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We investigate the Mott transitions in the multiorbital Hubbard model at half-filling by means of the
self-energy functional approach. The phase diagrams are obtained at finite temperatures for the Hubbard model
with up to fourfold degenerate bands. We discuss how the first-order Mott transition points U, and U, as well
as the critical temperature 7, depend on the orbital degeneracy. It is elucidated that enhanced orbital fluctua-
tions play a key role to control the Mott transitions in the multiorbital Hubbard model.
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I. INTRODUCTION

The Mott transition has been one of the most attractive
topics in strongly correlated electron systems.> There are a
number of prototype materials in transition metal oxides. A
well-known example is V,03,>* which exhibits the first-
order metal-insulator transition at a certain critical tempera-
ture. The phase diagram obtained by systematic experiments
is consistent with theoretical studies of the single orbital
Hubbard model by means of dynamical mean field theory
(DMFT).>® This implies that the DMFT treatment of the
Hubbard model, which properly takes into account local
electron correlations, captures the essence of the Mott tran-
sition. However, in order to give more quantitative discus-
sions about the Mott transitions, it is indispensable to incor-
porate the effect of the orbital degeneracy, which often gives
rise to rich phase diagrams, as observed for La;_,Sr,MnO;,’
RTiO;,%? etc. More recently, the orbital-selective Mott tran-
sition has attracted considerable attention,'!¢ in connection
with the materials such as Ca,_,Sr,RuO, (Ref. 17) and
Lan+lNinOSn+l'18’19

These interesting experimental findings have stimulated a
number of theoretical works on the Mott transitions in the
two-orbital Hubbard model by means of DMFT.!>-1620-32 A].
though the two-orbital model has been studied in detail, a
systematic study on the systems having more orbitals is still
lacking at finite temperatures. For example, the finite-
temperature Mott transitions for the multiorbital Hubbard
models has not been investigated quantitatively by DMFT.
One of the difficulties lies in the practical calculation within
the DMFT framework. Quantum Monte Carlo simulations,
which can be a powerful numerical method to treat local
correlations in DMFT, encounter sign problems. Also, the
Wilson* renormalization group method gets more difficult to
apply as the number of orbitals increases. A much more sim-
plified approach, the two-sitt DMFT,** is not efficient
enough to treat finite-temperature properties. It is thus desir-
able to systematically investigate electron correlations in the
multiorbital Hubbard model at finite temperatures.

Motivated by the above hot topics, we consider the Mott
transitions in the multiorbital Hubbard model at zero as well
as finite temperatures. For this purpose, we make use of a
self-energy functional approach (SFA) proposed by Potthoff
recently.>*3 This method, which is based on the Luttinger-
Ward functional approach,®® gives a powerful tool to discuss
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electron correlations. A remarkable point is that this ap-
proach provides an efficient way to deal with finite-
temperature properties of the multiorbital Hubbard model.
The main purpose of the present paper is to determine the
finite-temperature phase diagram of the Hubbard model with
up to fourfold bands, and quantitatively discuss how the or-
bital degeneracy affects the Mott transitions.

The paper is organized as follows. In the next section, we
introduce the model Hamiltonian and briefly summarize the
formulation of SFA. In Sec. III we present the detailed analy-
sis based on SFA by exploiting the two-orbital model as a
prototype system. Then in Sec. IV we determine the phase
diagram, and discuss the nature of the Mott transitions in
multiorbital systems in detail. A brief summary is given in
Sec. V.

II. MODEL AND METHOD

We consider a correlated electron system having M de-
generate orbitals to discuss the Mott transition in infinite
dimension, which is described by the following multiorbital
Hubbard Hamiltonians:

H=Ho+H', (1)

M
Ho= 2 E E tacjmrcjam (2)

(i,j) a=1 o

M
H' = UE E NigiNiq| + U,E E 2 NigoMia' o' » (3)

i a=l I a<a' oo’

where ¢| . (Ciao) creates (annihilates) an electron with spin
o(=7,]) and orbital a(=1,2,3,...,M) at the ith lattice site,
t, denotes the hopping integral for orbital «, and U(U’) is
the intraorbital (interorbital) Coulomb interaction. In the fol-
lowing, we mainly consider the case of U=U’, and give brief
discussions for more general cases including the Hund cou-
pling at the end of the paper.

