�z� and fit
these values to the expression

1/Q�z� = 1/Qs��f�z� − fmin�/�fmax − fmin�� + 1/Q0, �12�

where Qs is the sample Q, Q0 is the empty cavity Q, and the
� ��cos2 �nz /L�. Analysis of the data in Fig. 2�a� with Eq.
�11� yields Q0�TE011�=17,700 and Q0�TE012�=21,900 at
77 K. The ratio of these two values is in good agreement
with the calculated ratio for these two modes. An effort was
made to obtain data for the TE013 mode but the mode overlap
was more serious and the errors in 1/Q�z� were significantly
larger. From values of Qs and �fmax− f0� / fmax the ratio R
= ��f / f� /��1/Q� as well as the calibration coefficients I and
K� are obtained �see Table III�. Figure 2�b� gives f�z�− f0 and
��1/Q�=1/Q�z�−1/Q0 for the smaller HR for modes n=3
and n=4. For mode n=3 we chose the large peak at z
�0.34 in. for calibration, while for mode n=4 we chose the
peak at z�0.43 in. The calibration is most accurate for

modes 2 and 3 and less accurate for n=4 because ��1/Q� is
smaller for the higher n modes.

The data has been analyzed with the expressions

��/� = �fan − f0�/fan � − �	t − 1��F	�t/���
s

E · E0dAs/U

= − �	t − 1��F	�t/��I , �13a�

TABLE III. Calibration coefficients from Cu0.55Ni0.45

samples.

Device K� �cm−1�a R I �cm−1�b

Large HR n=2 0.341±.005 34.9±0.4 0.0141

n=3 0.202±.011 40.2±2 0.00954

n=4 0.105±.009 41.9±3 0.00522

Small HR n=2 0.935* 34.0 0.038

n=3 0.42* 35.1 0.017

CC TE011 0.506±.033 226.5±15 0.136

TE012 0.406±.027 230.4±15 0.111

aBased on 
dc=2�104 S/cm.
bBased on 		t−1	=843.

FIG. 1. f�z�− f0 �closed symbols� and 1/Q�z� �open symbols� vs
z for the larger HR modes n=2–4 for a Cu0.55Ni0.45 sample. The
empty HR frequencies f0: n=2, 364.23 MHz; n=3, 596.25 MHz;
and n=4, 797.13 MHz. The upper values are at Er,max and the lower
values are at Er=0. Note that the values of f − f0 at the Er node are
slightly negative consistent with Eq. �4b� in SC.

FIG. 2. Cu0.55Ni0.45 calibration samples: �a� f�z�− f0 and 1/Q�z�
vs z for the CC for modes TE011 and TE012. The variations in
��1/Q� result from mode overlap with other modes. �b� f�z�− f0

and 1/Q�z�−1/Q0 vs z for the smaller HR for modes n=3 �f0

=1987.05 MHz� and n=4 �f0=2810.27 MHz�.
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1/Qs = ��1/Q� = 1/Qan − 1/Q0 � �Rs/�0��F
�t/���
s

B2dAs/U

= �F
�t/��K�, �13b�

where Rs is the surface resistance �Rs=1/
��. The interface
correction factors F	�t /�� and F
�t /�� have been given ear-
lier �SC�,15 but approach 1 for �� t /5, which is the case for
the Cu0.55Ni0.45 calibration sample �except for the larger HR
mode n=1�. In Eq. �13a� magnetic contributions to �� /�
have been neglected because of the negligible magnetic sus-
ceptibilities for these samples ��−1�10−6� and the “perfect
conductor” correction �Eq. �4�� has not been included for the
reasons discussed above. The coefficients I and K� depend
on the dimensions of the resonator and on the sample radius
and for the HRs are different for each mode n. The values of
I and K� determined with the calibration samples are given in
Table III. A useful result is the ratio R��� /�� /��1/Q�,
which for F	=F
=1 becomes R=−�	t−1��I /K�� providing a
direct measure of 	t independent of �. For insulating samples
��� t� Eq. �13b� changes to 
t�sE

