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Under certain conditions, a transparent photonic band can be designed into a one-dimensional metallodi-
electric nanofilm structure. Unlike conventional pass bands in photonic crystals, where the finite thickness of
the structure affects the transmission of electromagnetic fields having frequency within the pass band, the
properties of the transparent band are almost unaffected by the finite thickness of the structure. In other words,
an incident field at a frequency within the transparent band exhibits 100% transmission independent of the
number of periods of the structure. The transparent photonic band corresponds to excitation of pure eigenstate
modes across the entire Bloch band in structures possessing mirror symmetry. The conditions to create these
modes and thereby to lead to a totally transparent band phenomenon are discussed.
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I. INTRODUCTION

Propagation of electromagnetic waves through periodic
structures has both fundamental interest and potential appli-
cations because of the possibility of controlling optical prop-
erties of materials through photonic band gaps.1–3 Strictly
speaking, a band diagram describes properties of an infinite
periodic structure. In finite structures, there are transmission
resonances inside pass bands,3 i.e., minibands separated by
minigaps as demonstrated by the experiment.4 The band-
width and central frequency of each resonance change with
the number of the periods. The finite thickness or termination
of photonic crystals �PhCs� has a significant impact on the
dispersive properties of the structure5–7 and hence affects
transmission properties. In particular, the transmission coef-
ficient of a plane wave having frequency within the pass
band exhibits a thickness-dependent periodic oscillation.
This thickness-dependent transmission oscillation and
length-sensitive behavior of the PhCs can impact many po-
tential applications and photonics integrations. In this paper,
we analyze transmission features of photonic bands and
show that under certain conditions a transparent photonic
band can be formed in one-dimensional metallodielectric
nanofilms. The term, transparent photonic band, refers to two
significant differences from the conventional pass bands.
First, there are no minigaps and minibands inside the trans-
parent band in a finite structure. Second, the electromagnetic
fields having frequency within the transparent band exhibit
complete transmission independent of the number of periods
of the structure. The properties of the transparent band are
almost unaffected by the finite thickness of the structure and
this is the major difference when compared to the conven-
tional pass bands. The existence of the transparent band de-
pends on the surface plasmon excitation and the manner in
which the first and last layers are truncated. More precisely,
the transparent band corresponds to pure eigenstate excita-
tions across the entire Bloch band in structures possessing
mirror symmetry. Each frequency in the transparent band is
in an eigenstate common to translation and surface-wave op-
erators. In the transparent band, the electric field intensity is
symmetric across the length of the structure. The mirror sym-
metry of the physical structure is essential for the existence

of the transparent photonic band. The conditions to create
this totally transparent phenomenon will be discussed in the
following sections. In this regard, we cite an earlier experi-
ment exploring the possibility of rendering a layered metallic
structure to be transparent.8

II. COUPLED PLASMON RESONANT WAVEGUIDE

The investigation is performed with a 1D structure that
has alternating layers of metal and dielectric materials. The
essential physics of the 1D structures should be equally ap-
plicable to higher dimensional structures while avoiding in-
tensive computational tasks of higher dimensionality. Also,
the 1D structure is relatively easy to fabricate. In the direc-
tion perpendicular to the layers, the waveguiding is achieved
through evanescent coupling of surface plasmons between
interfaces of metal/dielectric layers, i.e., a coupled-plasmon-
resonant waveguide �CPRW�. The CPRW described here is a
special case of the coupled-resonator optical waveguide
�CROW� proposed by Yariv et al.9 Differing from the con-
ventional PhCs, the band structures in the CROWs are
formed from localized resonant modes through evanescent
coupling. Specifically, for the CPRW structure presented
here, the evanescent coupling is achieved through a coupled
chain of surface plasmon excitations at each interface, con-
veying the fields from layer to layer throughout the entire
structure. Meanwhile, the surface plasmons provide a large
field enhancement at the interfaces of metal/dielectric layers.
The metallodielectric structures studied previously in the
context of PhCs10–12 where the Bloch modes of traveling
waves were considered. Here we will explore this type of
structure from the perspective of the CROW and focus on the
Bloch modes of the evanescent waves. In our case, the fields
inside each layer are evanescent along the propagation direc-
tion of the Bloch waves, i.e., the direction perpendicular to
the interfaces of the layers. In the CPRW structure, the
waveguiding is achieved simultaneously parallel to the inter-
faces and perpendicular to the interfaces with different guid-
ing mechanisms. Parallel to the interfaces, the electromag-
netic fields are guided by the surface plasmons whereas
perpendicular to the interfaces the waveguiding is achieved
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through the evanescent coupling. In such structures, we fo-
cus on the scenario that the field is evanescent inside all the
layers, yet, a 100% transmission can still be achieved for
infinitely thick composite materials. To achieve this goal, the
nature of the surface plasmons is well suited to periodically
amplify the evanescent fields at each metal–dielectric inter-
face. Due to the surface plasmon resonance and large field
amplitudes at the interfaces, the termination of the CPRW
structure can have a dramatic effect on the transmission and
this can be more pronounced than in the conventional pho-
tonic crystals.