In order to address the Mott transitions in the multiorbital
Hubbard model, we use SFA.3*35 We briefly summarize the
essence of SFA. For a correlated electron system, the grand
potential is generally expressed as
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Q2] =F[2]+Trin[- (G;' -2)7"], (4)

where F[2] is the Legendre transformation of the Luttinger-
Ward potential ®[G], and G(G,) and 3 are the full (bare)
Green’s function and the self-energy, respectively. The con-
dition imposed on the functional (4)

Q%]
a3

=0, (5)

gives the Dyson equation G'1=G5l -3,. An important point
is that the functional form of F[X] does not depend on the
detail of the Hamiltonian H,, as far as the interaction term
H'(U) keeps its shape unchanged. This fact allows us to
introduce a proper reference system having the same inter-
action term, which we denote as H,;=H(t')+H'(U). Then
the grand potential is written as

Q[E(t)]=Q(t") + TrIn[-[Go()™' - X(t)] ']
= TrIn[-[Go(t") ™ = Z(t)] ], (6)

where (t’) and X(t’) are the grand potential and the self-
energy for the reference system, whose bare Green’s function
is denoted as G(t')'=w+u—t’ (u: chemical potential).
The variational condition (5) is rewritten as

AQ[X(t)]

o ™)

By choosing the parameters t’ for the reference system so as
to satisfy the condition (7), we can find the best system
within the reference Hamiltonian, which can approximately
describe the original correlated system.

It should be noticed here that SFA provides us with an
efficient and tractable way to deal with finite-temperature
properties of the multiorbital system, where standard DMFT
combined with numerical techniques faces difficulties in a
practical computation when the number of orbitals increases.
Another notable point in this approach is that the critical
behavior in infinite dimension can be discussed more pre-
cisely than the DMFT analysis,>® when one chooses the
same type of the effective impurity model. In fact, by com-
paring the results obtained by the two-site DMFT,**7 the
critical point for a single orbital Hubbard model obtained by
SFA with the two-site model** is in good agreement with that
obtained by DMFT with the aid of numerical techniques.38-40

To discuss the multiorbital Hubbard model (3), we exploit
the Anderson impurity model as a reference system in
SFA.3*% The Hamiltonian for the reference system is explic-
itly given as

Heer= 2 Higf’ (8)
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Hytr= 2 £6aCactiar* Sy Elotioles

ao k=1 ao
N
Y lwa,(c’;(ﬁ H.c.)
k=1 ac
+ UE N M| +U’ 2 E NiagMia' o' (9)
a<a' oo’

where a,ﬁ’atr (ak) ) creates (annihilates) an electron with o

spin and « orbital at the k(=1,2,...,N,)-th site, which is
connected to the ith site in the original lattice. Since we
consider the Mott transitions without symmetry breaking, we
set g, and Vy, site independent. Note that in the limit of
N,—x, Eq. (7) is equivalent to the self-consistent equation
in DMFT.?* Since the Green’s function and the self-energy
are diagonal with respect to the site, spin, and orbital indices,
the grand potential per site reads

L=y -2 f dof(0)R[o+u—-3,(w)]

+222b

a k=0

dof(0) G (w)], (10)

Goow) =[w+ p =g, —Ag(0) = 2a()], (1)

Gilw)=(0+p-g,)", (*k=12,...,N,), (12)

Np

Ay(w) = 2 ViGl (), (13)

k=1

where R (0)=[* p(2)dz, f(w)=1/(1+eP), and H(w) is a
step function. The grand potential and the self-energy for an
impurity system HY f are denoted as (), and 3 (o).