2dAs /�U. The experimen-
tal uncertainties for the large HR were estimated from five
different calibrations experiments, while three runs were
made for the CC. The smaller HR values in Table III are less
certain than those for the large HR because of smaller values
of Q0. For HR mode n=2 at 77 K SC15 found �� /�
=0.0166 for an 0.05 mm Al disk and �� /�=0.0223 for a
0.33 mm Cu disk. These results are in sharp disagreement
with the “perfector conductor” contribution in Eq. �4� that
should be proportional to the sample thickness t.

��1/Q� versus T data is shown for an insulating Si:As
sample �N /Nc=0.72� in Fig. 3 for HR modes n=1–3. Char-
acteristic peaks occur at Tp�28, 9.5, and 6.5 K for n=1, 2,
and 3 that are identified with ��f ,
�f ,Tp��= t. This peak rep-
resents the crossover between insulating behavior for T
�Tp and metallic behavior in the skin depth regime ��� t�
for T�Tp and was not observed in an earlier Si:As study7

because those measurements were limited to 1.3�T
�4.2 K. For T�Tp ��1/Q�� ��
�N ,� ,T��−1/2 while for
T�1/2Tp ��1/Q� t
�N ,� ,T�. The values of 
�Tp� based
on �= t are 68, 23, and 14 S/cm for modes n=1–3, respec-
tively. The frequency dependence 
�� ,T=1.5 K��1.6 for
124�� /2��800 MHz is shown in the inset. The exponent
1.6 is slightly larger than that in earlier Si:As results, but also
represents a different geometry for the E field. This superlin-
ear behavior of 
�� ,T=1.5 K� is contrasted with the sublin-
ear behavior of Helgren et al.38 for insulating amorphous
NbxSi1−x alloys. However, the data in Ref. 38 was for 100
�� /2��1000 GHz, or two orders of magnitude higher
than the data in Fig. 3. Note that 
�� ,T� is decreasing mono-
tonically as T is lowered in the entire range 1.5�T�60 K.
A more heavily doped insulating sample �N /Nc=0.90� with
much larger values of 
dc�T� also shows ��1/Q� increasing
as T is lowered for HR modes n=1–3, but 
�� ,T� is too
large even at 1.5 K and � remains less than t and no cross-
over peak is observed. Much lower T would be required to
see the crossover.

In Fig. 4 �� /� and ��1/Q� data are shown for three
metallic samples versus T between 1.5 and 4.2 K. The T

dependence of both �� /� and ��1/Q� is very small in this
range with the exception of the 13.9 GHz data �TE012 mode�
which exhibits a 40% increase between 4.2 and 1.5 K and
yields an estimate as T→0 of ��1/Q�=0.0022±10%. There
are N-dependent shifts in ��1/Q� for the HR modes with
changes in 
dc�N ,T�. The 9.03 and 10.1 samples show broad
maxima in ��1/Q� at T�10–11 K and T�22–24 K �data
not shown� that are consistent with the behavior of 
dc�N ,T�
for Si:As �Ref. 39� for T�4.2 K. The errors in ��1/Q� in-
crease with HR mode n because of decreased sensitivity of
the HR for larger n. The deviations are largest for the n=4
HR data. The second significant feature of the data in Fig.
4�a� is the small density dependence of �� /� compared
with that of ��1/Q�. �� /� increases by only 8% as N in-
creases from 9.03 to 17.1, whereas ��1/Q� decreases by a
factor of 2.8 for the same change in N. The �� /� data at
13.9 GHz �TE012 mode� exhibit the same features as the data
in Fig. 4. If 	t and � were both governed by pure Drude
behavior in the Hagen-Rubens regime ���1 then �� /�
 �
dc�1/2� /�� and ��1/Q� �
dc��−1/2 and for a fixed � and
� one expects �� /� to more than double and ��1/Q� to
decrease by more than a factor of 2. The experimental results
suggest either 	t or � are not obeying pure Drude behavior.
Since � cancels out in the ratio R= ��� /�� /��1/Q� one
must examine the N-dependence of R�N ,T� and from
��N ,� ,T� the N-dependence of 
�N ,� ,T�.

