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The quasiparticle properties of a technologically important material Ca2Si is studied by means of the all
electron GW approximation based on the projector-augmented-wave method �PAW�. Both the orthorhombic
and the cubic phases are explored, and the resulting band structures are compared with those obtained in the
framework of the local-density approximation �LDA� of the density functional theory. An improved energy
band gap for both phases of this material is compared to experiment. The dielectric function is also computed
for both phases, and its shown that the quasiparticle self-energy correction and the local-field effects strongly
affect the optical spectra and the static dielectric function. The analysis of the locations of the Brillouin zone
k points and the interband transitions responsible of the main peak is conducted for both phases.
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I. INTRODUCTION

Metal silicides have recently the subject of extensive stud-
ies to improve the understanding of their structural, elec-
tronic, and optical properties due to their possible techno-
logical applications. Among this wide family of compounds,
the so-called “Kankyo semiconductors”1 play an increasing
role in a device’s fabrication because they are composed of
naturally abundant and less toxic elements. In particular,
Ca2Si is considered to be a promising candidate for applica-
tions, and hence many experimental studies, like
photoemission2 and inverse photoemission3 experiments as
well as resistivity4 measurements have been performed on
this material. Recently, the growth of microstructures of
semiconducting silicide layers made of Ca2Si was
reported,5,6 and their excellent compatibility with existent
silicon based technology was pointed out.6

Many theoretical studies were conducted to understand
the various experimental data. However, the results were
rather contradictory since, for example, Bisi and co-workers2

have shown that Ca2Si is a semimetal, whereas a semicon-
ducting behavior was found by Imai et al.7 In order to clarify
the situation, Migas and co-workers8 performed a study of
the structural, electronic, and optical properties of Ca2X �X
=Si,Ge,Sn,Pb� compounds in the framework of the density
functional theory �DFT� in the local-density approximation
�LDA�.9,10 In particular, they identified the stable crystalline
structure of Ca2Si to be of the simple orthorhombic type in
agreement with x-ray diffraction experiments. However, their
results concerning the electronic and optical properties are
subject to caution due to the well-known problem of the DFT
to deal with excited states. Their results must be viewed only
as a preliminary step towards the understanding of the elec-
tronic structure of these interesting materials.

Regarding the potential applications related to Ca2Si, a
clear answer must, therefore, be provided concerning the cal-
culated quasiparticle band structure, and should be compared
to available photoemission and inverse photoemission ex-

periments. The knowledge of the band gap of this material,
i.e., its value and its nature �direct versus indirect� as well as
its optical properties are of extreme importance for optoelec-
tronic applications.

The GW approximation �GWA� of Hedin,11,12 where the
quasiparticle self-energy is approximated as the product of
the LDA Green’s function G and the screened Coulomb in-
teraction W, is becoming the tool of choice for computing the
excited states of materials. The purpose of this study is,
therefore, to present our results concerning the quasiparticle
and optical properties of Ca2Si within this framework.

Our paper is organized as follows: In the second section
we investigate the structural properties of Ca2Si in the cubic
and orthorhombic structures by means of the all-electron
projector-augmented-wave method �PAW�.13 Then, we
present our quasiparticle band structures obtained within the
GWA and finally in the third section we study the dielectric
function for both phases of Ca2Si. In particular, we discuss
the importance of the self-energy correction and local-field
�LF� effects on the computed optical spectra and analyze the
main peaks in calculated optical spectra.

II. ELECTRONIC PROPERTIES

A. Structural properties

The ground state electronic structure properties of Ca2Si
are calculated within the DFT.9,10 The exchange-correlation
potential has been determined within the generalized gradi-
ent approximation �GGA�,14 and the Kohn-Sham equations
are solved using the PAW method. This method combines an
all-electron description of the wave functions within a mo-
lecular dynamic formalism.13 All internal coordinates have
been relaxed and a Parrinello-Rahman simulation has been
used to optimize the unit cell. The orthorhombic unit cell
contains 12 atoms and is depicted in Fig. 1.