III. THEORY

Figure 1 shows a one-dimensional lossless metallodielec-
tric multilayer structure. The period is d=d1+d2 where d1
and d2 are the thicknesses of the dielectric and metallic lay-
ers. The subscript 1 refers to the dielectric medium with
nondispersive permittivity ��1� and permeability ��1�. The
subscript 2 refers to the metallic material with constant �2,
and dispersive �2���=1−�p

2 /�2 where �p is the bulk plasma
frequency. In general, the �p is a function of not only elec-
tron density but also surface structure, such as subwave-
length holes or slits. We assume the surface plasmon waves
propagate along the x̂ direction with wave number Kp and
consider TM polarization with E= �Ex ,0 ,Ez�. The electric
field in the nth unit cell13 is given by En�r�
=En�z�exp�iKpx�, where the evanescent portion of the fields
are

En�z� = �an exp�− �1zn� + bn exp��1�zn − d1�� , 0 � zn � d1

cn exp�− �2�zn − d1�� + dn exp��2�zn − d�� , d1 � zn � d
� , �1�

where zn=z−nd and �i=�Kp
2 −k0

2�i�i�0, i=1 and 2. The
field amplitudes an, bn, cn, and dn are vectors in the x̂-ẑ
plane. The relationship between these amplitudes can be
found by enforcing the boundary conditions and the fact that
� ·E=0 inside each layer.

Using the Bloch theorem, the evanescent condition
Kp

2 �k0
2�1�1, and the material dispersion �2���=1− ��p /��2,

with ��0.6�p, the band structure of the coupled evanescent
fields is obtained and these results are shown in Fig. 2 for
different layer thicknesses. The blue zones represent the pass
bands of the evanescent fields, i.e., the Bloch modes of the
evanescent fields. For each period, the mode amplitudes are
symmetric in the lower frequency band and antisymmetric in
the upper band. These modes possess features of both surface
plasmons and Bloch waves. Both transmission pass bands
are below the light line of the dielectric medium and this
means that the fields are evanescent not only in the metal
layers but also in the dielectric layers. The upper band is
truncated at the light line so that the modes are evanescent
and bounded to the metal/dielectric interfaces. In this paper,
we only consider resonant transmission of bounded surface

modes. In this scenario, all the layers must be thin enough to
allow overlap of the evanescent fields associated with the
bounded surface modes. Notice that the field decays expo-
nentially inside each layer and is amplified at each interface.
If any layer is too thick such that the amplification at the
interface cannot overcome the exponential decay inside the
layer, there will be no transmission. However, the total thick-
ness of the structure can be infinite provided that each layer
is sufficiently thin to allow coupled eigenstates throughout
the entire structure. Hence, the periodic amplification by the
surface plasmon at each interface delivers the evanescent
field from the first layer of the structure to the last layer.

