
Field-induced spin-density-wave phases in „TMTSF…2ClO4 at high magnetic field:
Effect of anion ordering

S. Haddad,1 S. Charfi-Kaddour,1 M. Héritier,2 and R. Bennaceur1

1Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des Sciences de Tunis,
Campus universitaire 1060 Tunis, Tunisia

2Laboratoire de Physique des Solides d’Orsay U.M.R. 8502 (unité mixte de Recherche) CNRS-Paris XI, France
�Received 22 February 2005; revised manuscript received 23 May 2005; published 2 August 2005�

We study the high magnetic field-induced spin-density-wave �FISDW� phases of the relaxed �TMTSF�2ClO4

salt. Due to an orientational ordering of the ClO4 anions, a gap opens at the Fermi surface leading to a two
band energy spectrum. We go through the different experimental and theoretical results related to the high field
regime of the �TMTSF�2ClO4 phase diagram. We show that, in spite of intensive studies, this phase diagram is
still the subject of controversies. We then tackle the issue of analyzing the exotic features of the high field
spin-density-wave �SDW� phases. Based on a mean field theory and a renormalization group method, we study
the consequences of anion ordering on the stability of the FISFW phases. We show that the presence of a two
pairs of Fermi surface gives rise to two types of competing SDW phases. One is due to a single interband
nesting process, as in a one band model, while the second originates from two intraband nesting vectors. The
latter, for which we derive a generalized instability criterion, has the highest metal-SDW transition temperature
and is described by two coexisting order parameters. As the temperature decreases, this coexistence puts at
disadvantage the corresponding phase. Eventually, a first order transition takes place to a second SDW phase
characterized by a single nesting vector and which appears inside the first one. Within the proposed model, we
are able to label the different SDW phases with definite quantum numbers N related to the quantum Hall effect.
We argue that the first SDW phase is nothing but the N=0 state whereas the inner phase is the N=1 state. The
obtained results are consistent with recent experiments.
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I. INTRODUCTION

The quasi-one-dimensional conductors �TMTSF�2X,
where TMTSF denotes tetramethyltetraselenafulvalene and
the anion X=PF6, ClO4, ReO4, etc., present a variety of in-
teresting properties such as superconductivity, quantum Hall
effect, rapid oscillations.1,2 One of the most spectacular prop-
erties is the formation of a cascade of magnetic field induced
spin density wave �FISDW� phases when a moderate mag-
netic field �less than 10 T� is applied in the direction perpen-
dicular to the most conducting planes.3 These phases are
characterized by a quantized in-plane Hall resistance �xy
=h /2Ne2. As the magnetic field increases the integer N var-
ies in the sequence N= . . .4 ,3 ,2 ,1 ,0 at each transition be-
tween FISDW states. These interphase transitions are of first
order while the initial transition from the metallic state to the
FISDW state is of second-order. The N�0 phases are found
to be semimetallic whereas the N=0 state is insulating.

In the case of �TMTSF�2PF6, most of the features of the
FISDW cascade, observed under pressure, may be explained
within the quantized nesting model �QNM�.4–10 However, it
should be stressed that recent magnetoresistance measure-
ments in the �TMTSF�2PF6 conductor have revealed the
presence of low temperature quantum FISDW phases and
high-temperature semiclassical FISDW ones.11 This result is
not expected in the QNM but is consistent with a recent
model proposed by Lebed.12 According to the QNM, the me-
tallic state is described, within a Fermi liquid approach, by
two slightly warped parallel sheets Fermi surface. The orbital
effect of the magnetic field reduces the effective dimension-

ality of the electron system and, therefore destabilizes the
metal by inducing a sort of Peierls instability to a spin den-
sity wave �SDW� phase. As the field is varied, the SDW
wave vector adjusts itself to ensure the Peierls condition that
the Fermi level lies in the middle of one of the SDW Landau
gaps. The key idea of the QNM is that the longitudinal com-
ponent Qx of the SDW nesting vector must be quantized
according to Qx=2kF+NG, where G=ebH /hc is the mag-
netic wave vector, b is the interchain distance and H is the
magnetic field.

However, the �TMTSF�2ClO4 salt, which is much more
widely studied since it undergoes the FISDW transitions at
ambient pressure, has shown deviations from the theoretical
predictions of the QNM.13–20 In the high field regime �H
�18 T� a nearly field independent second order transition
takes place at 5.5 K from the metallic state to a SDW state.
By decreasing the temperature, this transition is followed by
a first order SDW-SDW transition at 3.5 K. The nature of
these high field SDW states is enigmatic, in particular, the
labeling of these subphases by a definite quantum number N
is by no means obvious.

It has been proposed that the origin of the puzzling be-
havior of the �TMTSF�2ClO4 is due to the ClO4

− anion order-
ing transition along the b direction perpendicular to the
chains.21–25 This transition takes place at a temperature TAO
�24 K. For the slowly cooled �relaxed� ClO4 salt, the anion
ordering produces a periodic potential at a wave vector
�0,� /b ,0�. This doubles the unit cell in the b direction and
opens a gap that causes neighboring chains to become in-
equivalent. Due to this gap, the original two-sheet Fermi
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surface is split into four open sheets of Fermi surfaces. Ob-
viously, the simplest Fermi surface model used in the stan-
dard version of QNM cannot apply anymore.

In this paper, we study the effect of the anion ordering on
the high FISDW phases of �TMTSF�2ClO4. We extend dis-
cussions on the results we shortly presented in our previous
paper26 and address issues not considered in it. In the next
section, we give a brief summary of the main experimental
and theoretical results on �TMTSF�2ClO4. We will distin-
guish, in the theoretical review, two classes of models: those
considering that the anion potential V is small and may then
be treated as a perturbation and those assuming that V is too
large, which prevents a perturbative treatment. In Sec. III, we
analyze one of the two crucial points which make the origi-
nality of our work namely the competition between a single
wave vector SDW phase and an original SDW phase induced
by two nesting processes. The latter do not compete but on
the contrary cooperate to stabilize this phase. We give the
instability criterion for each SDW phase. The second crucial
point of our model concerns the renormalization effects in-
duced by low dimensional fluctuations on the electron-
electron scattering strengths. We show, in Sec. IV, that these
effects are different for different SDW phases, in particular
for large V. To derive the complete phase diagram, we study
in Sec. V, based on a Ginzburg-Landau expansion of the free
energy, the relative stability of the different phases. The re-
sults are presented in Sec. VI where we consider the effects
of some key parameters on the phase diagram. We show that
the obtained results can explain consistently recent experi-
mental data. Section VII is devoted to the concluding re-
marks.

II. OVERVIEW

A. Experimental results

The temperature-field phase diagram of the relaxed
�TMTSF�2ClO4 was first obtained, at ambient pressure, by
Naughton et al.13 The authors found an unexpected feature:
in the high magnetic field regime �H�27 T�, the FISDW
phase is destroyed and a reentrant metallic state appears �dot-
ted line in Fig. 1�. However, Yu et al. have reported the
presence of a controversial insulating state above 27 T.14

Furthermore, the pressure dependence of the temperature-
field phase diagram of �TMTSF�2PF6 and �TMTSF�2ClO4

was studied by Kang et al.15 They found that the notable
difference between the two compounds is the reentrant be-
havior followed by the transition to a very high field insulat-
ing phase in the case of the �TMTSF�2ClO4.

McKernan et al.16 have established a phase diagram
which is substantially different from previous results. They
found that the low-field cascade of FISDW transitions is ob-
served up to 8 T. As the field increases, the metal-SDW sec-
ond order transition temperature continues to increase
smoothly and saturates at 5.5 K above 15 T. On cooling
from the metallic state, in the range from 23 T to 27 T, a
first order transition occurs inside the original SDW phase
with a maximum transition temperature of 3.5 K. The new
transition line strongly decreases with increasing field and

vanishes at 28 T. The 5.5 K and the 3.5 K phase boundaries
do not show oscillations to better than 0.3 K.

The substantial difference between the phase diagram of
McKernan et al. and earlier ones are the presence of two
distinct transitions in the region from 23 T to 27 T and the
absence of any reentrant line. The latter may be obtained by
crudely joining the 5.5 K and the 3.5 K lines �Fig. 1�.

More recently, Moser et al.19 have carried out magnetore-
sistance measurements up to 23 T and gave evidence for a
crossover line between 17 T and 19 T, which appears as an
extension of the 3.5 K phase boundary of McKernan et al.
Such extension has been confirmed by Chung et al.20 who
concluded, based on magnetoresistance studies between 8
and 20 T, that the phase diagram shows more than two dif-
ferent subphases inside the main FISDW phase of the ClO4
salt.

Figure 1 presents a generic temperature-magnetic field
phase diagram where we summarize the different experimen-
tal results cited above. In this “arborescent” phase diagram
there are so many subphases that it is not evident how to
label them with definite quantum indexes. However, Hall
effect measurements may reveal some key issues about the
relationship between these different phases. Indeed, at 0.5 K,
a stable quantum Hall-semimetal phase corresponding to N
=1 plateau was observed from 7.5 to 27 T.13,15,16 This pla-
teau is somewhat spoiled above 15 T and shows, at high
temperatures, besides oscillations, a slight accident at 17 T,
which disappear above 3 K.19 At 0.5 K, the very high field
insulating state �SDWII phase in Fig. 1� is characterized by a
nonquantized Hall resistance,13,15,16 which is reminiscent of a
N=0 SDW phase. It seems, therefore, that the subphases
SDWIII and SDWIV may be indexed with N=1 while the
SDWII may correspond to the N=0 phase. Since N cannot
change unless a first order transition line is crossed, the
SDWI subphase should also be associated to the N=0 state

FIG. 1. Temperature-field phase diagram of �TMTSF�2ClO4.
Solid lines are the transition boundaries obtained by McKernan et
al. �Ref. 16�, dashed ones are the results of Chung et al. �Ref. 20�,
while the dotted line is the high field phase boundary obtained by
Naughton et al. �Ref. 13�.
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as there is no transition boundary between this phase and the
SDWII one.

Many authors attempted to analyze the complex behavior
of the �TMTSF�2ClO4 phase diagram. In the following, we
give a brief summary of the theoretical studies.

B. Theoretical aspects

In quasi-1D systems, the Fermi surface consists of two
slightly warped open sheets. The electron dispersion relation
is then approximated by:

��k�� = vF��kx� − kF� − 2tb cos kyb − 2tb� cos 2kyb ,

where kx and ky are the electron momenta, respectively,
along and across the chains, vF is the Fermi velocity and kF
is the Fermi point. tb �tb�� is the effective hopping integral to
the first�second�-nearest neighbor. Due to the imperfect nest-

ing parameter tb�, Q� SDW= �2kF ,� /b� is not a perfect nesting
vector for the band structure.

In the presence of the anion ordering, which introduces a
periodic potential V�y�=V cos�� /b�y, the band structure
splits into two bands:27

��k�� = vF��k� − kF� ± �4tb
2 cos2 k�b + V2 − 2tb� cos 2k�b .