To insure convergence of the total energy, a mesh of 6
�8�4 k points in the full Brillouin zone �BZ� and an en-
ergy cutoff of 25 Ryd for the plane-wave basis set have been
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used in our calculations for the orthorhombic phase. A mesh
of 11�11�11 k points and an energy cutoff of 20 Ryd was
used for the cubic phase. This phase crystallizes in the well-
known antifluorite structure �not shown here�, where the sili-
con is placed at the origin whereas the two equivalent cal-
cium atoms are at �1/4 ,1 /4 ,1 /4� and �−1/4 ,−1/4 ,−1/4�.
Although the cubic phase is not the most stable one, it is also
important to investigate its properties since it can probably
be easily grown under hydrostatic pressure.8

The resulting lattice parameters are presented in Table I
and compared to other available results. Our values are in
good agreement with available results, showing the ability of

the PAW method to compete with other ab initio schemes.
The structural properties of this system have been exten-
sively studied in Ref. 8, so we will not add any further com-
ments and prefer to focus on the excited properties which are
treated in the next subsection.

B. Quasiparticle properties

As presented in the introduction, we use the GWA to the
self-energy11,12 to overcome the difficulty of the DFT in deal-
ing with excited state properties. This method has been used
successfully in the past for a wide range of materials.17–19

Within this method, quasiparticle �QP� equations replace the
usual Kohn-Sham ones, and the QP energies En�k� and QP
wave functions �kn�r� are obtained by solving the QP equa-
tions

�T + Vext + Vh��kn�r� +� d3r���r,r�,En�k���kn�r��

= En�k��kn�r� , �1�

where T, Vext, Vh, and � are, respectively, the kinetic energy
operator, the external potential due to the ion cores, the av-
erage electrostatic �Hartree� potential, and the electron self-
energy operator. In the case of the GWA, the self-energy is
simply the product of the one-electron Green’s function G
and the screened Coulomb interaction W:11,12

��r,r�,�� =
i

2�
� d��G�r,r�,� + ���ei���W�r,r�,��� ,

�2�

where � is a positive infinitesimal. In order to get a practical
scheme, the quasiparticle energies En�k� are obtained by a
first-order expansion of the self-energy:

Re En�k� = �n�k� + Znk � ���kn�Re ��r,r�,�n�k����kn�

− ��kn�Vxc
LDA�r���kn�� . �3�

The renormalization factor Znk is defined by

Znk = 	1 − ��kn�
�

��
Re ��r,r�,� = �n�k����kn�
−1

. �4�

The screened Coulomb interaction W is calculated in two
ways: For the cubic phase �3 atoms per unit cell� the random-
phase approximation �RPA� is used as described in Ref. 20,
but for the orthorhombic phase one needs to compute the
quasiparticle energies for a system of 12 atoms per unit cell,
and this approximation becomes computationally expensive.
We have, therefore, resorted to the plasmon-pole �PlP� model
which avoid the calculation of the full dielectric function
�see Ref. 21 for a complete description�. Apart from the fact
that the imaginary part of the self-energy is not accessible
with the PlP, this approximation produces quasiparticle ener-
gies in good agreement with the full GW-RPA for “sp” ma-
terials. A slight overestimation of the interband transitions
could occur in some materials, see Ref. 20.

In Fig. 2 we present the QP band structure for the ortho-
rhombic phase along some high-symmetry directions. To en-

FIG. 1. �Color online� Unit cell of the orthorhombic phase of
Ca2Si. It contains 12 atoms per cell and the calcium are distributed
on two inequivalent sites.

TABLE I. Calculated lattice parameters �in Angstroms� of the
orthorhombic and cubic phases of Ca2Si compared with other the-
oretical �Ref. 8� using the ultrasoft pseudopotential approximation
�USPP� and experimental results �Refs. 15 and 16�.

a b c

Orthorhombic phase �this work� 7.664 4.799 9.002

Orthorhombic phasea 7.618 4.793 9.001

Orthorhombic phaseb 7.667 4.799 9.002

Orthorhombic phasec 7.691 4.816 9.035

Cubic phase �this work� 7.149

Cubic phasea 7.148

aUSPP results of Ref. 8.
bExperimental results Ref. 15.
cExperimental results of Ref. 16.
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sure well-converged quantities, we have used 24 k-points in
the full BZ as well as 300 bands, and a dielectric matrix of
size 561�561. A detailed overview of the DFT and QP en-
ergies is given in Table II. From the data presented in this
table, we can notice that the difference of energies between
the conduction and valence states are substantially increased
by the use of the GWA as compared to the DFT results. In
particular, the minimum band gap �corresponding to inter-
band transitions at the 	 point� is 1.02 eV within the GWA,
whereas its only 0.30 eV within the DFT, i.e., its is more
than three times larger. This DFT value is in good agreement
with the value of 0.35 eV reported by Migas et al.8 Our