V. DISCUSSION

From Eq. �13b� one obtains � employing the calibration
value K� obtained from the Cu0.55Ni0.45 calibration sample.

FIG. 3. ��1/Q� vs T for larger HR modes n=1, 2, and 3 for
Si:As sample with N=6.2�1018/cc �0.72 Nc�. The peaks occur at
�� t and yield 
=67.8 S/cm at 28 K for n=1, 
=22.9 S/cm at
10 K for n=2, and 
=14.2 S/cm at 6.7 K for n=3. The inset
shows 
�T�1.5 K� vs f with an approximate f1.6 dependence, a
slightly stronger dependence than in Ref. 7.
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Using the classical skin effect result
�= �3.16/2���1/
fMHz�−1/2 yields 
�N ,� ,T�. The results for

�N ,� ,T�1.5 K� versus reduced density N /Nc−1 for HR
frequencies 600 MHz �n=3�, 800 MHz �n=4�, and for
13.9 GHz �TE012 mode� are given in Fig. 5. Also shown are
the Si:As 
dc�N ,T→0� values from earlier studies.37,39 For
the HR modes 3 and 4 
�N ,� ,1.5 K� /
dc�N ,T→0� is
nearly constant demonstrating the scaling exponent for

�N ,� ,1.5 K� is very close to the dc scaling exponent of
1 /2. The Cu0.55Ni0.45 calibration could introduce an absolute
error ��20% �, but this does not affect the scaling exponent
of 
�N ,� ,1.5 K� since the calibration coefficient K���� is
independent of N. The 13.9 GHz data qualitatively shows the
same scaling trend, but with greater experimental uncertain-
ties because of the errors in ��1/Q�. Sample F �N /Nc

�1.137� seems too large and sample G �N /Nc�1.174� was
not measured because it was broken in an earlier experiment.
��1/Q� at 13.9 GHz for sample D �N /Nc�1.051� exhibited
a T-dependence. A linear-T extrapolation to T=0 yielded

�T=0��108 S/cm. Although the 13.9 GHz values are con-
sistently above the dc and 600 MHz values they are only a
factor of 1.6 above the former and less than 30% �with ex-
ception of sample F� above the 600 MHz values. The fre-
quency dependence of 
�N� ,T�1.5 K� between 373 MHz
and 11.9 GHz is small, but will be discussed further below.
The T-dependence of sample D7 at 13.9 GHz is not consis-
tent with that of 
dc�N ,T�, the latter resulting from e -e in-
teractions as discussed in Refs. 37 and 39.

In Fig. 5�b� the frequency dependence is shown for three
samples �D7, 1.051; F4, 1.137; and B18, 1.993� for T
�1.5 K�. The increase in 
�N ,� ,1.5 K� with � is small and

might be accounted for by �1� interband contributions, �2�
e -e interactions, and localized electrons. The increase in the
dipole matrix element between the 1S -A1 and 1S -T2 impu-
rity bands with N is clearly important in determining
the interband contribution 
ib�N ,� ,T�, however,
the infrared results8 suggest 
ib will be negligible for
���1 MeV. The e -e interaction contribution14 is
�
ee �e2 /���kT /�D�1/2��� /kT�2 for �� /kT�1 in the diffu-
sive regime. Note that at 13.9 GHz �� /kT=0.44 at 1.5 K.
However, the data does not show the D�N�−1/2 N-dependence
of �
ee. Furthermore, for the N=1.051Nc sample �D7� the
T-dependence has the wrong sign, namely Fig. 5 shows