�1�

Equation �1� gives rise to two pairs of Fermi surfaces sepa-
rated by a gap �Fig. 2�. It should be noted that the anion gap
does not break the nesting properties of the original Fermi
surface since the two sheets are still related to each other

through Q� SDW �Fig. 2�.
Depending on the value of the V / tb ratio, theoretical mod-

els may be classified into two groups: �i� small V models

where V is supposed to be of the order of TAO and the effects
of the anion potential are studied within a perturbative treat-
ment; �ii� large V models, where V may be of the order of tb
and is then considered nonperturbatively.

1. Small V models

Based on Landau’s theory of second order transitions,
these models suppose that V is of the order of 1.78TAO
�50 K, which is much smaller than tb�200 K. Considering
V as a perturbation, Lebed and Bak22 have found that the
high field SDW transition line shows rapid oscillations and a
reentrance of the metallic state. The SDW nesting vector

used by the authors is Q� SDW.
Osada et al.,23 have also studied perturbatively the effect

of the anion ordering on the high field phase diagram of
�TMTSF�2ClO4. By calculating the noninteracting spin sus-
ceptibility �0�q��, they have shown that the anion gap has no
effect on the odd-N states for which �0�q�� shows peaks at
qx=2kF+NG as in conventional FISDW phases. However,
even-N states are found to be strongly suppressed. The cor-
responding peaks appear at qx=2kF+NG±2� /vF, where �
=VJ0�4tb /�c�, �c=vFG is the magnetic energy and J0 is the
Bessel function. The authors have ascribed the reentrance of
the metallic state, obtained by Naughton et al.,13 to the sup-
pression of the N=0 phase. They have also proposed that the
very high field insulating state is the N=0 phase, which is
expected to have an oscillating behavior. The predicted os-
cillations disagree with experiments, which have not given
evidence of any oscillating phase boundary in the high field
states.13,15 Furthermore, the small V models22,23,25 fail to ex-
plain the recently obtained experimental results, in particular,
the presence of the first-order transition line at 3.5 K.16,19,20

This failure has been thought to be due to the perturbation
theory used to deal with the anion gap V.28 Therefore, non-
perturbative models have been proposed.

2. Large V models

Kishigi et al. have calculated the normal state susceptibil-
ity �0�q�� for different values of V.28–30 They showed that if

V� tb, the maximum of �0�q�� is at Q� SDW as found by Osada
et al. However, if V� tb, the peaks of �0�q�� correspond to

Q� SDW
± = �2kF

± ,� /2b�, where kF
± are the Fermi points of the

four-sheet Fermi surfaces �Fig. 2�. The authors have also
studied, using a self-consistent numerical calculations, the
ordered state below the transition temperature in the presence
of a magnetic field.30,31 They found that the system under-
goes a second order transition from the metallic state to a

FISDW state for which the nesting vector is Q� SDW
= �2kF ,� /b�. Hence, for this state, both pairs of the Fermi
surfaces are gapped. Furthermore, they obtained a first order
transition line from the previous SDW state to an other SDW

phase where the nesting vector is Q� SDW
− = �2kF

− ,� /2b�. In this
case, only one pair of the Fermi surfaces disappears. This
phase is, however, destabilized at low temperature and a sec-
ond order transition takes place, giving rise to a SDW state

originating from two coexisting nesting vectors: Q� SDW
+

= �2kF
+ ,� /2b� and Q� SDW

− = �2kF
− ,� /2b�.

FIG. 2. Schematic Fermi surfaces of �TMTSF�2ClO4 under an-
ion ordering. The dashed curves represent the reduced Fermi sur-
face into the minizone −� /2b	ky 	� /2b. The SDW nesting vec-

tors are Q� SDW= �2kF ,� /b�, Q� SDW
− = �2kF

− ,� /2b� and Q� SDW
+

= �2kF
+ ,� /2b�. kF

+ and kF
− are the Fermi points of the four-sheet

Fermi surface as defined in Refs. 28, 32, and 33.
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Apart from this last state, the authors argued that their
results are similar to the experimental ones reported by
McKernan et al. The transition lines corresponding to the
phase with Q� SDW and that associated to Q� SDW

− were, respec-
tively, ascribed to the 5.5 K and the 3.5 K boundary phases.

McKernan et al. have, already, suggested a scenario of
separate SDW transitions taking place successively on each
pair of the Fermi surfaces. They have also proposed the co-
existence of two nesting processes to explain the formation
of the inner phase, resulting from the first order transition at
3.5 K.

Nevertheless, the coexisting state obtained by Kishigi31

does not correspond to the inner phase appearing at 3.5 K.
The former is induced by a second order transition while the
latter is due to a first order one. On the other hand, besides its
large quantitative disagreement with experiments, the pro-
posed phase diagram of Kishigi does not account for the
behavior of the inner phase in the low field regime.19,20

Moreover, it is not obvious, within this model, how to label
the different subphases by definite quantum indexes.

More recently, Sengupta and Dupuis32 have studied the
effect of anion ordering on the SDW state in the absence of
a magnetic field. They derived a generalized Stoner criterion
that yields to three kinds of SDW instabilities with three
possible nesting vectors: an interband nesting Q� int and two
intraband nestings Q� + and Q� −. These vectors are identical to
those proposed by Kishigi et al. and correspond respectively
to Q� SDW, Q� SDW

− , and Q� SDW
+ . The authors have shown that the

interband SDW instability is destroyed as V increases,
whereas the intraband SDW instability is furthered. From the
Ginzburg-Landau expansion of the free energy, the authors
found that if V is of the order of tb, two successive instabili-
ties are possible by decreasing the temperature. The first one,
which is a second-order metal-SDW transition, opens a gap
on only one band of the Fermi surface while the other band
remains gapless. At the second transition, which is also of
second order, the whole Fermi surface becomes gapped and a
coexisting state of two SDW intraband pairings is formed.
These successive transitions have been associated to that ob-
tained by McKernan et al. However, the latter are separated
by a first order transition line and not by a second one as
suggested by Sengupta and Dupuis.

Similar results have been obtained by Zanchi and Bjeliš33

who considered, within a matrix random phase approxima-
tion �RPA�, the intraband and the interband SDW instabilities
in ClO4 salt in the absence of a magnetic field. They found
that, the intraband SDW states, denoted SDW±, are stable at
high values of V. These states are separated from the inter-
band SDW one �SDW0�, which appears at low V values, by
a valley corresponding to the intermediate V values, where
the metallic state may persist.

Radić et al.34 have studied, within the matrix RPA devel-
oped in Ref. 33, the effect of a magnetic field on these dif-
ferent SDW states. The authors found, as proposed by Osada
et al.,23 that odd-N-FISDW phases originate from interband
processes while even-N phases are due to intraband pro-
cesses. The anion splitting has then no effect on the odd-N
phases. By taking V�0.8tb, the authors have reproduced the
rapid oscillations periodicity of 260 T observed
experimentally.18,20

The temperature-field phase diagram derived by Radić et
al. shows the presence of a first order transition from the low
field odd N SDW phases �SDW0� to the high field intraband
phase �SDW±�. The latter is characterized by an oscillating
transition line which tends to saturate with increasing field.
These oscillations are not consistent with experimental re-
sults showing that any phase boundary oscillations should be
certainly less than 0.3 K.16 Furthermore, the phase diagram
of Radić et al. does not include the inner phase obtained
experimentally. The authors argued that such phase may be
obtained taking into account higher harmonic terms in the
dispersion relation �Eq. �1�� as done in Ref. 32. This phase
will then be the result of two successive transition scenarios
as proposed by many authors.16,31,32

However, the assumption of two successive transitions
cannot agree with the experimental data. Let us consider, as
proposed by Radić et al., that the first transition takes place
at Tc�SDW−� where only one band is gapped. Then, a second
transition occurs at Tc�SDW+� and now a gap opens on the
whole Fermi surface. This scenario means that only half of
the density of states �DOS� is involved during the first tran-
sition while the whole DOS is taken into account during the
second one. Considering the Fermi energy EF=3000 K and
Tc�SDW�=5.5 K gives a ratio of 5.5/3000 for
Tc�SDW�− /Tc�SDW�+ whereas the experimental data yields
to a ratio of 5.5/3.5. The occurrence of two successive tran-
sitions is then in disagreement with experiments

Moreover, as we will show in the next section, the index-
ation with definite quantum numbers N of the different
FISDW phases obtained in Ref. 34 cannot correspond to that
obtained by Hall effect measurements. Given all these theo-
ries, one may conclude that neither small V models nor large
V ones discussed above can account, in a consistent manner,
for the whole experimental results.

We have proposed in Ref. 26 a model where V is sup-
posed to be small compared to tb. Our model introduces
original concepts which have been overlooked in previous
works. Since there remains some controversy about the V
value, we will discuss in the following the arguments in fa-
vor of a weak value �V� tb� and those which support a rather
strong value �V� tb�.

C. Discussion about the anion potential value

1. Quantum chemistry calculations

Quantum chemistry calculations have been performed to
study the band structure of the Bechgaard salts, in particular
the �TMTSF�2ClO4 compound. The agreement between
these calculations and the experimental data can be consid-
ered as very good.1 However, the determination of the effect
of anion ordering on the electron band structure in ClO4 salt
is much more difficult. Because of the symmetry of the anion
ordering in this specific salt, its effect on the electron spec-
trum involves delicate balance between self-consistent po-
tentials created by tiny transverse displacements of the ClO4
anions. At the present time, it is hopeless to try to determine
the anion gap V from such quantum chemistry calculations.35

Le Péleven et al.,36 whose work has been peculiarly quoted
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by many authors as a proof of a large V value,32–34 do not
even propose a value for V and argued that the quantitative
evaluation of the anion potential is out of reach of their
method. We are, then, led to the conclusion that no quantum
chemistry calculations provide any proof of a large V value,
contrary to some claims.33,34

2. Analysis of the angular dependence of the magnetoresistance

The anomalous giant magnetoresistance of the Bechgaard
salts is probably one of the less understood and the most
controversial phenomenon observed in low dimensional or-
ganic conductors.37 However, several authors have proposed
to determine the Fermi surface geometry of some organic
conductors from an analysis of the angular dependence of the
magnetoresistance �ADM�. Such determination cannot be
done without ambiguities as proved by many authors.38,39

Given the non-Fermi liquid behavior recently observed and
discussed in the Bechgaard salts,40 one should be cautious
about a precise determination of V based on the ADM mea-
surements. In spite of these peculiarities, there have been
some attempts to interpret such data.

Yoshino et al.41 have observed an anomaly of the ADM in
the relaxed ClO4 salt. From a simple semiclassical model,
the authors suggested that V is of the order of 0.08ta, where
ta�10tb is the hopping parameter along the most conducting
axis. Nevertheless, they concluded themselves that it is hard
to assume such a large value and that more detailed analysis
is necessary.

Osada et al.42 have also measured the ADM in ClO4 salt.
They found that the V value cannot be estimated from their
data due to the presence of a two pairs of sheetlike Fermi
surfaces. Uji et al.43 have proposed, from the same kind of
experimental procedure, using also a semiclassical model the
value of V�50 K.

It should be stressed that, the experimental value of V
proposed by Yoshino et al.41 was substantially the key argu-
ment for the large V models31,33 Nevertheless, this value has
been renewed recently by the same group44 who found a
much smaller value of V which is estimated to 0.023ta. This
value corresponds to the small V regime in the theoretical
phase diagrams obtained in Refs. 32 and 33.