agreement with the results of Migas and co-workers rules out
the possibility of a semimetallic behavior as proposed
earlier.2 On the other hand, our value of 1.02 eV is much
smaller than the estimated value of 1.90 eV from resistivity
measurements.4 Although the GWA leads sometimes to a
slightly underestimated interband transitions for
semiconductors,20 the overall agreement between calculated
and experimental results is, in general, rather quite satisfac-
tory and a large difference of 0.9 eV is clearly unexpected
and might be related to possible problems with the samples
used in Ref. 4. At this point, additional information is re-
quired to resolve this discrepancy. We provide, therefore, in
Table II the relevant information for future detailed analysis.

We have also carried out GWA calculations of the cubic
phase of Ca2Si. We used 64 k points in the full BZ and 200
bands. For the computation of the screened Coulomb inter-
action we used a dielectric matrix of size 331�331 for each
k point. The value of the minimum band gap obtained within
the DFT is 0.50 eV and is in good agreement with the value
of 0.56 eV reported in Ref. 8. The GWA provided a value of
1.16 eV �see Table III for all the values of the calculated
interband transitions�. It is interesting to notice that the last
valence band at the high-symmetry point X is almost equal to
the K point value within the DFT, whereas the X, L, and
some points along the K→	 are all equal within the GWA,
making the exact nature of the band gap hard to determine,
as pictured in Fig. 3. However, this particular feature could
be used to make this material switchtable between direct and
indirect band gap upon applying pressure or growth on a
suitable substrate. In addition, it is also interesting to notice
that the GWA correction depends strongly on the character of
the bands. For example, at the 	 point, the difference of the
first and the second doubly degenerate conduction bands is

FIG. 2. �Color online� DFT band structure �full lines� and qua-
siparticle corrections �red dots� for the orthorhombic phase of
Ca2Si. The DFT top of valence state is at the zero of the energy
scale.

TABLE II. Quasiparticle interband transitions at some high symmetry points, 	, S, Y, Z, U, R, and T of
the BZ of the Ca2Si in its orthorhombic phase. The values corresponding to the minimum band gap are
underlined.

Orthorhombic phase

DFT GWA

�v→�1c 0.30 1.02

�v→�2c 1.05 1.88

Xv→X1c 1.26 2.45

Xv→X2c 1.56 2.41

Sv→S1c 1.67 2.78

Sv→S2c 1.98 3.45

Y8v→Y1c 1.20 2.15

Y8v→Y2c 1.67 2.93

Z8v→Z1c 1.08 2.05

Z8v→Z2c 1.74 3.18

U8v→U1c 1.44 2.55

U8v→U2c 1.61 2.65

R8v→R1c 1.53 2.58

R8v→R2c 1.81 3.08

T8v→T1c 0.98 1.78

T8v→T2c 1.41 2.40
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about 0.06 eV within the DFT, this difference becomes
0.96 eV within the GWA. This can be explained by the fact
that the first band is of pure sp character at the 	 point,
whereas the second one is of pure d character. The effect of
the correction is therefore to push the d band towards higher
energies. This effect is also reproduced when using the PlP
approximation for the cubic phase �results not presented
here�. The dependence of the correction upon band character
has been already observed before for LiBC and related
materials22 and is related to the degree of localization of the
orbitals to be corrected by the self-energy. This points out
once again the importance of using a GWA scheme rather
than the more traditional LDA or GGA approximation to
compute the excited state properties of materials.

III. OPTICAL PROPERTIES

A. Method of calculation

Optical spectroscopy is becoming a widely used tool to
probe the electronic properties of materials. To compare the
calculated optical spectra with experiments, the computation

should include quasiparticle corrections, as obtained in the
previous section, and the local-field effects. None of these
effects were included in previous work.8 In this study it will
be shown that some of these effects are of particular impor-
tance and can drastically change the optical spectra. The for-
malism used in this work is shortly reviewed.