�N ,� ,T� getting smaller as T→0 which is contrary to the
�
ee prediction. This T-dependence is qualitatively consis-
tent with a contribution from localized electrons �as in Fig.
3�, however, it is not clear whether the �-dependence is con-
sistent. The two-component model40 for the uncompensated
case yields Nloc+Ni=N and the itinerant electron density Ni
=�Nc�N /Nc−1�1/2 with ��2 for the weakly compensated

FIG. 4. �a� �� /� vs T for three metallic samples �9.03 �, 10.1
�, 17.1 �� for larger HR modes 3 and 4. Over a factor of 1.9
increase in N �� /� only increases by an average factor �modes
2–4� of 1.09. ��1/Q� vs T for these samples for modes n=2, 3, and
4. Also shown is TE012 data �13.9 GHz, 9.03 ��, the only case with
a significant T-dependence for 1.5 K�T�4.2 K. ��1/Q� de-
creases by a factor �modes 2–4� of 2.8 as N increases by a factor of
1.9. The errors in ��1/Q� increase with n and are ±6% for n=4.

FIG. 5. �a� 
�N , f ,T�1.5 K� vs reduced density N /Nc−1 for
f =373 �n=2�, f =602 �n=3�, and f =801 MHz �n=4� and
13.9 GHz. 
dc�N ,T→0� values from �Ref. 37 �, Ref. 39 �� are
also shown. The frequency dependence is small and the microwave
conductivity scales with N /Nc−1 with an exponent very close to
that for the dc data, namely s�0.53. �b� 
�N , f ,1.5 K� vs f for
three metallic samples D7, F4, and B18. The lower points at
2010 MHz may result from a calibration error. A 10% increase in
K� would increase 
 by 21%. At most 
 may increase by 25% with
f for B18 and perhaps 70% for D7. The deviations from Drude
behavior over a factor of 37 in frequency are small.
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case. For N=1.051Nc 60% of the electrons are localized and
a conductivity of the form


total�N,�,T� = 
i + Nlocf��,T� �14�

might be expected, where the first term is the metallic term
showing BD behavior and the second term is that from the
localized electrons where f�� ,T� shows a stronger
�-dependence than 
i. However for larger N Nloc becomes
much smaller. For the N=1.993Nc sample �B18� Nloc
�0.02Nc and the second term in Eq. �14� would be negli-
gible. It is only in the lower part of the scaling regime Nc
�N�2Nc where there are localized electrons that might
give rise to a stronger �-dependence. The data in Fig. 5
suggest for N�2Nc the �-dependence above 
dc is smaller
than just above Nc. This scaling regime consisting of both Ni
and Nloc represents that of an inhomogeneous conductor
where 
�N ,� ,T→0� will be a function of r. However, at the
critical point as T→0, Ni→0 and for ���kT, 
total
Nloc���1/2 as demonstrated for amorphous NbxSi1−x.

9

Should these small increases in 
�N ,� ,1.5 K� with � in
Fig. 5 be considered seriously? They depend critically on the
calibration with the Cu0.55Ni0.45 sample. If the surface con-
ductivity 
sur within � of the surface is smaller than 
bulk
because of increased surface scattering the K����
 �
sur /
bulk�1/2. For the 13.9 GHz data a factor 
sur /
bulk

=1/2 would increase K� by �2 and reduce the 13.9 GHz 

values by a factor of 2 making them smaller than the

dc�N ,T→0� values in Fig. 5. This seems very unlikely, but
cannot be ruled out experimentally with our approach. What
can be concluded is any �-dependence �124 MHz� f
�13.9 GHz� is small and that deviations from Drude behav-
ior are small.