More recently Lebed et al. have proposed that the angular
magnetoresistance oscillations in quasi-one-dimensional
conductors are due to 1D-2D dimensional crossovers which
take place at some commensurate directions of the magnetic
field.45 The authors suggested to make use of this effect to
determine the band parameters of quasi-1D conductors such
as the anisotropy ratio ta / tb and the anion gap V. In Ref. 46,
Ha et al. reported angle-dependent magnetoresistance mea-
surements on the �TMTSF�2ClO4. The analysis of the mag-
netoresistance oscillations based on the model proposed in
Refs. 45 gives rise to a value of V=0.2tb for the anion po-
tential. The authors argued that such method is the most ac-
curate way to determine the anion gap. Therefore, ADM
measurements clearly support the idea that V is much smaller
than the interchain hopping parameter tb.

3. Theoretical estimations of the phase diagram

In this paragraph, we will discuss the results of the theo-
retical models, presented in Sec. II, which suggest a strong V
value.

In their theoretical phase diagram, Zanchi and Bjeliš33

have fixed a constraint on the possible values of V which
should be in the range of 0.1tb to 1.6tb. Therefore, a small
value of V is not necessary excluded within this work. On the
other hand, the experimental data on ClO4 salt, prepared with
different cooling rates show that the metallic state is rapidly
destroyed when the anion gap is reduced.47,48 One may, then,
conclude that the real value of V is much closer to the 0.1tb
limit than to the upper one. Indeed, a large domain, in which
the metallic state persists, separate the SDW state appearing
at small V �SDW0 state� from those corresponding to the
large V �SDW± state� �Fig. 3 of Ref. 33�.

Sengupta and Dupuis,32 suggested that V should be of the
order of tb to explain the successive transitions found by
McKernan et al.16 However, for a such value, the ground
state, at zero field, is magnetic, which is in disagreement
with experiments suggesting a superconducting state. On the
other hand, this model suppose a sizeable departure from
perfect nesting, for large V, which cannot account for the
FISDW cascade at low field.

Furthermore, the successive transition scenario is, as we
have discussed above, in quantitative disagreement with the
experimental data. Kishigi et al.28,29,31 argued that V should
be of the order of tb, since, in this case, the metal-SDW
critical temperature becomes field independent as found ex-
perimentally. However, this conclusion is not justified since
we have obtained a field independent boundary line assum-
ing a small V value.26

4. Thermodynamics of the anion ordering

A simple energetic argument shows that V cannot be
larger than the critical temperature of the anion ordering TAO.
Indeed, the typical energy involved in the phenomenon of
anion ordering cannot be very different from kBTAO. Since
the gap V is the result of the perturbation induced by anion
ordering, obviously, V cannot be larger than the energy caus-
ing this perturbation. Within the Landau’s theory of second
order transitions, V is supposed to be of the order of
1.78TAO�50 K.

5. Structural studies of the anion ordering

By joint measurements of x ray diffusion, NMR and
transport properties, the Orsay group on structural studies of
organic conductors has performed detailed studies dealing
with the structure of the Bechgaard salts, in particular the
ClO4 salt. They studied the formation of domains, in which
the anions are ordered when the cooling rate through TAO is
varied.47,48 From these experiments, the authors have given
an estimate of V�12 K, which is much smaller than tb.

6. Departure from perfect nesting

The departure from perfect nesting of the Fermi surface is
a crucial parameter for many properties of �TMTSF�2ClO4,
particularly for the well known cascade of FISDW phases. In
the case of small V, the low field phase diagram �H

10 T� is extremely well accounted for, if the departure
from perfect nesting is tb��10 K. However, if V� tb, this is
no longer the case.33 In that limit, the departure from perfect
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nesting is not given by tb� but essentially by V.29 A value of
V� tb leads to a departure from perfect nesting �50 K i.e.,
five times larger than the value necessary to interpret the
quantum cascade.

7. Quantum Hall effect

The Hall plateaus measured in the regime between 3 T
and 10 T were labeled by low values of quantum numbers
�N=4,3 ,2 ,1�.13,16 The calculated numbers N in Ref. 29,
where the authors assumed that V� tb, are quite large. As
proved by Hasegawa et al.,29 one should expect large quan-
tum numbers for large V: N�2V /�c, which is strongly in-
compatible with experiments.

This discrepancy is due to the fact that the model of Ref.
29 brings into play a large deviation from perfect nesting
which is of the order of V. Hasegawa et al.29 assumed that
the coexistence of multiple order parameters might explain
such discrepancy. However, Yakovenko has shown that, in
the case of multiple order parameters, the quantum plateau
should simply be given by the largest one.49 Therefore, the
succession of small quantum numbers observed experimen-
tally cannot be recovered within the model of Ref. 29 in the
limit of large V.

Nevertheless, Radić et al. claimed that their model sug-
gesting a large V value can account for the quantum Hall
effect. They estimated the departure from perfect nesting to
be

�E = �V2 + 2tb
2 − ��V2 + 4tb

2 + V�/2.

This equation gives �E� tb /10 for V� tb. The obtained
quantum numbers N��E /�c take the values between 3 and
1 for magnetic fields between 10 T and 30 T.

However, these quantum numbers, though small, cannot
explain the Hall effect measurements where the N=1 plateau
has been observed at H=10 T and not 30 T as reported in
Ref. 34. Moreover, Radić et al. argued that the SDW+ phase
and the SDW− one are ascribed to even quantum numbers
while the SDW0 state corresponds to an odd-N. The authors
have suggested that the 5.5 K and the 3.5 K lines, obtained
experimentally, may be associated respectively to the SDW−
and the SDW+ phases if these two phases are actually sepa-
rated. Therefore, according to Radić et al., the original phase
�SDW−� and the inner one �SDW+� will be indexed by the
same even-number N, while experiments suggest different
quantum numbers for the two phases.

Recently, Matsunaga et al.50 have carried out magnetore-
sistance measurements in the �TMTSF�2ClO4 for various
cooling rates. The authors come down to the conclusion that
the inner phase and the insulating high field state correspond
to different FISDW states. Furthermore, it has been reported
from experimental studies13,16 that the inner phase shows a
N=1 quantum Hall plateau, starting from 8 T, rather than an
even-N one as supposed by Radić et al.34

From all these remarks, we can conclude that there is no
direct unambiguous determination of V. Moreover, the as-
sumption according to which V� tb is not justified and
makes very difficult the interpretation of the quantum cas-
cade of FISDW phases and the quantized Hall effect. Such
large V value seems to be difficult to accept.

In the following, we present our model where we consider
a small anion gap V. We will not discuss in this paper the
rapid oscillations observed in the magnetoresistance mea-
surements of the �TMTSF�2ClO4. This will be the subject of
a forthcoming work.

III. INSTABILITY CRITERIA

In the absence of anion ordering, the quasi-1D electron
spectrum is given by Eq. �1�. We neglect in this equation,
and hereafter, the dispersion along the least conducting axis
�z axis�, which is not relevant for our model.

When a magnetic field is applied along the z direction,
and in the Landau gauge A= �0,Hx ,0�, the noninteracting
Hamiltonian takes the form

Hef f
0 = vF�	− i

�

�x
	 − kF
 − 2tb cos�− ib

�

�y
+ ebHx


− 2tb� cos�− 2ib
�

�y
+ 2ebHx
 .

In the Wannier representation, the eigenfunctions of Hef f
0 can

be written as

�Kx,l�r�� =
b

2�
�

0

2�/b

dKy exp�− ilKyb��r��Fk�
0 ,

where K� = �Kx ,Ky ,Kz� is the quantum numbers. The integer l
is used instead of Ky and �Fk�

0 is the eigenstate of Hef f
0 given

by23

�r��Fk�
0 =

1

1/2 exp�iK� · r� + i sgn�Kx�� 2tb

vFG
sin�Gx + bKy�

+
tb�

vFG
sin�2Gx + 2bKy��
 ,

where  is the system volume and G=eHb is the magnetic
wave vector. We use the units �=kb=c=1.

Due to the anion ordering, which gives rise to the super-
lattice potential V�y�=V cos � /by, the Brillouin zone is
halved in the ky axis. We suppose that the anion gap V is
small enough to be considered as a perturbation. In the
���Kx,l� basis, the matrix elements of the anion potential
V�y�, are given by22,51

��2�n/L,l�V��2�n�/L,l� = V�− 1�lJl�−l� 4tb

vFG
�

���n − n� +
LG�l − l��

2�
� . �2�

L is the length of the sample along the chain direction and J
is the Bessel function.

Up to the first order of perturbation, the diagonal term
with l= l� in Eq. �2� splits the energy spectrum of the total
Hamiltonian into two linearized subbands EA and EB given
by �Fig. 3�
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Ek�
m = vF��kx� − kF

m� ,

where m=A ,B is the band index and kF
m are the Fermi mo-

menta written as kF
A=kF−� /vF and kF

B=kF+� /vF. Here � is
the effective anion gap given by

� = VJ0� 4tb

vFG
� . �3�

Due to the splitting of the band structure into two subbands,
three nesting processes are made possible: two intraband
nestings involving two wave vectors: qA

0 =2kF
A and qB

0 =2kF
B

and an interband nesting process with a single nesting vector
q=2kF, as in the case of a single band structure �Fig. 3�.

In a Fermi liquid approach, the instability of the metallic
phase is discussed by writing the Stoner criterion, which in-
volves the noninteracting spin susceptibilities �0�q��. Osada
et al.23 have shown that �0�q�� may be separated into four
terms corresponding to four combinations of the electron-
hole pairing in two subbands: two intraband pairings, where
the electron and the hole belong to the same band, and the
two interband ones for which the particles are on different
bands. The authors have found that the intraband terms show
peaks at qx=2kF

m+2MG, where M is an integer, whereas the
interband terms have peaks at qx=2kF+ �2M +1�G. There-
fore, the formation of a SDW phase with an even value of the
quantum number is associated to the divergence of the intra-
band susceptibilities while that ascribed to a SDW state with
an odd quantum number corresponds to the divergence of the
interband susceptibilities. It is worth noting that the FISDW
states appearing in the high field regime correspond to the
smallest quantum numbers. Experimentally, the SDW phases
associated to N=3 and N=2 are observed in the low field
regime �H
10 T�. In the following, we shall focus on the
N=0 and N=1 FISDW states since we are interested in the
high magnetic field regime.

Unlike Ref. 23, we take into account the interaction be-
tween electrons within the following Hamiltonian:

Hint = g0�
m

�
�
� dr� �m��

† �r���m�̄�̄
† �r���m�̄�̄�r���m���r��

+ gf�
m

�
�
� dr� �m��

† �r���m̄�̄�̄
† �r���m̄�̄�̄�r���m���r��

+ gt�
m

�
�
� dr� �m̄��

† �r���m̄�̄�̄
† �r���m�̄�̄�r���m���r��

+ gb�
m

�
�
� dr� �m̄��

† �r���m�̄�̄
† �r���m̄�̄�̄�r���m���r�� .

�m���r�� denotes a fermionic operator for right ��=1� or left
��=2� moving particles on the band labeled m �m=A ,B� and
with a spin �. m and m̄ �� and �̄� denote different bands
�branches� and �̄=−�.