IV. NUMERICAL RESULTS

The band diagrams in Fig. 2 describe the transmission
properties of an infinitely periodic structure. Since a practical
structure will have a finite number of periods, the transmis-
sion properties are generally dependent on the thickness of
the structure. The transmission coefficient of the finite struc-
ture can be calculated using a transfer matrix method. The

FIG. 1. �Color online� One-dimensional alternating layers of
dielectric �subscript 1� and metallic materials �subscript 2�. The
thicknesses of the dielectric and metal layers are d1 and d2, respec-
tively, with period d=d1+d2. This schematic shows two type unit
cells, MD and M1/2DM1/2. The unit cell M1/2DM1/2 is defined by
the section between two dashed lines in the middle of the metallic
layers, so the unit cell possesses mirror symmetry whereas the unit
cell MD does not. The surface plasmon wavevector is Kp= x̂Kp and
the Bloch wavevector is KB= ẑKB. If the number of layers N is
infinite, the configuration of the unit cell would not be important,
but for the finite number of layers, this is very important in terms of
the transparent photonic band. In other words, the termination of the
multilayer structure is important. The thicknesses of the layers are
sufficiently thin such that the surface plasmon fields are evanes-
cently coupled along the ẑ direction throughout the multilayer
structure.
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incident plane wave is coupled with the Bloch evanescent
modes via superstrate and substrate coupling prisms and this
allows excitation of the surface plasmon field.

Figure 3 shows the evolution of the photonic bands with
increasing the number of periods of the structure. The plots
on the left- and right-hand sides correspond to different sur-
face plasmon wave numbers where Kp=2.7� /d on the left
and Kp=1.6� /d on the right. The layer thicknesses d1 and d2
in Fig. 3 are the same as those in Fig. 2�b�. There are two
pass bands associated with each surface plasmon excitation.
The correlation between the band diagrams and transmission
spectra can be seen by comparing Figs. 3�c� and 3�f� with
Fig. 2�b�. In Figs. 3�c� and 3�f�, there are four transmission
pass bands centered about 820, 855, 625, and 725 THz. The
820, 625, and 725 THz bands are not transparent bands and
the rapid oscillations within these pass bands are minireso-
nances. The transmission coefficient is very sensitive to the
frequency. The band centered about 855 THz in Fig. 3�c� is
the transparent photonic band. This transparent band has a
flat top spectrum and is almost immune from the rapid oscil-
lation. The bandwidth of the transparent band is almost un-
changed after the first few periods.

The striking feature of the transparent band is that it al-
lows 100% transmission independent of the thickness of the
structure. This thickness-independent transmission is illus-
trated in Fig. 4�a� and this feature is due to the single mode
�pure eigenstate� character of the transparent band. As a com-
parison, Figs. 4�b� and 4�c� show the thickness-dependent
transmission of the nontransparent pass bands and that the
transmission coefficients periodically oscillate with the num-
ber of periods of the structure. Finally, Fig. 4�d� describes the
character of the stop band where the transmission decays
exponentially with increasing the number of the periods.

To better understand the transparent phenomenon, Fig. 5
shows the evolution of Bloch wave vector KB versus the
number of the periods. The frequencies in these plots corre-
spond to those in Fig. 4. For the stop band in Fig. 5�d� the

FIG. 2. �Color online� Band structure of TM mode evanescent
fields. The blue zones represent the pass bands of the evanescent
waves. These data were generated with �1=2.66 and �2���=1
− ��p /��2 with plasma frequency �p=1.2	1016 s−1.

FIG. 3. �Color online� Transmission spectra showing evolution
of the photonic bands with the number of periods �N� of the struc-
ture. The unit cell is M1/2DM1/2 as defined in Fig. 1. The layer
thicknesses are d1=120 nm and d2=60 nm for all the plots and this
corresponds to Fig. 2�b�. Here, the plots �a�, �b�, and �c� have Kp

=2.7� /d and two pass bands. The band centered around 850 THz is
a transparent band, and the band centered around 820 THz is not
the transparent band. The plots in �d�, �e�, and �f� have Kp

=1.6� /d and neither pass band has the characteristics of the trans-
parent band. The important distinction between the transparent and
nontransparent bands is that within the transparent band, the field
intensity is symmetric in the unit cell. Also, unlike the transparent
band, the transmission in the nontransparent band oscillates rapidly
with changing frequency.