In the followmg, we focus on the half-filled Hubbard
model [u=(M-1/2)U] to discuss how the orbital degen-
eracy (M=1,2,3,4) affects the Mott transitions. We take the
simplest reference system (N,=1), where we fix the param-
eters (€94, €14>Via) =(0,u,V) for each orbital «. This sim-
plified treatment is somewhat analogous to the two-site
DMEFT at zero temperature. However, the present approach
enables us to treat finite-temperature quantities systemati-
cally, which is a notable advantage beyond the two-site
DMFT. The condition (7) is now reduced to d{)/dV=0. We
note that the hopping integral V between a given site on the
original lattice and a fictitious site corresponds, roughly
speaking, to the renormalized bandwidth of quasiparticles. In
fact, Fermi-liquid properties at zero temperature are deter-
mined by the value of V. For instance, small V implies the
formation of heavy quasiparticles, and the system enters the
insulating phase at V=0. By calculating the effective hybrid-
ization V, we thus discuss the stability of the metallic state in
the multiorbital systems.
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FIG. 1. The grand potential (V) for the two-orbital model
(M=2) as a function of V for different U at T=0. Crosses corre-
spond to stationary points.

III. DETAIL OF CALCULATIONS: TWO-ORBITAL
SYSTEM

Let us start with the two-orbital Hubbard model, by which
we illustrate the basic procedure of SFA to determine the
phase diagram for more general multiorbital cases. We adopt
here a semielliptic density of states p(g)=(7/
W)\1-(2¢/W)? with the bandwidth W=4, which corre-
sponds to an infinite coordination Bethe lattice.

We first look at the ground-state properties by examining
the stationary points in the grand potential. In Fig. 1, we
show the grand potential at zero temperature for several val-
ues of the Coulomb interaction U. When U is small, the
grand potential has a minimum at finite V. Thus the effective
bandwidth is finite, stabilizing the metallic ground state. It is
seen that the stationary point moves toward the origin con-
tinuously with increasing U. For large U, the minimum is
located at the origin, indicating that the Mott insulating state
is stabilized by strong electron correlations. In the vicinity of
the critical point U,, the grand potential can be expanded in
powers of V

Q(V)=Q0) +AVZ + O(VY). (14)

Therefore, the critical point separating the metallic and the
insulating phases is characterized by the condition A=0.3*
By solving this analytically, we obtain the self-consistent
equation for the critical point U, as

100 (©

U=-——| [z-&zU)]lp(z)dz
39 ).
U.(* 317U.+83&z.U,)

— 5 e [17U(. + 8&(z, UC)]g(Z’ U,) p(x)dz (15)

with &z, U)=\U?+z%. The detail of the derivation is shown
in the Appendix. The critical point U.=9.217 thus obtained
is more accurate than the results (U,=10) estimated by the
two-site DMFT method.?

We now consider the competition between the metallic
and the Mott insulating phases at finite temperatures, follow-
ing the way for the single-band case.’* The grand potential is
shown in Fig. 2 at finite temperatures. It is seen that two
minima appear at low temperatures. One of the minima is
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FIG. 2. (Left panel) The grand potential () as a function of the
effective hybridization V for U=7. Closed circles and triangles rep-
resent the stationary points for the metallic and the Mott insulating
states. Diamonds denote unstable stationary points. (Right panel)
Stationary values of the grand potential as a function of the tem-
perature 7 for U=7. Symbols are the same as in the left panel.

located at larger V, which corresponds to the metallic solu-
tion, since it is continuously connected to the metallic one at
zero temperature. The other is adiabatically connected to V
=0 at zero temperature, so that this solution characterizes the
Mott insulating state. Such a double-well structure at low
temperatures causes the first-order transition accompanied by
hysteresis. In fact, as increasing temperature, the stationary
point for the metallic state disappears around 7.,=0.05,
where the Mott transition occurs to the insulating phase. On
the other hand, as decreasing temperature, the Mott insulat-
ing phase realized at high temperatures is stable except for
zero temperature, since the corresponding local minimum al-
ways exists at finite temperatures. The first-order transition
temperature 7,.=0.045 for U=7 is determined by the crossing
point of the two minima in the grand potential, as shown in
Fig. 2. This hysteresis induced by the first-order transition is
also observed when the interaction U is varied. We show the
effective hybridization V at 7=0.04 in Fig. 3. Starting from
the metallic state, the increase of the Coulomb interaction
decreases the effective hybridization V, and finally triggers
the Mott transition to the insulating phase at U,,=7.2, where
we observe the discontinuity in V. On the contrary, the Mott
transition occurs at U,;=6.7 when the interaction decreases.
In this parameter regime, the level crossing in the minima of
the grand potential appears at U,=7.1 (inset of Fig. 3), which
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FIG. 3. The effective hybridization V as a function of U at T
=0.04. Inset shows the grand potential as a function of U at T
=0.04, where Q;, (£),) is the grand potential for the metallic (insu-
lating) state.
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FIG. 4. The quasiparticle weight Z as a function of the Coulomb
interaction U for the system with M=1,2,3,4 at T=0. The inset is
the enlarged figure in the small U region.

defines the first-order transition point at 7=0.04.