The coupling constants g�, ��=0, f , t ,b�, depicted in Fig.
4, correspond to the forward scattering term g2 within the
g-ology model.52 We have neglected in the interacting part of
the Hamiltonian the backward scattering �g1�, which is irrel-
evant in the mean field theory �MFT� of FISDW phases. We
have not, also, included the umklapp scattering �g3� since it
does not play a central role in our model.

In the mean field �MF� approximation, Hint reads as

Hint
MF = − g0�

m
�
�
� dr���m�̄�̄�m��

† �r���m���r���m�̄�̄
† �r��

− gf�
m

�
�
� dr���m̄�̄�̄�m��

† �r���m���r���m̄�̄�̄
† �r��

− gt�
m

�
�
� dr���m�̄�̄�m̄��

† �r���m���r���m̄�̄�̄
† �r��

− gb�
m

�
�
� dr���m̄�̄�̄�m̄��

† �r���m���r���m�̄�̄
† �r�� .

�4�

As we have discussed above, the stability of the N=0 phase

FIG. 3. Band structure of quasi-1D electron system in the pres-
ence of anion ordering. q0

A and q0
B are intraband nesting vectors

respectively in the A band and the B band while q corresponds to
the interband nesting vector.

FIG. 4. Different forward scattering processes generated in the
presence of two bands. Solid �dashed� lines represent right �left�
moving electrons.
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is due to the intraband processes. Therefore, only the g0 and
gb terms in Hint

MF are relevant for the N=0 phase, since the
annihilated particle and hole are on the same band. However,
for the N=1 phase, which is induced by interband processes,
the gt and gf terms, where the diffused hole and particle
belong to different bands, are the determining parts of the
Hamiltonian.

Let us focus on the N=0 phase for which one should
define two order parameters due to the presence of two dif-
ferent intraband nesting vectors qA

0 and qB
0 . We denote by �A

0

and �B
0 the order parameters, respectively, for the A band and

the B band:

�m
0 �r�� = − g0��m2�̄�r���m1�

† �r��expiQ� m
0 ·r�,

where Q� m
0 = �2kF

m ,q�
0 � and q�

0 is the transverse component of

Q� m
0 .
It should be noted that for a phase with an even N quan-

tum number the order parameter in the m band takes the form

�m
N�r�� = − g0��m2�̄�r���m1�

† �r��expiQ� m
N·r�,

where Q� m
N = �2kF

m+NG ,q�
N �.

The interacting part of the mean field Hamiltonian in the
N=0 phase can, then, be written as

H0
MF = �

m
�
�
� dr���m

0 �r��exp−iQ� m
0 ·r� �m1��r���m2�̄

† �r��

+ ��m
0 �r���* expiQ� m

0 ·r� �m2�̄�r���m1�
† �r���

+
gb

g0
�
m

�
�
� dr���m̄

0 �r��exp−iQ� m̄
0 ·r� �m1��r���m2�̄

† �r��

+ ��m
0 �r���* expiQ� m

0 ·r� �m̄2�̄�r���m̄1�
† �r��� .

We now use the formalism introduced in Refs. 8 and 53 and
we define the following Green functions in the m band:

Fm
0 �r̄, r̄�� = − �T���m2↓�r̄��m1↑

† �r̄���expiQ� m
0 ·r�,

Gm
0 �r̄, r̄�� = − �T���m1↑�r̄��m1↑

† �r̄��� ,

where r̄= �r� ,��.
In the mixed representation,8,53 and after taking the Fou-

rier transforms with respect to time, the Gor’kov equations in

the Landau gauge A� = �0,Hx ,0� for the m band reads as

�i�n + �BH + ivF
d

dx
+ vFkF

m − ���p −
x

x0
�
Gm

0

+ ���m
0 �* +

gb

g0
��m̄

0 �* exp�− i
4�

vF
x�
Fm

0 = ��x − x�� ,

�i�n − �BH − ivF
d

dx
− vFkF

m − ���p + q�
0 b −

x

x0
�
Fm

0

+ ��m
0 +

gb

g0
�m̄

0 exp�i
4�

vF
x�
Gm

0 = 0. �5�

In Eq. �5�, �n are the Matsubara frequencies, � is the effec-

tive anion gap �Eq. �3�� and �BH is the Zeeman term. ���ky�
is the dispersion relation in the b direction:

���ky� = − 2tb cos kyb − 2tb� cos 2kyb .

We have set x0=1/G=1/eHb, p=kyb and q�
0 =� as shown

within the QNM.
Equation �5� is said to be written in the mixed represen-

tation since it depends on the longitudinal component in the
direct space �x� and the transverse one in the reciprocal space
�p�. Unlike the case of single band structure,8,53 we have an
additional term in Eq. �5� due to the presence of the gb pro-
cess and the anion gap.

We define as in Ref. 8

gm
0 �x,x�� = Gm

0 �x,x��exp�− i��BH

vF
− kF

m��x − x��

+
i

vF
�

x�

x

���p −
u

x0
�du
 ,

fm
0 �x,x�� = Fm�x,x��exp�i��BH

vF
− kF

m��x − x�� −
i

vF
�

0

x

��

��p −
u

x0
− q�

0 b�du −
i

vF
�

0

x�
���p −

u

x0
�du
 ,

�̃m�x,p� = ��m
0 �x��* exp

i

vF
��

0

x

���p −
u

x0
− q�

0 b�du

+ �
0

x

���p −
u

x0
�du
 .

Equation �5� then takes a simpler form:

�i�n + ivF
d

dx
�gm

0 + ��̃m +
gb

g0
�̃m̄ exp�− i

4�

vF
x�
 fm

0

= ��x − x�� ,

�i�n − ivF
d

dx
� fm

0 + ��̃m
* +

gb

g0
�̃m̄

* exp�i
4�

vF
x�
gm

0 = 0.

We consider the Fourier expansion of fm
0 �x ,x�� and

gm
0 �x ,x��. We denote by f j

m�0��k ,�n� and gj
m�0��k ,�n� the re-

spective Fourier components which obey to53

�i�n − vFk�g0
m�0��k,�n�

+ �
j
�� j

m +
gb

g0
� j

m̄ exp�− i
4�

vF
x�
 f j

m�0��k,�n� = 1,

�i�n + vFk�f0
m�0��k,�n�

+ �
j
��� j

m�* +
gb

g0
�� j

m̄�* exp�i
4�

vF
x�
g−j

m�0��k,�n� = 0,

where �n
m= In�q�

0 ��m
0 and In are the well known coefficients

defined in the QNM.5

The self-consistency condition reads as8
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�m
0 = g0T�

�n

�Fm
0 �x,x�,p,�n�p, �6�

where �. . .p denotes the average over p. By replacing
Fm�x ,x� , p ,�n� with its corresponding expression using
f j

m�0��k ,�n�, we deduce from Eq. �6� the following Stoner
criterion for the N=0 phase:

1

g0
=

1

2
�m

0 �Q� m
0 ,T� +

1

2

gb

g0
�m� �4�

vF
,T� . �7�

�m
0 �Q� m

0 ,T� is the bare susceptibility in the m band:

�m
0 �Q� m

0 ,T� = �
n

In
2�q�

0 ��m
1D�qm

0 − nG,T� ,

where q0
m=2kF

m is the longitudinal component of the nesting

vector Q� m
0 . As defined in QNM, �m

1D�qx� is the bare suscep-
tibility of a one-dimensional system which has logarithmic
divergence at quantized values qx=2kF

m+nG:4,5,9

�m
1D�qx� = N�0��ln�2�E0

�T
� + ��1

2
�

− Re ��1

2
+ i

vF�qx − 2kF
m�

4�T
�
 , �8�

where � is the digamma function, Re � is its real part, N�0�
is the density of states and ��1.783 is the exponential of the
Euler constant.

�m
0 �q0

m ,T� describes the SDW instability, at the wave vec-
tor q0

m, which opens a large gap at the Fermi level kF
m of the

m band and a much smaller one on the m̄ band but outside of
its Fermi level. However, �m� term correspond to the minority
SDW component that forms on the m band outside the Fermi
level and which is due to the SDW instability occurring on
the m̄ band. �m� is given by

�m� �4�

vF
,T� = �

n

In
2�q�

0 ��m
1D
„qm

0 + 2�kF
m̄ − kF

m� − nG,T… .

�9�

The �m� term does not exist in the standard Stoner criterion of
FISDW derived in the case of a single band energy
spectrum.5 It should be stressed that Eq. �7� is a generalized
Stoner criterion for the N=0 phase in the presence of the
anion gap and under a magnetic field. Figure 5 shows the
Feynman diagrams used to derive the spin susceptibilities �m

0

and �m� .
In Ref. 34, the authors asserted that, to derive the phase

diagram of Ref. 26, we have applied the standard Stoner

criterion used in the QNM. Actually, we did not explicitly
write in Ref. 26 the generalized instability criterion �Eq. �7�
of the present paper� but we have given the corresponding
Feynman diagrams �Fig. 5� which are completely different
from those of the standard model.

It should be stressed that we have obtained a generalized
Stoner criterion without using a matrix representation as
done in Refs. 32–34. To determine the correct instability cri-
terion, the matrix representation is not compulsory contrary
to what has been asserted in Refs. 33 and 34. Whatever the
method used to derive it, the Stoner criterion should take into
account the interplay between the two bands ��m� term in Eq.
�9��. Next, we show that the Stoner criterion given by Eq. �7�
is exactly equivalent to that deduced from a model based on
a matrix representation.

Let us write the Stoner criterion �Eq. �7�� for both the m
and the m̄ bands:

1

g0
=

1

2
�m

0 �Q� m
0 ,T� +

1

2

gb

g0
�m� „2�kF

m̄ − kF
m�,T… ,

1

g0
=

1

2
�m̄

0 �Q� m̄
0 ,T� +

1

2

gb

g0
�m̄� „2�kF

m − kF
m̄�,T… .

Combining these two equations leads to

�1 −
g0

2
�m

0 �q0
m,T�
�1 −

g0

2
�m̄

0 �q0
m̄,T�


−
1

4
gb

2��m� „2�kF
m̄ − kF

m�,T…�2 = 0, �10�

where we put �m� =�m̄� regarding the properties of the �

functions.54

In the zero field limit, the two bands are still separated by
a gap depending on the V. In this case the Stoner criterion
takes the same form as in the presence of a magnetic field
and is also given by Eq. �10�. It is worth noting that in Refs.
34 and 33, the Stoner criterion is also written in the same
way either in the presence or in the absence of a magnetic
field. We are then led to the instability criterion obtained by
Sengupta and Dupuis in the absence of a magnetic field �Eq.
�2.23� in Ref. 32� and which is calculated using a matrix
representation for the spin susceptibilities. The �m

0 and the �m̄
0

terms in Eq. �10� correspond respectively to the diagonal

terms �0�Q� ,Q� � and �0�Q� +K� ,Q� +K� � of Ref. 32, while the �m�

is the off-diagonal component of the susceptibility �0�Q� ,Q�

+K� � reflecting the presence of the anion potential described

by the wave vector K� = �0,� /b�. It is worth to note that the
comparison of Eq. �2.23� of Ref. 32 and Eq. �10� of the
present work with the Stoner criterion derived by Radić et
al.34 is not obvious since the definitions of the spin suscep-
tibilities are not the same.