FIG. 4. �Color online� Four types of transmission coefficient
characteristics vs the number of periods of the structure; �a� fre-
quency F=852 THz is in the higher frequency band �transparent
band� in Fig. 3�c�; �b� F=820 THz is in the lower frequency band in
Fig. 3�c�; �c� F=706 THz is in the pass band in Fig. 3�f�; �d� F
=667 THz is in the stop band in Fig. 3�f�.
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value of KB decays exponentially with the number of the
periods and eventually becomes imaginary. In the transparent
band Fig. 5�a�, the Bloch wave vector is constant and satis-
fies the dispersion of the infinite structure. So, each fre-
quency in the transparent band is in a pure eigenstate of the
translation operator, and the field resembles a plane wave
with a single KB for each frequency. The propagation direc-
tion is given by the surface plasmon and Bloch wave vectors
�Kp ,KB�. For the other two cases, KB oscillates with a large
amplitude for the first few periods, then it converges to os-
cillate about the KB of the infinite structure with a small
amplitude as shown in plots Figs. 5�b� and 5�c�. The spread
of the KB is much less than the size of the Brillouin zone, i.e.,

KB�2� /d. The k plots explain the oscillation and wave-
packet phenomenon in the transmission coefficients. The car-
rier of the oscillation is determined by the KB of the infinite
structure, whereas the envelope of the oscillation is inversely
proportional to the bandwidth of the KB. The stronger the
coupling, the wider the spatial extent of the transmission
coefficient, and hence the narrower the bandwidth in the k
space. Thus, unlike the transparent band, each frequency in
the conventional pass bands is in a superposition state, i.e., a
superposition of the Bloch modes with the major component
given by the corresponding infinite structure. Notice that the
positions of the nodes in Figs. 5�b� are the same as the po-
sitions of the maximum transmission in Fig. 4�b�. The 100%
transmission happens when the Bloch wave vector matches
that of the corresponding infinite structure. The number of
the periods �N� between the peaks satisfies the relation
KBNd�m2�, where m is an integer.

V. UNIT CELL CONFIGURATION

The unit cell configuration is very important to achieve
the transparent photonic band. This is because the unit cell
determines how the metal-dielectric structure is physically
terminated. First, the unit cell M1/2DM1/2 or D1/2MD1/2 can
yield a transparent band, but the MD configuration does not.

Note that for a metal-dielectric structure made up of N unit
cells, the cases �M1/2DM1/2�N and �D1/2MD1/2�N are termi-
nated identically at the both ends whereas the case �MD�N is
not. Analyzing the field distribution inside the structure can
provide physical insight. Figure 6 shows the intensity distri-
bution inside an isolated unit cell M1/2DM1/2. There is natu-
rally a field enhancement at the interfaces of the metal/
dielectric layers due to the bounded surface waves. The case
for the transparent band is shown in Fig. 6�a�, where the
intensity distribution is symmetric. In Figs. 6�b� and 6�c�, the
fields are not symmetric and are outside the transparent band.
Here is the key point: the intensity is symmetric in the unit
cell when the transparent photonic band is excited. Thus,
each frequency in the transparent band is in an eigenstate of
the surface-wave operator since the symmetric and antisym-
metric fields are the eigenmodes of the surface waves. It is
evident that when the unit cells that have mirror symmetry
are layered together, the resulting modes can fit easily with a
minimal adjustment. On the other hand, if the nonsymmetric
MD cell is layered, the modes do not fit together and this
results in large field discontinuities and mode splittings. The
fields of the two resonant peaks in Fig. 3�d� also exhibit unit
transmission regardless of the length of the structure, and the
field amplitude distribution is symmetric for the lower fre-
quency and antisymmetric for the higher frequency. How-
ever, they are isolated frequencies without the bandwidth,
unlike the case in Fig. 3�c� that the entire Bloch band is
excited into the transparent band.

Figure 7 shows a comparison of the transmission spectra
of the three configurations, �MD�N, �M1/2DM1/2�N, and

FIG. 5. �Color online� Bloch wave vector KB vs the number of
periods of the structure for the frequencies in Fig. 4.