We have seen here that the two-orbital Hubbard model
exhibits qualitatively similar properties to the single-band
case>%3* as far as the nature of the Mott transitions is con-
cerned. In the following section, we give more quantitative
discussions about the Mott transitions by using the phase
diagrams obtained for the multiorbital Hubbard model with
M=1-4.

IV. PHASE DIAGRAMS OF MULTIORBITAL SYSTEMS

We now determine the phase diagrams of the multiorbital
Hubbard model. We first calculate the renormalization factor
Z=(1-3%(w)/dw)', which is inversely proportional to the
effective mass, to characterize the metallic ground state at
zero temperature. The results are shown in Fig. 4. The intro-
duction of the Coulomb interaction decreases the renormal-
ization factor, making the mass of quasi-particles heavier. If
we look at Z in more detail (inset of Fig. 4), the mass gets
slightly heavier (smaller Z) as M increases. This comes from
the fact that the electron correlations are somewhat enhanced
for multi-orbital cases by the interorbital Coulomb interac-
tion. In fact, in the small U region, we can show though a
perturbative calculation in U that the self-energy correction
due to the interorbital interaction enhances the renormaliza-
tion effect due to the intraorbital interaction, so that the mass
renormalization becomes a bit stronger (i.e., Z gets smaller)
as the number of orbitals M increases, as seen in the inset of
Fig. 4. On the other hand, a further increase of the Coulomb
interaction leads to quite different behavior: As the number
of orbitals M increases, the mass is less renormalized, which
makes the metallic state more stable up to large U.*'"** This
implies that the interorbital interaction enhances orbital fluc-
tuations for large U, which in turn stabilize the metallic state,
as pointed out in the two-orbital case.?” In fact, the critical
points U,,(T=0)=9.2173, 12.6044, and 15.9958 for M =2, 3,
and 4 (see the Appendix), are much larger than U,=5.84 for
the single-orbital model.>* Therefore, enhanced orbital fluc-
tuations play a key role in stabilizing the metallic state at
zero temperature.

We now move to the finite-temperature properties. The
phase diagrams obtained in the way mentioned in the previ-
ous section are shown in Fig. 5. There are three phase bound-
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FIG. 5. Phase diagrams for the degenerate Hubbard model with
the orbital degeneracy M=1,2,3,4.

aries for each system, U.;, U., and U, The double-well
structure in the grand potential gives rise to two kinds of
transitions with the discontinuity in the physical quantities.
On the phase boundary U,,(U,,), the Mott transition occurs
from the insulating (metallic) state to the metallic (insulat-
ing) state as U decreases (increases). The area surrounded by
U,, and U,, is referred to as the coexistence phase.>®* The
critical point U, is determined so that the two minima of the
grand potential take the same value. At zero temperature, the
critical points U, and U,, merge to give the continuous Mott
transition, because the double-well structure disappears at
T=0. Therefore, the introduction of the temperature drasti-
cally changes the phase boundary as discussed in the single-
orbital case.>%3* It is found that as temperature increases, the
phase boundaries U, U,.,, and U, merge at the critical tem-
perature T, where the second-order phase transition occurs.