Let us now consider the case of a zero anion gap V. In this
limit, the �m� term in Eq. �7� reduces to �m

0 while g0=gb and
q0

m=2kF. Equation �7� takes then the following from

FIG. 5. Diagrammatic representation of the first term �a� and the
second one �b� of the generalized Stoner criterion given by Eq. �7�.
�n

m= In�m
0 �m=A ,B�.
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1 − g0�m
0 �2kF,T� = 0,

which is nothing but the Stoner criterion for a single band
model as found within the QNM.5

In Fig. 6 we have represented the dependence of the �m�
�Eq. �9�� on some key parameters. The figure shows that �m�
oscillates as the magnetic field varies and the oscillations are
more and more enhanced as the field increases. This reflects
the dependence of �m� on the effective gap � �Eq. �3�� whose
oscillation amplitude increases with increasing field.

Figure 6�a� shows that �m� is enhanced as tb� increases.
Moreover, the oscillation amplitude of �m� is also increased.
To analyze this feature, one should keep in mind that �m�
depends implicitly on tb� through the In coefficients and in
particular I0 which is the dominant one for the N=0 phase.
As I0 increases with decreasing tb�, the amplitude of �m� is
found to be also increased. As a result the T0 transition tem-
perature, which is the solution of Eq. �7�, is expected to

increase as tb� decreases. Indeed, an increase of the I0 coeffi-
cient is equivalent to an enhancement of the coupling con-
stants �g0 and gb� which leads to an increase of T0.

Let us now turn to the oscillations of �m� . These oscilla-
tions originate from the dependence of the �m

1D factor on the
effective anion gap � �Eq. �8��. The amplitude of �m

1D is
modulated essentially by the I0 coefficient in the case of the
N=0 phase. This coefficient, as we have said before, in-
creases by decreasing tb�, which induces an enhancement of
the �m

1D amplitude and so an amplification of its oscillating
behavior. This explains the pronounced oscillating character
of �m� as tb� decreases.

Figure 6�b� shows that the amplitude of the oscillations of
�m� increases with V. This is once again related to the oscil-
lating behavior of �m

1D. An increase of V induces an increase
of the effective gap � �Eq. �3�� giving rise to larger oscilla-
tions of �m

1D according to Eq. �8�.
In Fig. 6�c� we have depicted the behavior of �m� for dif-

ferent temperatures. As the temperature increases, the oscil-

FIG. 6. Field dependence of the �m� �Eq. �9�� for different values of tb� �a�, V �b�, temperature T �c�, and tb�. In the three cases tb is fixed
to 300 K. The calculations are done for V=30 K and T=5 K �a�, tb�=20 K and T=5 K �b�, and tb�=20 K and V=30 K �c�. In �d�, we have
taken tb�=20 K, T=5 K, and V=30 K.
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lations are lowered since the thermal fluctuations are en-
hanced, which erase the effect of the gap �.

On the other hand, Fig. 6�d� shows the dependence of the
�m� on the inverse of the magnetic field. The oscillation peri-
odicity is reduced as tb increases. For tb=350 K, the period-
icity is of the order of 250 T which is reminiscent of the
experimental value 260 T. However, we cannot pretend,
based on the behavior of �m� , to describe the exotic experi-
mental feature of the rapid oscillations �RO� observed in
�TMTSF�2ClO4.20,18 The origin of the RO is actually subtle
since such RO have been also reported in the case of
�TMTSF�2PF6 which is, contrary to �TMTSF�2ClO4, charac-
terized by a single band model. Therefore, one cannot as-
cribe the RO to the presence of a two band energy spectrum.

Let us now turn to the N=1 phase, which originates, as
we have discussed above, from the interband scattering pro-
cesses namely the gf and the gt terms in Hint

MF �Eq. �4��. Since
only one nesting vector is needed in this case to account for
the SDW instability, then only one order parameter should be
defined as

�1 = − gf��m̄2�̄�r���m1�
† �r��expiQ� 1·r�,

where Q� 1= �q1 ,q�
1 �. Here q1=2kF+G denotes the longitudi-

nal component of Q� 1 while q�
1 is the transverse one which

depends on the value of the magnetic field.
The interacting part of the mean field Hamiltonian in the

N=1 phase reads then as

H1
MF = �

m
�
�
� dr���1�r��exp−iQ� 1·r� �m̄1��r���m2�̄

† �r��

+ �1
*�r��expiQ� 1·r� �m2�̄�r���m̄1�

† �r���

+
gt

gf
�
m

�
�
� dr���1�r��exp−iQ� 1·r� �m1��r���m̄2�̄

† �r��

+ �1
*�r��expiQ� 1·r� �m̄2�̄�r���m1�

† �r��� ,

where

�1� = − gf��m̄2↑�r���m1↓
† �r��expiQ� 1·r�.

We define the following Green functions:

Fm
1 �r̄, r̄�� = − �T���m2↓�r̄��m̄1↑

† �r̄���expiQ� 1·r�,

Gm
1 �r̄, r̄�� = − �T���m1↓�r̄��m̄1↑

† �r̄��� .

Writing the motion equations of Fm
1 and Gm

1 we obtain the
following Gor’kov’s equations:

�i�n − �BH + ivF
d

dx
+ vFkF − ���p −

x

x0
�
Gm

1

+ �1
*�1 +

gt

gf

Fm̄

1 = ��x − x�� ,

�i�n + �BH − ivF
d

dx
−

v
x0

− vFkF − ���p + q�
1 b −

x

x0
�


�Fm̄
1 + �1�1 +

gt

gf

Gm

1 = 0.

We introduce the following quantities:

fm
1 �x,x�� = Fm

1 �x,x��exp�i��BH

vF
− kF��x − x�� −

i

vF
�

0

x

��

��p −
u

x0
− q�

1 b�du −
i

vF
�

0

x�
���p −

u

x0
�du
 ,

gm
1 �x,x�� = Gm

1 �x,x��exp�− i��BH

vF
− kF��x − x��

+
i

vF
�

x�

x

���p −
u

x0

− q�
1 b�du −

i

vF
�

0

x�
���p −

u

x0
�du
 ,

�̃1�x,p� = �1
*�x�exp

i

vF
��

0

x

���p −
u

x0
− q�

1 b�du

+ �
0

x

���p −
u

x0
�du
 .

The Gor’kov’s equations read then as

�i�n + ivF
d

dx
�gm

1 + �̃1�1 +
gt

gf

 f m̄

1 = ��x − x�� ,

�i�n − ivF
d

dx
−

v
x0
� f m̄

1 + �̃1
*�1 +

gt

gf

 fm

1 = 0.

As in the case of the N=0 state, we consider the Fourier
expansion of fm

1 �x ,x�� and gm
1 �x ,x�� for which the jth Fourier

component, respectively denoted by f j
m�1��k ,�n� and gj

m�1�

��k ,�n�, satisfy

�i�n − vFk�g1
m�1��k,�n� + �

j

�� j
1�*�1 +

gt

gf

 f j

m̄�1��k,�n� = 1,

�i�n + vFk�f1
m̄�1��k,�n� + �

j

� j
1�1 +

gt

gf

gj

m�1��k,�n� = 0,

with �n
1= In�q�

1 ��1.
The self-consistency condition is given by

�1 = gfT�
�n

�Fm
1 �x,x�,p,�n�p,

We, then, obtain the following Stoner criterion for the N=1
phase:
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1

gf
=

1

2
�1 +

gt

gf

�1�Q� 1,T� , �11�

where �1�Q� 1 ,T� is the susceptibility of the N=1 phase:

�1�Q� 1,T� = �
n

In
2�q�

1 ��1D�q1 − nG,T� .

�1D is the bare susceptibility of a one-dimensional system
showing logarithmic divergences at qx=2kF+nG:

�1D�qx� = N�0��ln�2�E0

�T
� + ��1

2
�

− Re ��1

2
+ i

vF�qx − 2kF�
4�T

�
 .

This expression is the same as that obtained for a single band
quasi-one-dimensional system since the N=1 phase origi-
nates from interband processes.

If gt=gf, we recover from Eq. �11� the Stoner criterion of
quasi-one-dimensional system with only one band in its dis-
persion relation as in the �TMTSF�2PF6 salt. It is worth not-
ing that, for the odd-N phases, one may obtain the following
instability criterion:

1

gf
=

1

2
�1 +

gt

gf

�N�Q� N,T� ,

where �N�Q� N ,T�=�nIn
2�q�

N ��1D�qN−nG ,T�, qN is the longi-
tudinal component of the nesting vector of the N phase: qN
=2kF+NG and q�

N is the transverse one.
As shown by the Stoner criteria obtained in Eq. �7� and

�11�, the coupling constants g�, ��=0, f , t ,b� play a crucial
role for the stability of the N=0 and the N=1 phases. In the
random phase approximation �RPA�, one may expect to have
the same value g�=g for the different coupling processes.
However, in the following, we will show, within a renormal-
ization group approach, that depending on the value of the
anion gap, the coupling constants may be differently renor-
malized.

IV. RENORMALIZATION OF THE COUPLING
CONSTANTS

It has been shown that the perturbative renormalization
group �PRG� method is well suited to explore quasi-one-
dimensional systems with a two band dispersion relation as
the two-coupled-chain model52 or spin ladder systems.55 The
renormalization technique is used to take into account the
influence of the high-energy states on the scattering pro-
cesses at lower energy.56

At high temperature, the phase diagram of the quasi-one-
dimensional organic conductors shows the presence of a one
dimensional phase with a non-Fermi liquid character. By de-
creasing the temperature, the electron motion along the b
direction is deconfined and the interchain hopping process tb
becomes coherent. At a critical temperature Tcross, the system
undergoes a dimensional crossover from the 1D phase to a
2D �or 3D� Fermi liquid state. Due to its two-band Fermi

surface, the relaxed ClO4 salt may be regarded as a set of
two coupled chains �ladder� interacting via one particle hop-
ping processes tb and tb�.

Within a weak coupling RG approach, the coupled chains
model has been discussed in Ref. 52 taking into account the
gb process. The effect of an interladder hopping parameter
has been studied in Ref. 55. In this section, we shall deter-
mine the renormalization couplings based on the models of
those references.

The g� ��=0, f , t ,b� coupling constants which appear in
the Stoner criteria �Eqs. �7� and �11�� are the renormalized
couplings G�

* deduced from the 1D renormalization proce-
dure carried out down to Tcross:

g� = G�
* = G��Tcross� ,

where G� is given by58,57

G��Tcross� = V��Tcross� − g�
�2��Tcross� .

g�
�2� are the 1D two particle scattering amplitude in the for-

ward channel and V� denote pair tunneling amplitude be-
tween two couples of interacting chains within the SDW
channel.55

A. Scaling equations

The method we have adopted to derive the perturbative
renormalization group equations is that developed by Bour-
bonnais and Caron.57,58 Within this method the temperature
is parametrized as T�l�=E0e−l where l is the scaling param-
eter and E0 is the bandwidth cutoff, which is of the order of
the Fermi energy.