The macroscopic dielectric function is defined as

���� = lim
q→0

1

��G,G�
−1 �q,���0,0

�5�

which can be rewritten as:

���� = lim
q→0

�0,0�q,��

− lim
q→0

�
G,G��0

�0,G�q,���G,G�
−1 �q,���G�,0�q,�� �6�

The first term of Eq. �6� is the interband contribution without
LF effects, whereas the second one represents the LF field
contribution. The LF represent the explicit dependence of the
dielectric function ��r ,r� ,�� on r and r� and not only on
�r−r��.23,24 Therefore, the local fields cannot be neglected in
systems with strong inhomogeneities of the charge density.
In our case the random phase approximation �RPA� to the

TABLE IV. Effects of the local fields and the quasiparticle shift
on the macroscopic static dielectric constant for both the ortho-
rhombic and cubic phases. Here xx, yy, and zz denote the three
independent components of the dielectric function of the ortho-
rhombic phase, and av represents the averaged value of the static
dielectric function for a useful comparison with the value for the
cubic phase presented in the last line.

DFT DFT+LF QP shift QP shift+LF

�

xx orthorhombic 18.4 15.2 13.8 11.7

�

yy orthorhombic 18.1 14.3 13.2 10.8

�

zz orthorhombic 17.7 13.5 13.5 10.8

�

av orthorhombic 18.1 14.3 13.4 11.1

�
 cubic 14.7 11.5 11.1 9.0

TABLE III. Quasiparticle interband transitions at the high symmetry points L, 	, X, W, and K for the
cubic phase of Ca2Si. The values corresponding to the minimum band gap are underlined.

Cubic phase

DFT GWA

Lv→L1c 2.42 3.37

Lv→L2c 2.64 3.25

�v→�1c 2.10 2.31

�v→�2c 2.16 3.27

Xv→X1c 0.50 1.16

Xv→X2c 1.55 2.63

Wv→W1c 1.37 2.27

Wv→W2c 2.78 3.99

Kv→K1c 0.93 1.69

Kv→K2c 2.25 3.40

FIG. 3. �Color online� DFT band structure �full lines� and GWA
quasiparticle corrections �red dots� for the cubic phase of Ca2Si.
The DFT top of the valence state is located at the zero of the energy
scale.
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FIG. 4. �Color online� Real �upper row� and imaginary �lower row� parts of the dielectric function for both the orthorhombic and cubic
phases of Ca2Si. In the case of the orthorhombic phase, the spectra for the three polarizations of light �along the x, y, and z directions� are
given. The plots with full lines �in blue� include the local-field effects and those with dashed lines do not. In all calculations, the effect of
the self-energy correction has been accounted for by shifting the conduction states so that the GWA minimum band gap is reproduced.
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dielectric function is used, and according to Adler and
Wiser25–27 the dielectric function �G,G��q ,�� can be given by

�G,G��q,�� = �G,G� −
8�

��q + G��q + G��

� �
l,m,k

�nlk−q − nmk�MG
lm�k,q��MG�

lm �k,q��*

�lk−q
qp − �mk

qp , + � + i�

�7�

where nmk and �mk
qp are, respectively, the occupation number

and the one-particle energy for a given state specified by the
band index m and the wave vector k. Also, � is a positive
infinitesimal, and the matrix elements MG

lm�k ,q� are given by

MG
lm�k,q� = ��k−ql�e−i�q+G�r��km� �8�

In our case, the imaginary part of the dielectric function ��2�
is calculated first by using tetrahedron method28,29 to inte-
grate over the Brillouin zone. Then the real part of ���� is
obtained using a Kramers-Kronig transformation. More de-
tails about the implementation can be found elsewhere.30

B. Results and discussions

Concerning the quasiparticle correction, since a calcula-
tion of the self-energy for all the k points and all the bands
involved in Eq. �7� is computationally overwhelming, we
have chosen to apply a constant shift to the unoccupied DFT
bands in order to produce an average GWA correction to the
band structure. This shift is chosen as the correction done by
the GWA to the minimum DFT band gap: 0.72 eV for the
orthorhombic phase and 0.66 eV for the cubic phase �see
Tables II and III�. This correction is crucial to insure that our
results can be compared with future experimental data. One
should stress out that this energy shift of the DFT eigenval-
ues will not fully reproduce the quasiparticle energies of the
conduction states because as it was pointed before the GWA
correction depends on whether the band is localized or delo-
calized. Nonetheless, we expect that the use of the correct
quasiparticle energies instead of the DFT shifted energies
will bring only minor corrections to the dielectric function
that can hardly be noticed in the calculated optical spectra.