The ratio R= ��� /�� /��1/Q� �proportional to −�	t−1��
versus N /Nc−1 is shown in Fig. 6. In Fig. 6�a� the results for
the larger HR are shown for modes n=2 �373 MHz�, n=3
�602 MHz�, and n=4 �801 MHz�. The open symbol values
are the uncorrected values while the closed symbols are Rc
=R�F
�t /�� /F	�t /���. Note that the t /� correction is positive
for small values of N /Nc−1 and negative for large values of
N /Nc−1. From SC15 the correction is positive for t /�
�2.03, negative for 2.03� t /��4.9, and less than 2% for
t /��4.5. Normally one expects R to increase somewhat
with frequency and this is borne out for a majority of the
samples. The trend is clear and is supported by the R values
in Fig. 6�b� for the CC and the smaller HR. This trend is
given by the dot-dash lines in Figs. 6�a� and 6�b� with a slope
of 0.3. For pure BD behavior one should get Rc ��p��2

 �N /Nc−1�1/2. The slower dependence implies a correction
to BD behavior, most likely from an interband contribution
	t,ib.

The Si:P infrared data of Gaymann et al.8 permits a direct
determination of 	t,ib. The data in their Fig. 5 has been ana-
lyzed to obtain the interband conductivity 
ib=
�E ,10 K�
−
Drude�E ,�� where 
Drude�E ,��=
0�N� / �1+ �E /Ec�2� and
Ec=19.6 meV as estimated from the data for the 7.3�1018

sample. This Ec corresponds to �=3.36�10−14 s, a value
only 4% larger than that obtained from 
dc�T=0�
=260 S/cm for N=2Nc. 
0 is approximated from the E

=1 meV value. 
ib�E ,T=10 K� is shown in Fig. 7�a�. There
are two important features for 
ib�E�: �1� the 1s -A1

→1s -T2 band transition, with a peak in the 6–8 meV region
increases strongly with N from 4.5 to 7.3; and �2� the 1s
-A1→Si conduction band transition �starting for E
�20 meV and peaking near 45 meV� decreases significantly
from 4.5 to 7.3 being down by a factor of 2.5 from 4.5 to 7.3.
From the Kramers-Kronig result

	ib�E�� = 8P�
0

�


ib�E�dE/�E2 − E�2� . �15�

Setting E��0 this integral is evaluated numerically for an
upper limit of 30 meV and yields 31.5, 44.1, and 45.9 for the
4.5, 5.2, and 7.3 cases, respectively. Most of the contribution
comes from E�12 meV. Even though the peak of 
ib is
60% higher for 7.3 than for 5.2 the peak is at 8 meV for 7.3
compared to 6 meV for 5.2 and the low energies dominate in
Eq. �15�. In Fig. 7�b� values of 	t versus N /Nc−1 from the
CC TE011 ��� and TE012 ��� are slightly larger than those
obtained with the larger HR by close to a factor �1.8 and
seem too large by this factor compared to the values in Table
I. The dot-dash line, with a slope of 1 /2, the pure Drude
prediction, is clearly more rapid than the data and one would
have to add 	t,ib to the Drude result −��p��2. The CC higher
frequency data might be viewed as supporting a slope near

FIG. 6. �a� The ratio R= ���� /�� /��1/Q�� and Rc

=R�F
�t /�� /F	�t /��� vs N /Nc−1 for the large HR modes n=2, 3,
and 4. The open symbols are R and the closed symbols Rc. F
 /F	 is
greater than one for small N /Nc−1 and less than one for N /Nc−1
�1. The dot-dash line has a slope of 0.3. �b� The ratio R for the
TE011 ��� and TE012 ��� modes where t /��6 and the interference
corrections are small. Values of R and Rc for the smaller HR mode
n=3 that are comparable to the values for the larger HR in �a�. Note
the R values for the CC are close to a factor of 10 larger than those
for the HRs. The dot-dash line has a slope of 0.3.
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1/2 for N /Nc−1�0.14 followed by a droop at the two larg-
est values of N /Nc. However, the HR results are less clear
and could support a smaller slope near 0.3 over the entire
range of N /Nc−1. However, the HR data scatter is large
enough to make any scaling exponent claims problematic.
All that can be said is the 	t result is consistent with a Drude
plus interband contribution to yield a resulting 	t�N� smaller
than −��p��2 because of 	t,ib and 	h=11.4. However, the 	t,ib

contribution for Si:As is not known, but should be within a
factor of 2 of the Si:P values.