To the one loop level, the scaling of the two particle pro-
cesses g�

�2� ��=0, f , t ,b� and the hopping parameter tb are
given in the Appendix. During the RG procedure, tb grows as
l increases and becomes of the order of E0 at a some critical
value of the scaling parameter lcross defined by tb�lcross�=E0

which gives the crossover temperature Tcross=E0e−lcross as in-
troduced by Bourbonnais and Caron.57,58 Beyond lcross, the
perturbative RG treatment breaks down since tb can no more
be considered as a perturbation. The RG equations of the V�

processes are represented in Fig. 7.
The scaling equations then read as

dV0

dl
=

1

4
�t̃b�l�g0

�2��l��2 cos q� + g0
�2��l�V0�l� −

1

2
V0�l�2

+
1

4
�t̃b�l�gb

�2��l��2 cos q� + gb
�2��l�Vb�l� −

1

2
Vb�l�2,

FIG. 7. First order diagrams for two particle hopping amplitudes
in the SDW channel. The dots represent the coupling strengths g�

�2�,
the squares denote the V� processes, and the zigzag line corre-
sponds to the one particle hopping process tb, after Ref. 55.
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dVf

dl
= −

1

4
t̃b�l�2�„gt

�2��l�…2 + „gf
�2��l�…2�cos q� + gt

�2��l�Vt�l�

+ gf
�2��l�Vf�l� −

1

2
�Vt�l�2 + Vf�l�2� ,

dVt

dl
= −

1

2
t̃b�l�2gt

�2��l�gf
�2��l�cos q� + gt

�2��l�Vf�l� + gf
�2��l�Vt�l�

− Vt�l�Vf�l� ,

dVb

dl
=

1

2
t̃b�l�2gb

�2��l�g0
�2��l�cos q� + gb

�2��l�V0�l� + g0
�2��l�Vb�l�

− V0�l�Vb�l� . �12�

Here, q�=� since V� correspond to the SDW channel.
It should be noted that we did not take into account the

magnetic field when deriving the scaling equations since, at
high temperature, thermal fluctuations are much greater than
the magnetic energy.59 A more detailed RG analysis includ-
ing both the effect of temperature and the magnetic field will
be discussed in a forthcoming paper.

The scaling equations of the g�
�2� are given in the Appen-

dix. It should be noted that the RG equations in Ref. 55 do
not include the gb and the Vb terms.

We solved the scaling equations �A1� and Eqs. �12� with
the initial condition:

g�
�1��0� = g�1��0�, g�

�2��0� = g�2��0� and V� = 0,

where g�
�1� are the scattering amplitudes in the backward

channel. The renormalization is carried out from E0 to Tcross.
We have to note that in the mean field approach of FISDW
phases, the g�

�1� processes may be neglected. However, in the
RG procedure, the renormalization of the g�

�2� depends on the
g�

�1� couplings.
The numerical results show that, the difference between

the intraband renormalized couplings �G0
* ,Gb

*� and the inter-
band ones �Gf

* ,Gt
*� increases with increasing anion gap V. In

Fig. 8, we have represented the dependence of the ratio
�Ginter / �Gintra on the anion gap V, where �Ginter ��Gintra� is
the mean value of the interband �intraband� renormalized
coupling constants. We have considered the case where the
bare couplings g�1��0� and g�2��0� are equal and that for dif-
ferent couplings, which amounts to take into account the
Coulomb interaction to the second-nearest neighbors.58,60

Figure 8 shows that interband couplings are substantially
greater than the intraband ones. It is worth stressing that,
contrary to what Radić et al. have claimed in Ref. 34, we
have taken in Ref. 26 a larger interband coupling constant
than the intraband one.

As shown in Fig. 8, the larger the anion gap, the greater
the difference between the two types of the scattering
strengths. This difference depends on the bare coupling g�1�

��0� and g�2��0�. It is found to be enhanced as the ratio
g�2��0� /g�1��0� increases.

For V�50 K, the interband coupling is 30% larger than
the interband one for g�2��0�=g�1��0�=0.6 while it is 50%
greater for g�2��0� /g�1��0�=1.2. Such value is somewhat

overestimated since we have considered one-loop scaling
equations. However, it remains important even if we include
second order RG corrections since the leading behavior is
due to the one-loop terms.58,59,61

Our results are confirmed by the calculations of Abram-
ovici et al.62,63 who studied a ladder system within the one
particle irreducible formalism of the RG method. The au-
thors have reported that the renormalized interband cou-
plings �gf

�2� and gt
�2�� are greater than the intraband ones �g0

�2�

and gb
�2�� even if the gap separating the two bands is small.

Moreover, they have found that the difference is enhanced if
they take into account the dependence of the coupling con-
stants g�

�i� �i=1,2 ;�=0, f , t ,b� on the longitudinal momen-
tum k of the scattered particles. Such dependence is not in-
cluded in the present work and is beyond the scope of this
paper.

It comes down that, at the 1D-2D crossover temperature
Tcross, the renormalized interband and intraband coupling
strengths are different either for small or large anion gap V.
The difference increases with increasing V. This effect has
been neglected in Ref. 34 although the authors argued that V
is as large as tb. In this reference, the authors asserted that
taking different couplings, as we have done in Ref. 26, is not
justified for small V and was just put by hand to construct the
phase diagram �Fig. 4 of Ref. 26�. The numerical results
obtained from the present RG study and those of Refs. 62
and 63 indicate clearly that the renormalization effect does
exist even for small V and is enhanced as the bare couplings
g�1��0� and g�2��0� increase.

In the following, we will show that, to obtain the
temperature-field phase diagram, taking different couplings
is not compulsory in our model. This contradicts the com-
ment of Radic et al.34 on our calculations of Ref. 26. Indeed,
we will see that the qualitative features of the phase diagram

FIG. 8. The dependence of the ratio �Ginter / �Gintra of the inter-
band coupling and the intraband one on the anion gap V. The
dashed line corresponds to equal bare couplings �g�1��0�=g�2��0�
=0.6� while the solid one is obtained for different couplings �g�1�

��0�=0.45 and g�2��0�=0.6�. The calculations are done for EF

=3600 K, tb=200 K, and Tcross=170 K.
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are kept even for equal couplings �i.e., unrenormalized scat-
tering strengths�. To study the relative stability of the N=0
and the N=1 phases, we derive in the next section the
Ginzburg-Landau expansion of the free energy.

V. THERMODYNAMICS

We have shown that the N=0 phase originates from intra-
band nesting processes while the N=1 phase is due to inter-
band ones. The former induces two nesting vectors qA

0 and qB
0

whereas the latter depends on a single nesting vector q1.
Within the Ginzgurg-Landau treatment, one should define,

for the N=0 phase, two order parameters �0
A and �0

A respec-
tively for the A band and the B band, which are given by

�0
A = − ��A2↑

+ �A1↓expiqA
0x,

�0
B = − ��B2↑

+ �B1↓expiqB
0x.

However, only one order parameter is necessary for the N
=1 phase, which is given by

�1 = − ��A2↑
† �B1↓expiq1x.

It should be stressed that both gaps �0
A and �0

B open simul-
taneously on the A band and the B band, respectively.

The total free energy FT of the system compared to that of
the normal state Fnorm is given, up to the quartic order, by

FT − Fnorm =
a0

2
��0

A�2 +
a0

2
��0

B�2 +
b0

2
��0

A�4 +
b0

2
��0

B�4

+ c0��0
A�2��0

B�2 + a1��1�2 + b1��1�4

+
d01

2
��1�2���0

A�2 + ��0
B�2� . �13�

The last term in Eq. �13�, which expresses the coexistence of
the N=0 and the N=1 phases, corresponds to the fourth or-
der diagram given by Fig. 9.

The d01 coefficient is given by

d01 =
I0

2I1
2

4��T
M�� �

2�T
� ,

where M��x� is defined as53

M�x� =
1

2
���1

2
+ ix� + ��1

2
− ix�
 ,

M� =
dM�x�

dx
.

The dependence of d01 on the magnetic field for different
temperatures is depicted in Fig. 10, which shows that d01 is
positive for any value of the magnetic field.

Hence, the coupling term d01 will lead to an increase of
the total free energy. This means that the minimized free
energy will correspond to either the N=0 phase ��1=0� or to
the N=1 phase ��0

A=�0
B=0� but not to the case where both of

them coexist. Therefore, to study the competition between
the N=0 phase and the N=1 phase, one should compare their
corresponding free energies F0 and F1 given by

F0 − Fnorm =
a0

2
��0

A�2 +
a0

2
��0

B�2 +
b0

2
��0

A�4

+
b0

2
��0

B�4 + c0��0
A�2��0

B�2, �14�

F1 − Fnorm = a1��1�2 + b1��1�4. �15�

The a0 coefficient is given by the diagrams of Fig. 5 which
give rise to the instability criterion of the N=0 phase �Eq.
�7��. The coefficients b0 and c0 of the fourth order terms in
Eq. �14� are deduced from the diagrams of Fig. 11 and are
written as

b0 =
I0

4

16�2T2�14��3� + M�� a

�T
�
 ,

c0 =
I0

4

4�T�
M�� �

�T
� , �16�

where M��x�=d2M�x� /dx2 and � is the zeta function.
Figure 12 shows the dependence of c0 on the magnetic

field. The main features deduced from this figure is that c0 is
positive and oscillates as the field is varied. This behavior is
a key issue for the formation of the N=0 phase. The positive

FIG. 9. Diagrammatic representation of the coexisting term of
the total free energy �Eq. �13��. �1= I1�1 and �m= I0�0

m. �m=A ,B�.

FIG. 10. The magnetic field dependence of the factor
�M��� /2�T�� /�T, which determines the sign of the coupling term
d01. The calculations are done for different temperatures.
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sign of c0 means that the coupling term in Eq. �14� will
enhance the free energy.

From Fig. 12�a�, we can conclude that by decreasing tem-
perature, the coupling term is enhanced and, then, the desta-
bilization of the N=0 phase is made more and more possible.

On the other hand, the increase of the anion gap V yields to
a decrease of the minima of the c0 term, for which the N
=0 phase is furthered �Fig. 12�b��. Hence, increasing the an-
ion gap will give rise to a reentrance of the N=0 phase as we
will discuss in Sec. VI.

It comes out that, for the N=0 phase, the presence of two
order parameters �0

A and �0
B, which cooperate to stabilize this

phase, turns out to be critical due to their coupling term. The
latter originates from the overlap of two SDW components in
the same band m: one majority component which forms at
the Fermi level kF

m and a second minority component which
is induced by the SDW instability taking place on the other
band m̄. Therefore, as the temperature decreases, the coexist-
ence of two order parameters in the N=0 phase will destabi-
lize this phase, which may eventually vanish.

Concerning the N=1 phase, the corresponding free energy
does not depend on the effective gap � and the a1 and b1
coefficients are, as expected, the same as those of a single
band system.8 This phase may appear below the second order
transition temperature T1 from the metallic state to the N
=1 phase. T1 satisfies the Stoner criterion given by Eq. �11�.
However, as far as T1 is lower than T0, the N=0 phase is
stable below T0. By decreasing the temperature, the magni-
tudes of the order parameters �0

A and �0
B increase in the N

=0 phase.64 The coupling term in the F0 expression is there-
fore enhanced, which puts at a disadvantage the N=0 phase.
This phase persists at least for T�T1 since �1=0. Below T1,
a competition takes place between the original N=0 phase
and the N=1 phase. The latter, which has no chance to ap-
pear inside the N=0 phase in the case of �TMTSF�2PF6, may
be stabilized in the �TMTSF�2ClO4 salt, at the expense of the
N=0 phase due to the increase of the coupling term by de-
creasing temperature.