The calculated static dielectric constants in various ap-
proximations �with or without GWA correction to the one-
particle energies and with or without LF effects� are pre-
sented in Table IV. In both phases, Ca2Si is characterized by
a large value of the static dielectric function. In particular,
the orthorhombic phase is found to be more polarizable than
the cubic phase, regardless the approximation used to per-
form the calculation. This is easily understood by noticing
that the DFT band gap of the orthorhombic phase is smaller
than the one of the cubic phase, leading to a value of the
dielectric constant of 18.1 �averaged value over the three
directions� compared to a value of 14.7 for the cubic phase.
This trend is also confirmed when using QP energies instead
of the DFT one to compute the dielectric constant. However,
the difference between the two values is reduced compared
to the previous DFT ones. This reduction originates from the
fact that the average GWA correction is more important for

orthorhombic phase than for cubic phase, bringing both
phases to almost the same value of the minimum band gap.

The static dielectric function is a ground state property
and, therefore, one expects that the calculation using the
DFT one particle energies and including the LF effects will
be much closer to experiment. The dielectric constant includ-
ing QP correction are only relevant if they are also corrected
for excitonic effects. This is because the excitonic effects
shift back the oscillator strength towards lower photon ener-
gies, canceling partially or totally the QP correction to the
static dielectric function. Unfortunately, the effects of the
electron-hole interaction on the static dielectric constant can-
not be obtained accurately at the present moment because of
computational difficulties in the convergence process of the
of the optical spectra within this approach �see Ref. 30 for
further details�.

In Fig. 4, the frequency dependent dielectric function of
the two phases are represented. All the spectra shown here
include the QP corrections31 with �full line� or without
�dashed line� LF effects. The size of the dielectric matrix �see
Eq. �7�� is a crucial parameter for a converged calculation of
the LF effects. In our case, we found that a dielectric func-
tion matrix of 69�69 is sufficient to ensure convergence.
For the orthorhombic phase, we have used a grid of 6�8
�4 k points for the head element and a grid of 4�6�2 k
points for the wings and the body elements, whereas for the
cubic phase of Ca2Si grids of, respectively, 20�20�20 k
points and 10�10�10 k points were sufficient. As for the
static dielectric function case, the frequency dependent com-
puted dielectric function for the orthorhombic phase shows a
sizable anisotropy for the three independent polarizations of
light. In particular, the spectrum for E �a and E �c are quite
similar whereas the spectrum for E �b looks similar to the
one of the cubic phase. As noticed in Ref. 8 for their LDA
calculations, this originates from the different projections of
the crystalline structure with respect to a given direction.
Here we show that this analysis still holds when including
LF and QP correction in the calculation of the spectra, which
is far from obvious since LF account for the nonhomogeneity
of the charge density. For all spectra, the LF effects reduce
the intensity of the peaks, but do not change significantly
their positions.

In order to improve our understanding of the optical spec-
tra, it is useful to determine the k point locations of the

FIG. 5. �Color online� Representation of the k point locations of
the interband transitions responsible of the main peaks in the imagi-
nary part of the dielectric function ��2� of the cubic phase. Left:
Those for the last occupied band to the first conduction band at the
energy of the first peak of �2. Middle: Those for the last occupied
band to the first conduction band at the energy of the second peak of
�2. Right: Those for the last occupied band to the second conduction
band at the energy of the second peak of �2.
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interband transitions responsible of the main peaks in the
imaginary part of the dielectric function. The prime effect of
the momentum matrix elements is to allow or forbid some
interband transitions according to dipolar selection rules. In
the case of Ca2Si, the last valence bands are mainly of “p”
character �from the silicon atomic species� whereas the first
conduction bands have mainly “d” character �from the cal-
cium atomic species�; the effects of the momentum matrix
elements consist mainly in modulating the oscillator strength
of each transition.