The above characteristic properties in the Mott transitions
are qualitatively the same as the single-orbital case. We now
discuss the effects due to orbital fluctuations quantitatively.
First note that the coexistence region bounded by the phase
boundaries U, and U,, is enlarged when the number of or-
bitals M increases. Furthermore, we see that the M depen-
dence of the critical points U,;, U.(T,) and the critical tem-
perature 7. is different from that of U,,. To clarify this point,
the critical values are plotted as a function of M in Fig. 6. It
is found that U,, is proportional to the orbital degeneracy M,
while U, and U,.(T,) are the square root of M. These results
are consistent with the previous results.?33!*-4 There were
a few quantitative arguments about the finite-temperature
properties such as the phase diagrams, T, etc.*>** In particu-
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FIG. 6. The critical points U.(T=0)[=U.T=0)], U(T=T,),
U, (T—0) and the critical temperature T, as a function of the or-
bital degeneracy M.
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FIG. 7. Phase diagrams for the two-orbital Hubbard model with
the Hund coupling J=0.1U under the condition U=U"+2J. For
clarity, we also show the results at J=0.

lar, the results on the M dependence of the critical tempera-
ture 7, obtained here are beyond the qualitative discussions
by Florens et al.,** who obtained only the upper bound for
T, <M.

To conclude this section, we would like to briefly discuss
the effects of the Hund exchange coupling. For this purpose,
we add the following term to the Hamiltonian (3):

HJz_JE E Eniaa'nia’(r

L oa<ad O

- JZ > (C}LaTCiaLC;a’lcia’T +H.c.)
U oa<a'
-7 > (c}aTc}LalciarTcm,l +H.c.) (16)
[
with />0, where we impose the condition U=U"+2J due to
the symmetry requirement. Since the calculation gets some-
what difficult in the presence of J, we show the results ob-
tained for the representative case of M=2. The obtained
phase diagram is shown in Fig. 7 and compared with the J
=0 case. First, we notice that upon introducing J, the phase
boundaries are immediately shifted to the weak-interaction
regime, and therefore the metallic state gets unstable for
large U. Correspondingly, the coexistence region surrounded
by the first-order transitions shrinks as J increases. This re-
markable tendency indeed reflects the fact that the metallic
state is stabilized by enhanced orbital fluctuations in the case
of U=U': The Hund coupling suppresses such orbital fluc-
tuations, and stabilizes the Mott-insulating phase. Another
point to be mentioned is that the Mott transition becomes of
first order even at zero temperature in the presence of
J, 223132 gince the subtle balance realized at T=0 in the case
of U=U’ is not kept anymore for finite J. Since there is
another claim that the second-order transition is possible for
certain choices of parameters at 7=0,3?> which may depend
on the strength of Hund coupling, we need further detailed
discussions to clarify this problem. Although we have pre-
sented only the results for the M =2 case, we expect that the
effects of J on the phase diagram should be essentially the
same as shown here: The introduction of J suppresses orbital
fluctuations, and thus favors the Mott insulating phase even
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in the small U regime. It also shrinks the coexistence phase
dramatically.

Before concluding this section, we would like to make a
brief comment on the Mott transitions in finite dimensions.
In this paper, we have focused on the Mott transitions in
infinite dimensions to elucidate the role of local orbital fluc-
tuations in the phase diagrams. In finite dimensions, spatially
extended spin/orbital fluctuations become important, and
could make the system unstable around the region where
local spin/orbital fluctuations are enhanced. In particular, de-
pending on the specific geometry of the lattice structure in
finite dimensions, certain spin and/or orbital ordered states
may be stabilized in some parameter regime. These effects,
which have been neglected here, make the problem of mul-
tiorbital Mott systems more interesting. This issue is now
under consideration.

V. SUMMARY

We have investigated the Mott transitions in the multior-
bital Hubbard model at zero and finite temperatures by
means of the self-energy functional approach. By choosing
the Anderson impurity model as a reference system, we have
discussed how the orbital degeneracy affects the nature of
the Mott transitions. We have obtained the finite-temperature
phase diagram for the system having M(<4) degenerate
bands. Although the phase diagrams show qualitatively simi-
lar features irrespective of the orbital degeneracy, there are
some remarkable effects due to degenerate orbitals. In par-
ticular, it has been shown that enhanced orbital fluctuations
make the metallic phase more stable even at finite tempera-
tures. Therefore, if such fluctuations are suppressed, the me-
tallic state is expected to be unstable, which has been shown
to be the case by considering the system with the Hund cou-
pling. Also, it has quantitatively been clarified how distinctly
the M dependence appears in the critical points U,; and U,,:
The critical point U,; depends on the square root of the or-
bital degeneracy M, while the critical point U, is propor-
tional to M. This analysis concludes that the critical tempera-
ture 7, is proportional to the square root of M, which may be
important to understand the Mott transitions in the real ma-
terials with orbital degeneracy.