To check up the possibility that the N=1 phase may ap-
pear inside the N=0 phase, one should compare their mini-
mized free energies. We set �0

A=�0
B=�0, since both gaps

open simultaneously on the corresponding band and there is
no particular scenario which favors one band or the other. We
denote by �F0�min and �F1�min the minimized free energies
with respect to �0 and �1, given by

�F0�min = −
1

4

a0
2

b0 + c0
,

�F1�min = −
1

4

a1
2

b1
.

The N=1 phase will form if there exists a critical tempera-
ture T1

* which realizes the following conditions �Fig. 13�:

at T1
*, �F0�min = �F1�min,

at T 
 T1
*, �F1�min 
 �F0�min. �17�

We have solved numerically Eq. �17� and we found, as we
will discuss in the next section, that it is possible to find a
solution T1

* at which the system undergoes a phase transition
from the N=0 phase to the N=1 phase. During this transi-
tion, which is of a first order, the order parameter changes
from �0 to �1, given by

FIG. 11. Diagrammatic representation of the fourth order terms
of the free energy in the N=0 state �Eq. �14��. �=4� /vF where � is
the effective anion gap �=VJ0�4tb /vFG� and �m= I0�0

m �m=A ,B�.
The b0 term is given by the �a� and �b� diagrams while the c0 term
corresponds to the �c� diagram.

FIG. 12. The magnetic field dependence of the coupling term c0

�Eq. �16�� in arbitrary units. In �a� the calculations are done for
different temperatures and for V=50 K while in �b�, the temperature
is fixed at T=3 K and V is varied.

FIELD-INDUCED SPIN-DENSITY-WAVE PHASES IN… PHYSICAL REVIEW B 72, 085104 �2005�

085104-15



�0
2 = −

a0

2�b0 + c0�
,

�1
2 = −

a1

2b1
.

Our calculations show that �0 is smaller than �1 for T
T1
*.

Therefore, in the coexisting regime �T
T1�, where both
gaps coexist, the phase which forms is that corresponding to
the largest gap. As argued by Yakovenko,49 the Hall conduc-
tivity of a phase, where several order parameters coexist, is
determined by the largest one. Hence, if the N=1 phase ap-
pears at T1

* inside the N=0 phase, the Hall conductivity of
this inner phase will be marked by a N=1 plateau, which is
consistent with the experimental results.

Let us summarize the key issues of our proposed scenario.
At T0, a second order transition takes place from the metallic
state to the N=0 phase. Simultaneously, two gaps �0

A and �0
B

open on respectively the A band and the B band. Conse-
quently, the whole Fermi surface becomes gapped. These
two order parameters are coupled through the overlap of
their corresponding SDW components. This coupling tends
to destabilize the N=0 phase since it induces a positive term
in the free energy which is found to be enhanced as the
magnitudes of the order parameters increase with decreasing
temperature. Eventually, a first order transition occurs at a
critical temperature T1

* from the original N=0 phase to the
N=1 phase, which is characterized by a single order param-
eter �1. This phase appears inside the N=0 phase and all the
Fermi surface remains gapped. In the following, we discuss
our numerical results and derive the high field phase diagram
of the �TMTSF�2ClO4.

VI. RESULTS AND DISCUSSION

We have carried out the RPA calculations of Sec. III in the
2D regime �T
Tcross�. We have solved numerically the
Stoner criteria �Eqs. �7� and �11�� to determine the second
order transition temperatures T0 and T1 from the metallic
state to respectively the N=0 phase and the N=1 phase.

The key parameters on which depends the structure of the
phase diagram are the hopping integrals tb and tb�, the anion
gap V and the coupling constants g� ��=0, f , t ,b�. In a first
step, we disregard the renormalization effects and we assume
that all the g� constants are equal.

A. Phase diagram with unrenormalized couplings

To derive the field-temperature phase diagram, we calcu-
late the transition temperatures T0 and T1 from the Stoner
criteria �Eqs. �7� and �11�� and the critical temperature T1

*

from Eq. �17�. It should be kept in mind that Tcross is the
characteristic energy of the 2D regime where the SDW in-
stabilities take place. The bandwidth energy E0 in the RPA is
then replaced by Tcross and the coupling constants are those
deduced from the renormalization procedure carried out in
the 1D regime down to Tcross.

58 Taking Tcross=150 K, tb
=300 K, tb�=20 K, and the dimensionless constants g�=g
=0.47, we have obtained the phase diagram of Figs. 14.

Figure 14�a� shows that the T0 temperature increases with
increasing field and tends to saturate at T0

max�15 K in the
high field regime. Furthermore, the T0 line exhibits an oscil-
lating behavior as the magnetic field varies. The oscillations
are less than 0.3 K which is consistent with experiments sug-
gesting that any phase boundary oscillations are certainly
less than 0.3 K. One should note that in Ref. 34, the transi-
tion line from the metallic state to the intraband phase shows
in the high field regime deep oscillations which are of the
order of the transition temperature. Such oscillations dis-
agree with the experimental results.

In Fig. 14�b�, we give the phase diagram for V=30 K.
Here the oscillations of the T0 line are enhanced but they do
not exceed 0.7 K which is still in agreement with experi-
ments.

In Fig. 14�c� we have represented the dependence of T0
on the inverse of the magnetic field for different values of V.
The figure shows that the greater the anion gap V, the larger
the oscillations. Since no phase boundary oscillations have
been reported experimentally, we can deduce from Fig. 14�c�
that actually the anion gap should be small. In Sec. VI E we
shall discuss in more details the dependence of these oscil-
lations on the magnitude of V.

In Fig. 14�d� we checked the dependence of the oscilla-
tions on tb. As we can note, the periodicity is affected by tb
but not by V �Fig. 14�c��. This feature is due to the depen-
dence of � on tb �Eq. �3�� which governs its magnetic modu-
lation. For tb=350 K, tb�=20 K, the periodicity deduced from
the oscillations of the T0 line is 250 T which fits the experi-
mental value of 260 T reported from the RO. However, we
cannot claim, within the present work, the existence of a
clear relationship between the oscillation periodicity of T0
and that of RO observed in magnetoresistance measure-
ments. By the way, Radic et al.34 have argued that the oscil-
lations of their effective gap fit the experimental ones if V is
of the order of tb. This was the key argument used to justify
the fact that V is large. Nevertheless, the periodicity of the
effective gap is not necessary the same as that of the mag-
netoresistance. Indeed, Fig. 14�e� shows that the periodicity
of T0 and �� �Eq. �9�� is different from that of the effective
gap �.

It is worth to note that a recent experimental study has
revealed a striking feature of the Hall resistance which shows
large oscillations with sign reversal beyond 26 T an up to
45 T.65 This behavior is reminiscent of Lebed’s model con-
cerning the ground state of �TMTSF�2ClO4 at very high
magnetic field.25 Lebed has shown that the energy gaps of

FIG. 13. Temperature dependence of the minimized free ener-
gies in the N=0 state ��F0�min� and the N=1 one ��F1�min�. T0 and T1

are the solutions of Stoner criteria whereas T1
* is deduced from

Landau expansion of the free energies.
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FIG. 14. �a� Temperature-field phase diagram of �TMTSF�2ClO4. The calculations are done for tb=300 K, tb�=20 K, V=19 K and for
equal coupling constants g�=0.47. The oscillations of the T0 line are less than 0.3 K. �b� Temperature-field phase diagram of
�TMTSF�2ClO4. The calculations are done for tb=300 K, tb�=20 K, V=30 K and for equal coupling constants g�=0.47. The solid line T0 is
the fitted curve of the numerical data represented by the dashed line. The latter shows oscillations which do not exceed 0.7 K. �c� T0 as a
function of the inverse of the magnetic field for different V values. The calculations are done for tb=300 K, tb�=20 K and for equal coupling
constants g�=0.47. �d� T0 as a function of the inverse of the magnetic field for different tb values. The calculations are done for tb�=20 K,
V=50 K and for equal coupling constants g�=0.47. �e� ��a�, �� and T0 as a function of the inverse of the magnetic field. The calculations
are done for tb=300 K, tb�=20 K, V=50 K and with g0=0.39 for the intraband coupling constant.
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the FISDW phases are periodic on the inverse of the mag-
netic field. However, this model cannot explain the formation
of the FISDW states appearing at moderate magnetic field
�SDWI, SDWII, SDWIII, SDWIV in Fig. 1�. Further theo-
retical investigations are needed to interpret the RO phenom-
enon in particular at high magnetic field.

Let us turn to Fig. 14�a� which shows that, by decreasing
the temperature, a first order transition takes place at T1

*

�3 K from the N=0 phase to the N=1 phase. The T1
* tran-

sition line collapses at a critical field H1�45 T. Experimen-
tally, this field value is about 27 T at which the inner bound-
ary line, found by McKernan et al. ends.

Comparing quantitatively our proposed phase diagram
with the experimental ones, it seems that only T0, which is of
the order of 15 K, is somewhat in discrepancy with the 5.5 K
phase boundary. However, it should be kept in mind that T0
is derived from RPA calculations and so the real transition
temperature is much smaller. This discrepancy is quite re-
duced if we take into account the renormalization effects on
the coupling strengths as discussed in Sec. IV.

In the following we derive the phase diagram correspond-
ing to different coupling constants.

B. Phase diagram with renormalized couplings

We have carried out the calculations considering different
coupling constants for the interband and the intraband scat-
terings. The phase diagram of Fig. 15 is obtained with the
same data as in Fig. 14 except that we have taken g0=0.39
and g1=0.43 for respectively the intraband couplings and the
interband ones. This gives rise to difference of the order of
10 % in the coupling magnitude which is consistent with the
RG results of Sec. IV.

Figure 15 shows that the quantitative agreement between
the calculated phase diagram and experiments is improved if

we take different coupling constants. Indeed, the T0 bound-
ary line saturates, in this case, at 9 K which is consistent
with the 5.5 K transition line.

It should be noted that, in this case T0 is lower than that
obtained in the case of equal coupling constant �Fig. 14�a��
but the corresponding oscillations, which are of the order of
0.9 K, are greater. This can be understood from the behavior
of the �m� term �Eq. �9��. As shown in Fig. 12�b�, by decreas-
ing the temperature the oscillation amplitude of �m� increases,
which enhances the T0 oscillating behavior. In the following
we discuss in details the different features of the obtained
phase diagrams.

C. Discussion

Figures 14 and 15 show that the second order transition
temperature T0 increases with the magnetic field and satu-
rates in the high field regime. This behavior is reminiscent of
the 5.5 K boundary line obtained experimentally.16,19,20 The
saturation behavior of the T0 line depends on both the anion
gap V and the ratio tb� / tb. The T0 line may show, as we will
see later, phase boundary oscillations which are enhanced
with increasing V and may become important for V larger
than 60 K. In Ref. 34, the obtained critical temperature starts
to oscillates as the magnetic field increases. Such oscillations
have not been observed experimentally down to 0.3 K,
which supports the assumption of a small anion gap.