To obtain both band to band transitions and a k-point
analysis of the structures in the optical spectra, we reported
the values of interband transitions for the whole BZ and
selected different energies corresponding to the main peaks
in �2. Strictly speaking this analysis provides only the k point
locations and interband transitions responsible of the struc-
tures in the joint density of states �JDOS�, however, since we
know the selection rules and the character of the occupied
and empty bands, this analysis remains valid for the optical
spectra. Our analysis is presented in Fig. 5 in the case of the
cubic phase. On the left plot, the k point locations of the
interband transitions between the last occupied band and the
first empty conduction band responsible of the first peak
�1.96 eV� of �2 are represented. Clearly, this peak originates
from interband transitions in the vicinity of the X and K
high-symmetry points of the BZ. This is also understood by
looking at the band structure of the cubic phase �see Fig. 3�:
The minimum of transitions is located at the high symmetry
X point with a second minimum at the K point. In the middle
and right part of Fig. 5, we present k-point locations for the
interband transitions responsible of the second peak
�2.85 eV� of the dielectric function, respectively, from the
last valence band to the first and second conduction bands.
Both interband transitions along a direction parallel to L-	
�middle plot� and interband transitions around X and 	 points
�right plot� contribute to this peak. Other interband transi-
tions do not contribute to this structure.

For the orthorhombic phase, the interband transitions and
k point locations of the peaks in �2 are by far more compli-
cated than for the cubic phase due to the large number of
sub-bands involved in the analysis. We choose, therefore, to
analyze only the lowest interband transitions responsible of
the main peak in �2 for the three components, corresponding
to light polarization along the x, y, or z directions. Concern-

ing the E �a case, the k point locations for the interband
transitions between the last valence band and the first con-
duction band responsible for the peak at 2.16 eV are repre-
sented by the left plot of Fig. 6. The major contribution
comes from the interband transitions along the high-
symmetry direction S-R together with some along the S-Y
line. On the other hand, the locations of the k points for the
interband transitions responsible for the main peak at
2.37 eV in �2

yy��� are represented by the second picture of
Fig. 6 and are shown to be issued by excitations around the
Z-T and S-Y high symmetry directions. In this case, transi-
tions from the last valence band to the two first conduction
bands do not contribute to this peak because it is lying at
much higher energies, so we have represented transitions to
the third unoccupied state. This is also the case when E �c,
for which the main peak is located at 2.42 eV. From the right
plot of Fig. 6, we conclude that transitions around the Z-T
lines are important. Of course there is a lot of other relevant
transitions to be analyzed in order to have a complete under-
standing of the whole structure in the optical spectra. But a
full analysis of the structures in calculated spectra is without
much value in the absence of experimental data. However,
we believe that our work will be helpful for the interpretation
of future optical experiments. Here we just want to show that
the information provided by a plot of the location of the k
points of the interband transitions responsible of the struc-
tures in the optical spectra, as seen in Fig. 6 is much nicer to
understand than directly analyzing the complicated ortho-
rhombic band structure plot by inspection to extract the rel-
evant information.

IV. CONCLUSION

In summary, we have presented results concerning
ab initio quasiparticle properties and optical spectra for a
technological important material Ca2Si in both its ortho-
rhombic and cubic phases. We have given precise values of
electronic interband transitions within the GWA and calcu-
lated the optical spectra including both LF effects and qua-
siparticle shifts. The results using the GWA are shown to
differ markedly from the DFT results and might be in better
agreement with future experimental data. The main struc-
tures in the optical spectra are analyzed and the locations of
the k points of the interband transitions responsible of these

FIG. 6. �Color online� Representation of the k point locations for the interband transitions responsible for the first peaks of �2 of the
orthorhombic phase �2. Left: Those for the last occupied band and the first conduction band at the energy of the main peak of �2 for E �a
�2.16 eV�. Middle: Those for the last occupied band to the third conduction band at the energy of the main peak of �2 for E �b �2.37 eV�.
Right: Those for the last occupied band to the third conduction band at the energy of the main peak of �2 for E �c �2.42 eV�. The 	
high-symmetry point is located at every corner.
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peaks are obtained. The path is now open for new experi-
mental work to compare with our results.

It is also of interest to compute the excited states proper-
ties for some related materials like Ca2Ge, Ca2Sn, Ca2Pb.
Their properties have been studied in Ref. 8 within the LDA
but to our knowledge no GW calculations are published in
the literature. Another point of particular importance is the
study of excitonic effects on the optical spectra. They can
affect the overall shape of the spectra in a quite significant

way. At the present time the excitonic effects are computa-
tionally time consuming and, therefore, the calculations are
prohibitive for materials with many atoms per unit cell.
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