The difference �factor �1.8� between the CC and HR
results is outside the experimental error limits and may rep-
resent a problem with the calibration procedure. Possible rea-
sons are �1� Cu0.55Ni0.45 is not a good Drude metal and shows
a frequency-dependent 	t��� that changes between 1 and
11.4 GHz; �2� as discussed in Sec. II C the difference be-
tween E��CC� and Er �HR� is important and the extra term in
the stored energy W for ��1/Q� resulting from the induced

magnetic dipole field which is present for ��1/Q�, but not
for �� /�; �3� The CC results are correct, implying 	t for
Cu0.55Ni0.45 is closer to 1680 rather than 840 implying the
HR values are too small by a factor of 2. This problem is not
easily resolved. Reason �1� seems unlikely but could only be
ruled out with additional measurements of a known sample
with reasonably large 	t and no dispersion. Reason �2� is
possible and the large frequency shifts may suggest essential
corrections to the perturbation fields used in calculating
��1/Q�. However, the good agreement of 
�N ,� ,T
=1.5 K� with Drude behavior and only slight increases
above 
dc as shown Fig. 5 would appear to argue against
this. However, because of the difference between K�expt and
K�calc for the CC this cannot be ruled out. The magnetic
dipolar contribution to the stored W would make this discrep-
ancy worse. Reason �3� is at odds with the expected magni-
tude of −��p��2 �see Table I� and with values of 4�
dc�.

Although 	1�N ,� ,T=1.5 K� is negative for the metallic
samples studied in this work in the Hagen-Rubens regime
����1� it is known that 	1��� can cross zero several times
at much higher frequencies. Lee and Heeger41 studied the
reflectivity R��� of the metal-insulatior system metallic poly-
pyrrole doped with PF6 over a broad frequency range
8 to 5�104 cm−1. They report zero crossing of 	1��� at 20
and 1.3�104 cm−1 and explain their results with a
localization-modified Drude model. The higher crossing is at
the screened plasma frequency ��p

2 /	��1/2. However, even
in the ���1 regime Eq. �2� predicts a zero crossing of
	1�N ,�� at a density N�Nc given by

	h + �	ib�N,�� � 1� = ��p��N = 2Nc��2�N/Nc − 1�1/2.

�16�

�	ib�N ,���1� is not accurately known for N barely above
Nc but could be smaller than 	h. Neglecting it and using 	h
=11.4 and ��p��N=2Nc��2=78.6 �see Table I� yields Nco,min

=1.02Nc. Nco will increase with �	ib. This suggests a more
complex behavior of 	1�N ,���1� for N just above Nc where
a majority of the carriers are localized. At N=1.02Nc Nloc
=6.29�1018/cm3 and Ni=2.49�1018/cm3. Equation �2�
does not take account of contributions to 	1 from the local-
ized electrons. However, these corrections would be anala-
gous to those in the localized-modified Drude model in Ref.
41.

VI. CONCLUSIONS

The HR results demonstrate, despite the more complex
field distribution within the HR because of the finite, shorted
helix, that this experimental approach can yield reliable val-
ues of the microwave conductivity and transverse dielectric
response when the HR is properly calibrated. The first few
HR modes n=1–4 can yield data over a frequency range of
more than six. The HR avoids the mode degeneracy problem
associated with the CC TE01n and TM11n modes and permits
measurements down to the low 100-MHz realm. The results
also demonstrate that the “perfect conductor” contribution to
�� /� is not relevant to the present results in the skin depth
regime, contrary to other work.