FIG. 6. �Color online� Intensity distribution within a single unit
cell M1/2DM1/2 as defined in Fig. 1. In �a�–�c� above, the param-
eters F and Kp can be correlated with those in Fig. 3 for N=1. In �a�
above, the intensity is symmetric and this is within the transparent
band as seen from Fig. 3�a�. In �b� and �c� above, the fields are not
symmetric and are outside the transparent band.
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�D1/2MD1/2�N. For the same constituent materials and layer
thicknesses, the excitation condition for the transparent pho-
tonic band is different for the configurations �M1/2DM1/2�N

and �D1/2MD1/2�N. Also, the transparent band is excited in
the upper band for the �M1/2DM1/2�N and in the lower band
for the �D1/2MD1/2�N. In contrast with the unit cells
M1/2DM1/2 and D1/2MD1/2 where the bandwidth of the trans-
parent band is almost unchanged upon increasing the number
of the periods, the mode of the unit cell MD cannot survive.
When two MD cells are brought together the mode is split as
shown in Figs. 7�a� and 7�b�. On the other hand, when the
�M1/2DM1/2�N or �D1/2MD1/2�N cells are brought together, the
pass band splits into a transparent band and a nontransparent
band. In the configurations �M1/2DM1/2�N or �D1/2MD1/2�N,
the two end surfaces are identical and that, under the proper
excitation condition, can lead to a strong coupling of the two
surface modes throughout a series of plasmon excitations at
the interior metal–dielectric interfaces. Hence, the unit cells
of the metallodielectric periodical structures can have much
impact on the transmission properties. Since the transparent
band corresponds to the excitation of the entire Bloch band,
the bandwidth of the transparent band can be up to 100 THz
with a flat-top spectrum depending on the thickness of the
layers.

Shown in Fig. 8 are the transmission spectrum, disper-
sion, and group velocity of a five-period CPRW. In the dis-
persion plot, the four lines of small slope in the lower band

contain dispersion signature of the CPRW in a weak cou-
pling limit and may be useful in a light stopping scheme.14

The large slope line sitting on the upper branch of the dis-
persion curves of the infinite structure is the dispersion of the
transparent band. It occupies the entire positive k space in the
first Brillouin zone. This indeed confirms that the transparent
band is an excitation of the entire Bloch band.

VI. CONCLUSIONS

We have analyzed the transmission features of photonic
bands in the one-dimensional all-evanescent metallodielec-
tric structure. The transparent photonic band can be excited
in the finite structure provided that the structure is composed
with unit cells having mirror symmetry. This has the crucial
property of allowing very efficient coupling of an incident
beam into the surface plasmon modes of the metal-dielectric
structure. With this and the proper excitation condition, the
transmission from the input side to the output side of the
metal-dielectric structure can be 100% independent of the
number of periods of the structure. The transparent photonic
band may also exist in other CROW structures. Since the
surface plasmon and evanescent coupling is a means to
propagate light inside nanocircuits, the investigation of the
coupled surface plasmons in the multilayer structures pro-
vides us with fundamental knowledge for the future 3D
multilayer integration of the nanocircuits. The structures con-
sidered here can be fabricated with existing nanotechnology.
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FIG. 7. �Color online� Transmission spectra showing evolution
of the photonic bands with the number of periods N for the three
configurations �MD�N, �M1/2DM1/2�N, and �D1/2MD1/2�N. In all the
plots, d1=100 nm and d2=50 nm. The surface plasmon wave num-
ber Kp=2.4� /d for �M1/2DM1/2�N and Kp=1.35� /d for
�D1/2MD1/2�N and �MD�N. Since the modes are different for differ-
ent unit cells, the plasmon excitation condition is different to form
the transparent band in the configurations �M1/2DM1/2�N and
�D1/2MD1/2�N. In other words, a transparent band exists for
�M1/2DM1/2�N ��d�–�f�� and �D1/2MD1/2�N ��g�–�i�� although the sur-
face plasmon mode �Kp ,F� is different. In the �MD�N case, the
transparent band cannot be excited no matter what value of Kp. This
is directly related to the fact that a symmetric surface plasmon
mode cannot exist in the MD unit cell.

FIG. 8. �Color online� Top: transmission spectrum of a five-
period CPRW structure, i.e., �M1/2DM1/2�5, with d1=120 nm and
d2=30 nm. The plasma wave vector Kp=1.45� /d. The bandwidth
of the transparent band is about 100 THz. Bottom left: dispersion.
The red solid lines represent the dispersions of the transparent band
�large slope� and the four resonances �small slope� in the lower
band. As a reference, the dashed blue curves show the dispersion of
the corresponding infinite periodic structure. Bottom right: group
velocity Vg relative to the speed of light in vacuum c.
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