The self-energy functional approach used in the paper al-
lows quantitatively reliable discussions for multiorbital sys-
tems at finite temperatures. Since this formalism provides a
tractable way to incorporate spin and charge ordered states,
which have been neglected in this paper, it may be used for
more detailed study of the finite-temperature properties in
multi-orbital Mott systems.

Note added in proof: Recently, we became aware of the
paper of Florens and Georges,** in which the finite-
temperature phase diagram has been discussed by means of a
slave rotor method.
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APPENDIX

We analytically determine the critical value of U for the
Mott transition in the multi-orbital Hubbard model at zero
temperature. The grand potential Eq. (10) is rewritten as

Q/L = Oy, + 2ME J dzp(z) w(z) [ - w,(2)]

—2M 2, 0,6(- w}), (A1)
where (), is the grand potential of the reference system and
6(x) is the step function. w; , w;(z) are the poles of the impu-
rity Green’s function of the reference system G'(w) and the
approximated Green’s function of the original system
G(w;z)=1/[w+u—z—2(w)], respectively.

First we consider the two-orbital system. In the atomic
limit V=0, the Green’s function and the self-energy at the
impurity site for the reference system are given by

1 !
Gl (w)=— , A2
som () 2L-U/2Jr o+ U/Z] (42)

2

2atom(w) =pt,

4w (A3)

where the poles of G, are +U/2. Then the Green’s func-
tion of the original lattice model is given by

2

Gl (w2)=w—z+— (A4)
4o’
which has the poles at
1
w.(e)="(zx 2+ 0P, (AS)

As discussed in the text, we can expand the quantities in V
around the atomic limit. The grand potential is '=-2U
—-24V2/U+O(V*). We also analyze the Green’s functions
G'(w) and G(w;z) around the atomic limit and obtain their
poles up to the second order in V. Here we need only the
poles in the negative energy region, because the poles in the
positive energy region do not affect (), see Eq. (Al). The
Green’s functions G'(w) and G(w;z) have eight poles in the
M =2 case, and thus four poles in the negative region. The
negative poles of G'(w) are

V2
o] =- 105 + OV,

U V2
w3== = ~(30+ 4\6)3 +O(VY),
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U = V2
) =- 5" (30—4v'3)5 +O(VY),

V2
w,=—-2U~- 26+ oW,

and the negative poles of G(w;z) are
w(z) = 100zV/U* + O(V?),

,(2) = w_(z) + B(z/U)VIU + O(V*),

w;(2) == U2 =30V2/U + O(VY),
168z + 390U
=-2U-——VAU+O(VY, (A6
w4(2) 15U + 82 +OV),  (49)
where
B 6525 + 8714x> — 3200x*  50x(237 — 64x?)
X)=-— 7 -
(225 - 642V 1 + x> 225 - 64x
(A7)
The grand potential is written down as
O/L=- 4J dzp(2)&(z,U)
4v? 0
7 39U + 100 f dzp(2)[z - &(z,U)]
” 317U + 83&(z,U)
+U| dzp(z + OV,
|| o s v U)} v
(A8B)

where &(z,U)=\U?+z%. The condition #Q/dV?|,,=0 is
satisfied at the Mott transition point U,.** Given that the free
density of state is symmetric p(z)=p(-z), we derive the self-
consistent equation for U,, Eq. (15).

Similarly, we can analyze the cases of M=3 and M=4.
The self-consistent equation for U, at M =3 reads

0
U=~ % f B [z-&z.U,.)]p(z)dz

U, [ 545U,+80&(z,U.)
80, [17UC+8§(Z’Uc)]§(Z,UC)p(Z)dZ’ (A9)

and at M =4, it is

324
Ue=~- 135

f [z—&(z,U.)]p(2)dz

U. (* 837U, +63&z,U,)
135) . [17U.+8&(z,U,) (2, U,)

p(z)dz.

(A10)

The solution of these equations gives the accurate values of
the critical point: U.=12.6044 and 15.9958 for M =3 and 4,
respectively.
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