FIG. 7. �a� The interband 
ib=
�N ,E ,T�10 K�−
Drude�E�
�E�=� /�=19.6 meV� obtained from Gaymann et al. �Ref. 8� for
4.5, 5.2, and 7.3�1018/cc Si:P metallic samples. A Kramers-
Kronig analysis yields 	ib�E�1 meV� of 31, 44, and 46 for the 4.5,
5.2, and 7.3 samples, respectively, showing that 	ib is a significant
fraction of 	Drude=−��p��2. �b� Values of 	t for Si:As using −	t

=843�R /RCuNi�, thus setting 	ib=0 for the Cu0.55Ni0.45 calibration
sample and using RCuNi values from Table III. The smaller values
come from the R values from Fig. 6�a� for modes 2 ���, 3 ���, and
4 ���. The larger values come from CC modes TE011 ��� and TE012

���. The 60% larger values for the CC case are not easily ex-
plained. The dot-dash line shows the expected slope for pure Drude
behavior. The actual observed slopes are closer to 0.3, indicating an
interband contribution for Si:As, as suggested by the results in �a�.
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Far into the Hagen-Rubens regime the results show the
microwave conductivity 
�N ,� ,1.5 K� very close to

dc�N ,T→0� and deviations from Drude behavior are small
over a factor of 37 in �. Just above Nc �
�N ,� ,1.5 K� may
increase by 70%, possibly from inhomogeneity and photon-
assisted hopping observed from insulating samples. The ratio
R= ���� /�� /��1/Q�� provides a good measure of the di-
electric response 	t�N ,� ,1.5 K�. 	t shows a large Drude
contribution from plasmons, but also shows a correction
from an interband contribution from 1s -A1→1s -T2 transi-
tions �and 1s -A1→conduction band transitions� as inferred
from the infrared data. The Drude contribution to 	t
−��p��2=−4�
dc� is qualitatively consistent with the


dc�N ,T→0� scaling results and a � independent of N. This
is consistent with the scaling of the Drude portion coming
from �p

2Ni�2Nc�N /Nc−1�1/2. The present results can be
adequately explained without contributions from weak-
localization or e -e interactions.

ACKNOWLEDGMENTS

This work was supported by NSF Grant DMR-9803969.
The authors thank M. Bocko for the use of HP network ana-
lyzers and J. Waldman for the use of his facilities. T.G.C.
acknowledges useful discussions with S. Sridhar.

*Present address: Korea Electrotechnology Research Institute,
Seong-Joo-Dong 28-1 Changwon, Kyung-Nam, Korea 641-120.

1 R. F. Milligan, T. F. Rosenbaum, R. N. Bhatt, and G. A. Thomas,
in Electron-Electron Interactions in Disordered Systems, edited
by A. L. Efros and M. Pollak �North-Holland, Amsterdam,
1985�, p. 231.

2 M. P. Sarachik, in Metal-Insulator Transitions Revisited, edited
by P. P. Edwards and C. N. R. Rao �Taylor and Francis, London,
1995�, p. 79.

3 T. G. Castner, in Phase Transitions and Self-Organization in
Electronic and Molecular Networks, edited by J. C. Phillips and
M. F. Thorpe �Kluwer Academic/Plenum Publishers, New York,
2001�, p. 263.

4 T. G. Castner, Phys. Rev. B 61, 16596 �2000�.
5 H. F. Hess, K. DeConde, T. F. Rosenbaum, and G. A. Thomas,

Phys. Rev. B 25, 5578 �1982�.
6 J. S. Brooks, O. G. Symko, and T. G. Castner, Jpn. J. Appl. Phys.,

Part 1 26, Suppl. 26-3, 721 �1987�.
7 R. J. Deri and T. G. Castner, Phys. Rev. Lett. 57, 134 �1986�; M.

Migliuolo and T. G. Castner, Phys. Rev. B 38, 11593 �1988�.
8 A. Gaymann, H. P. Geserich, and H. V. Löhneysen, Phys. Rev.

Lett. 71, 3681 �1993�; Phys. Rev. B 52, 16486 �1995�.
9 H. L. Lee, J. R. Carini, D. V. Baxter, and G. Grüner, Phys. Rev.