As shown in Figs. 14 and 15, below the first order transi-
tion line T1

*, the N=1 phase forms inside the original N=0
SDW phase. In this inner phase, both order parameters �0
and �1 coexist but �1 is the largest. One should, then, expect
a N=1 plateau in the Hall conductivity of the inner phase as
discussed above.

At H1, a first order transition takes place from the N=1
phase �SDW III in Fig. 1� to the high field N=0 insulating
state �SDW II in Fig. 1� as found experimentally.16,20 Above
H1, the T1

* line vanishes whereas the T0 one persists and
tends to become field independent.

The presence of a second critical field H2 at which the T1
*

line vanishes, is consistent with the experimental results of
Moser et al.19 and Chung et al.20 showing that T1

* line goes to
zero at 17 T. The collapse of the T1

* boundary at H2 and the
reentrance of the N=0 phase is due to the dependence of the
coupling coefficient c0 �Eq. �16�� on the magnetic field. As
shown in Fig. 12, the c0 has minima at given field values for
which the coupling term in the expression of the N=0 free
energy F0 is reduced. The competition between the N=0
phase and the N=1 one may turn in favor of the N=0 phase
at these minima. This will depend on the magnitude of the
order parameters. As we will see in the next sections, the
number of the critical field values at which one may have a
reentrant N=0 phase depends on several parameters such as
the imperfect nesting parameter tb� and the anion gap V.

According to Figs. 14 and 15 the N=1 phase is still
present in the low field regime. Therefore, the SDW IV
phase in Fig. 1 corresponds the N=1 phase. This is consis-
tent with the experimental phase diagram of Chung et al.20

It turns out that, within the present treatment, we are able
to label the different subphases of the �TMTSF�2ClO4 in the

FIG. 15. Temperature-field phase diagram of �TMTSF�2ClO4.
The calculations are done for tb=300 K, tb�=20 K, V=30 K, g1

=0.43 and g0=0.39. The dashed line is a fit of the T0 line. The
oscillations of the latter are of the order of 0.8 K.
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high field regime. We can then conclude that the inner phases
SDWIII and SDWIV in Fig. 1 correspond to the same semi-
metallic N=1 FISDW phase but they are completely differ-
ent from the high field insulating state �SDWII� which is
associated to the N=0 FISDW phase.

In the next section we will focus on the dependence of the
phase diagram on some key parameters in particular the un-
nesting parameter tb� and the anion gap V.

D. High field phases and the imperfect nesting parameter tb�

In Fig. 16�a� we show the phase diagram of the
�TMTSF�2ClO4 for different values of the unnesting param-

eter tb�. By decreasing tb�, the T0 transition temperature in-
creases. This behavior is similar to that obtained within the
QNM for a single band model as in �TMTSF�2Pf6. T0 de-
pends substantially on the I0 factor �Eq. �7��. The latter in-
creases as the tb / tb� ratio increases leading to an enhancement
of T0.5

One should note that the tendency to saturation of the T0
boundary line at high field depends on the value of tb�. With
increasing tb�, the saturation of T0 is more and more difficult
to reach. This behavior is reminiscent of the experimental
results of Matsunaga et al. in the case of deuterated66

�TMTSF�2ClO4.50

The oscillating behavior of the T0 phase boundary is ex-
pected to be more and more pronounced as tb� decreases. This
originates from the dependence of the �m� term on tb� �Fig.
6�a��. On the other hand, T0 is pushed to higher temperature
as tb� decreases. However, as the temperature increases, the
oscillation amplitude of �m� decreases �Fig. 6�c��. Therefore,
the oscillations of the T0 line will depend of the competition
between the unnesting parameter tb� and the thermal fluctua-
tions. It is worth noting that the oscillation periodicity of T0
is unchanged as tb� varies since the effective gap � is inde-
pendent of tb� �Fig. 16�b��.

Concerning the inner phase, it seems that as tb� increases,
the reentrance of the N=0 phase is furthered and the N=1
phase is found to be shifted to lower field. This can be un-
derstood from Eq. �16� according to which the coupling term
c0 decreases with decreasing I0. As we have discussed in Sec.
V, a decrease of c0 stabilizes the N=0 phase. Therefore, as tb�
increases, the c0 factor is lowered and the reentrance of the
N=0 phase is furthered at the expense of the N=1 phase. For
the chosen data of Fig. 16, we found that the N=1 phase
disappears for tb� larger than 25 K and only the original N
=0 phase persists in the high field regime.

E. High field phases and the anion gap

Figure 17 shows the dependence of the high FISDW
phases on the magnitude of the anion gap V. The metal-N
=0 boundary line T0 is found to be lowered as V increases.
This is due to the dependence on V of the generalized Stoner
criterion �Eq. �7�� through the �m� term. From Eq. �9� we
deduce that, the larger the anion gap V, the larger the devia-
tion from perfect nesting, the lower the transition tempera-
ture T0.

Furthermore, the oscillations of the T0 phase boundary are
enhanced as V increases. This is due to the presence of the
�m� term in the Stoner criterion �Eq. �7��. Increasing V yields
to an increase of the oscillation amplitude of �m� �Fig. 6�b��.

From Fig. 17 we note that, as V increases, the inner phase
spreads out on a larger range and its boundary line T1

* is
shifted to higher temperature. It should be stressed that, the
metal-N=1 transition line T1 �Eq. �11�� is V independent.
However, as V increases the T0 temperature decreases which
puts at disadvantage the N=0 phase and enhances the T1

*

critical temperature given by Eq. �17�.
As shown in Fig. 17, increasing V furthers the reentrance

of the N=0 phase. This is due to the fact that the minima of
the coupling term c0 �Eq. �16�� decreases as V increases �Fig.

FIG. 16. �a� Temperature-field phase diagram of �TMTSF�2ClO4

for different values of the unnesting parameter tb�. The calculations
are done for tb=300 K, V=30 K, g1=0.43 for the interband cou-
pling and g0=0.39 for the intraband ones. The lines of the same
type correspond to a given tb�. The set of the upper lines are ascribed
to the T0 lines while the bottom ones are associated to the T1

* phase
boundaries. The thin solid lines are the fitted curves of T0 lines. �b�
T0 transition temperature as a function of the inverse of the mag-
netic field for different values of the imperfect nesting parameter tb�.
The data are the same as in �a�.
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12�b��, which induces a decrease of the N=0 free energy
�Eq. �14��.

This behavior is in agreement with the experimental re-
sults of Matsunaga et al.50 who studied the effect of varying
the cooling rate on the hydrogenared and deuterated
�TMTSF�2ClO4. The authors have found that, with increas-
ing the cooling rate �decreasing V�, the first order phase
boundary separating the last semimetallic SDW phase �N
=1 phase in Fig. 17� from the high field insulating state �N
=0 phase in Fig. 17� shifts toward low field region. This is in
agreement with our results showing that the critical field at
which T1

* collapses is decreased with decreasing V. Matsu-
naga et al. have also found that an increase of the cooling
rate furthers the insulating FISDW phase characterized by a
zero Hall voltage �N=0 phase� but suppresses the last semi-

metallic phase �N=1 phase�. The authors have then con-
cluded that these FISDW phases correspond to different
states. All these experimental features corroborate our results
shown in Fig. 17.

VII. CONCLUSION

We have studied the SDW instabilities of the relaxed
�TMTSF�2ClO4 in the high magnetic field regime. Based on
a detailed discussion of the theoretical and experimental
studies, we argued that the anion gap V, which gives rise to
a two-band energy spectrum, is smaller than the hopping
parameter tb. We have, then, proposed a model where V is
considered as a perturbation. The obtained results reproduce
successfully the experimental features. We have shown that
the highest transition temperature appearing in the high field
regime corresponds to the N=0 phase which originates from
two coexisting order parameters induced by two intraband
nesting processes. These order parameters cooperate to sta-
bilize this phase. However, their coexistence puts at disad-
vantage the N=0 phase as the magnitude of the order param-
eters increases with decreasing temperature. Eventually, a
first order transition takes place from the N=0 phase to a
new SDW phase which is identified as the N=1 state. The
latter forms inside the original N=0 phase. This phase is
induced by a single order parameter which brings into play
only one nesting vector. This scenario is a different proposi-
tion compared to those existing in the literature.

We have studied the effect of some key parameters on the
behavior of the FISDW states such as the coupling constants.
We have shown that the coupling strengths used in the RPA
expressions have to be renormalized by 1D effects in particu-
lar for large V value. We have derived the renormalization
group equations for the different coupling terms. We have
shown that taking into account the renormalization of the
coupling constants improve the quantitative agreement be-
tween our results and the experiments.

Moreover, we have focused on the dependence of the
phase diagram on the imperfect nesting parameter tb� and the
anion gap V. The results are consistent with recent experi-
mental data. It should be stressed that the present model is
not restricted to the small V limit. In particular, the scenario
of two simultaneous transitions on two different bands will
still hold even for large V limit. The main difference with the
small V case is the method used to derive the instability
criteria.
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APPENDIX: RG EQUATIONS

In this appendix we give the RG equations of the coupling
constants g� ��=0, f , t ,b� and the hopping parameter to the
first nearest neighbors tb

dg0
�1��l�
dl

= − 2g0
�1�2 − 2gt

�1�gt
�2� − 2Igb

�1��gb
�1� − gb

�2�� ,

dg0
�2��l�
dl

= − g0
�1�2 − gt

�1�2 − gt
�2�2 + Igb

�2�2,

dgf
�1��l�
dl

= − 2gf
�1�2 − 2Igb

�1�gb
�2� − 2gt

�1��gt
�1� − gt

�2�� ,

dgf
�2��l�
dl

= − gf
�1�2 − Igb

�1�2 − Igb
�2�2 + gt

�2�2,

dgt
�1��l�
dl

= − 2gt
�1�g0

�2� − 2g0
�1�gt

�2� − 2gt
�1��gf

�1� − gf
�2��

− 2gf
�1��gt

�1� − gt
�2�� ,

dgt
�2��l�
dl

= − 2gt
�2��g0

�2� − gf
�2�� − 2gt

�1�g0
�1�,

dgb
�1��l�
dl

= − 2gb
�1�gf

�2� − 2gf
�1�gb

�2� − 2gb
�1��g0

�1� − g0
�2��

− 2g0
�1��gb

�1� − gb
�2�� ,

dgb
�2��l�
dl

= − 2gb
�2��gf

�2� − g0
�2�� − 2gb

�1�gf
�1�,

d ln t̄b�l�
dl

= 1, �A1�

where t̃b= tb /E0 and

I =
E�l�

E�l� + 4���
. �A2�

Here �=VJ0�4tb /�c� is the effective anion gap. The expres-
sion of I given by Fabrizio52 is rather

I =
E�l�

E�l� − 4���
, �A3�

considering Eq. �A2� comes down to take into account three
particle interaction processes during the RG procedure.62,63,67

Such interactions have been disregarded in Ref. 52. In this
RG procedure, we do not take into account the tb� process
since it is a 2D characteristic energy and is incoherent in the
high temperature regime �T�Tcross�.
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