Lett. 80, 4261 �1998�.
10 F. A. D’Altroy and H. Y. Fan, Phys. Rev. 103, 1671 �1956�.
11 D. W. Mahaffey and D. A. Jerde, Rev. Mod. Phys. 40, 710

�1968�.
12 M. Dressel and G. Gruner, Electrodynamics of Solids, Optical

Properties of Electrons in Matter �Cambridge University Press,
Cambridge, 2002�.

13 S. Sridhar and W. L. Kennedy, Rev. Sci. Instrum. 59, 531 �1988�.
14 B. Altshuler and A. Aronov, in Electron-Electron Interactions in

Disordered Systems, edited by A. Efros and M. Pollak �North-
Holland, Amsterdam, 1985�.

15 K. J. Song and T. G. Castner, Rev. Sci. Instrum. 72, 1760 �2001�.
16 R. Diehl, D. M. Wheatley, and T. G. Castner, Rev. Sci. Instrum.

67, 3904 �1996�.
17 J. Müller, Z. Hochfr. Techn. Elekt. 54, 157 �1939�.

18 J. Schwinger, MIT Rad. Lab. Report 43–44 �unpublished�.
19 H. A. Bethe and J. Schwinger, N.D.R.C. Report No. D1-117,

Cornell Univ., 1943 �unpublished�.
20 W. Hauser, Introduction to the Principles of Electromagnetism

�Addison-Wesley, Reading, 1971�, p. 512.
21 J. G. Linhart, I. M. Templeton, and R. Dunsmuir, Br. J. Appl.

Phys. 7, 36 �1956�.
22 T. Kohane and M. H. Sirvetz, Rev. Sci. Instrum. 30, 1059 �1959�.
23 J. O. Artman and P. E. Tannenwald, J. Appl. Phys. 26, 1124

�1955�.
24 E. G. Spencer, R. C. LeCraw, and F. Reggia, Proc. Inst. Radio

Eng. 44, 790 �1956�.
25 W. Von Aulock and J. H. Rowen, Bell Syst. Tech. J. 36, 427

�1957�.
26 H. Seidel and H. Boyet, Bell Syst. Tech. J. 37, 637 �1958�.
27 E. G. Spencer, R. C. LeCraw, and L. A. Ault, J. Appl. Phys. 28,

130 �1957�.
28 R. A. Waldron, Proc. Inst. Electr. Eng. 107C, 272 �1960�.
29 J. Slater, Rev. Mod. Phys. 18, 441 �1946�.
30 M. E. Brodwin and M. K. Parsons, J. Appl. Phys. 36, 494 �1965�.
31 O. Klein, S. Donovan, M. Dressel, and G. Gruner, Int. J. Infrared

Millim. Waves 14, 2423 �1993�.
32 D. N. Peligrad, B. Nebendahl, C. Kessler, and M. Mehring, Phys.

Rev. B 58, 11652 �1998�.
33 Z. Zhai, C. Kusko, N. Hakim, S. Sridhar, A. Revcolevschi, and A.

Vietkine, Rev. Sci. Instrum. 71, 3151 �2001�.
34 J. R. Pierce, Traveling Wave Tubes �Van Nostrand, Princeton,

1950�.
35 N. P. Ong, J. Appl. Phys. 48, 2935 �1977�.
36 K. S. Champlin and R. R. Krongard, IRE Trans. Microwave

Theory Tech. MIT-9, 545 �1961�.
37 W. N. Shafarman, D. W. Koon, and T. G. Castner, Phys. Rev. B

40, 1216 �1989�.
38 E. Helgren, G. Grüner, M. R. Ciofalo, D. V. Baxter, and J. P.

Carini, Phys. Rev. Lett. 87, 116602 �2001�.
39 P. F. Newman and D. F. Holcomb, Phys. Rev. B 28, 638 �1983�.
40 T. G. Castner, Phys. Rev. B 67, 193202 �2003�.
41 K. Lee and A. J. Heeger, Phys. Rev. B 68, 035201 �2003�.

LOW-TEMPERATURE MICROWAVE RESPONSE OF… PHYSICAL REVIEW B 72, 085204 �2005�

085204-11


