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We report on the Cu 1s resonant inelastic x-ray scattering �RIXS� of Cu-O one-dimensional strongly corre-
lated insulator systems with contrasting atomic arrangements, namely edge-sharing CuGeO3 and corner-
sharing Sr2CuO3. Owing to good statistics of the high-resolution RIXS data, so far unresolved fine structures
are revealed. Detailed photon-energy and momentum dependence of the RIXS spectra in comparison with
theoretical calculations has clarified the natures of the low-energy charge excitations and hybridization of the
electronic states.
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Resonant inelastic x-ray scattering �RIXS� is a powerful
tool to probe the momentum dependence of low-energy ex-
citations in solids.1,2 This technique is intriguing to clarify
bulk electronic states of strongly correlated insulators, which
have attracted a keen general interest in decades.3–5 For me-
tallic systems, high-resolution angle-resolved photoemission
�ARPES� is promising to detect their occupied states. Nowa-
days both surface-sensitive low-energy6 and bulk-sensitive
high-energy7,8 ARPES measurements are feasible. Compared
to ARPES, RIXS is really bulk sensitive and applicable to
insulators with high resistivity, where the electron correlation
is even stronger.1,2,5,9 However, high-energy resolution RIXS
is rather demanding because of their poor count rate. For this
purpose, high photon flux in a small spot size and a highly
efficient analyzer crystal are required.

Here we report photon-energy �h�� and momentum ��k�
dependence of the Cu 1s RIXS with good statistics for two
contrasting Cu-O one-dimensional �1D� insulating systems
CuGeO3 �Ref. 10� and Sr2CuO3 �Ref. 2� with dominantly
divalent Cu. As shown in Fig. 1�c�, CuGeO3 has a single
chain with the edge-sharing CuO2 plane configuration with
the Cu-O-Cu angle ��� of 99°, where the Cu-Cu chain axis is
taken as the x axis and the CuO2 plane corresponds to the x-y
plane. The 3dxy orbital is unoccupied because it has the high-
est energy among the whole d orbitals according to an ex-
tended d-p model calculation.11,12 The transfer energy be-
tween the neighboring Cu 3d sites via O 2p sites is thought
to be very small because of the orthogonality of the Cu 3dxy
orbitals on the neighboring sites coupled to the O 2p orbitals
in the edge-sharing CuGeO3. On the other hand, Sr2CuO3
has a single Cu-O chain with the corner-sharing configura-
tion as shown in Fig. 2�b�. The transfer energy is thought to
be large in this case, in which the Cu 3d hole is thought to be
in the 3dx2−y2 state. Therefore, very different behavior of
charge dynamics is expected in these systems.

A RIXS experiment was performed at BL19LXU of
SPring-8 with a 27-m-long x-ray linear undulator. By use of

two channel cut crystal monochromators, the resolution of
the incident h� was better than 300 meV. A horizontal focus-
ing was better than 100 �m on the sample. The instrument
with a 1-m Rowland circle was used for the measurement.
The total resolution of 400 meV �full width at half maxi-
mum� was achieved by using a spherically bent Si�553� ana-
lyzer crystal. Transmission �reflection� mode was employed
for CuGeO3�Sr2CuO3� kept at room temperature. In both
cases, the polarization of the light and the Cu-O chain were
in the horizontal plane which corresponds to the scattering
plane. For a thin-film CuGeO3 sample, the chain axis was
oriented by Laue diffraction. A surface perpendicular to the
Cu-O chain was oriented and polished for a Sr2CuO3 sample.
For a dipole excitation, the Cu 1s state is excited to the Cu
4p states, where an electron in a certain occupied state is
excited to a certain unoccupied state while emitting the scat-
tered x rays with the corresponding energy loss. The photon
momentum k is large in the x-ray region and the momentum
difference �k between the incident and scattered photons can
easily cover few Brillouin zones.

The experimental results of edge-sharing CuGeO3 are
shown in Fig. 1. The inset in Fig. 1�c� shows the Cu 1s
absorption spectrum measured by fluorescence yield. The
quadrupole excitation peak is observed at h�=8.980 keV,
whereas the main absorption band is rather wide. The RIXS
spectra are measured for �k=3� at three h� of 8.990, 8.995,
and 9.000 keV as shown in Figs. 1�a� and 1�b�. Three RIXS
structures are observed near 6.3, 3.7, and 1.6 eV. It is recog-
nized that the intensity ratio between the structures at 3.7 and
6.3 eV is the smallest at h�=9.000 keV and the structure at
1.6-eV above the smooth tail of the elastic peak is negligible
at h�=8.990 keV. Then the �k dependence of the RIXS is
measured at different h�. A typical result at h�=8.995 keV
�Fig. 1�c�� shows very small dispersion of all RIXS peaks.

The results of Sr2CuO3 are shown in Fig. 2. The inset of
Fig. 2�a� shows the Cu 1s absorption spectrum. Two peak
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structures are recognized near 8.999 and 9.005 keV in addi-
tion to an absorption hump near 8.985 keV �the quadrupole
excitation threshold is near 8.980 keV�. Figure 2�a� shows
clear differences of RIXS at h�=8.997, 8.999, and 9.005
keV for �k=3�. For excitations at 8.997 and 8.999 keV,
three broad energy-loss structures are observed at around 3.2,
5.2, and �6.7 eV. One can further recognize a shoulder near
2 eV for h�=8.997 and 8.999 keV, and near 3.7 eV for h�
=8.999 keV owing to the good statistics compared with Ref.
2. It is remarkable that the 3.2-eV structure is dramatically
suppressed at h�=9.005 keV. Figure 2�b� shows the �k de-
pendence of the RIXS at h�=8.999 keV. A clear �k depen-
dence is observed for the above-mentioned peak located at
3.2 eV at �k=3�. Its dispersion is found to have a minimum
close to 2.3 eV around �k=4� and 2� and a maximum close
to 3.2 eV around �k=5� and 3�, where shoulders near 3.7
and 2.0 eV are also seen. The �k-dependent shift of the
structure near 5.2 eV is much less prominent.

We now discuss the observed complex RIXS structures in
comparison with theoretical calculations. The extended d-p
model calculation by a rigorous numerical diagonalization
method for finite-size clusters11,12 predicts a two-peak struc-

ture separated by about 4 eV in the Cu 1s absorption spec-
trum, reflecting different intermediate states in the RIXS pro-
cesses. The low-energy peak corresponds mainly to the
“�1s13d10L4p1�” states �L denotes the hole in the O 2p
states�, where the Cu 3d hole is transferred to the O 2p state
in order to reduce the on-site Coulomb repulsive energy be-
tween the Cu 1s and 3d holes. The higher-energy peak origi-
nates mainly from the “�1s13d94p1�” state with the Cu 3d
hole on the Cu site. The energy separation between these two
peaks depends upon the Cu 3d-O 2p hopping energy and
on-site Coulomb energy between the Cu 1s and 3d holes.

We have calculated the electronic structures as well as the
charge excitations of the edge- and corner-sharing CuO2
planes within a Hartree-Fock �HF� theory by using a
random-phase approximation, in which the electron correla-
tion effects are perturbatively taken into account.13 The anti-
ferromagnetic ground state of Mott insulators is well de-
scribed by the HF theory. Then the charge-excitation energy
in Mott insulators can be generally regarded as the antiferro-
magnetic gap energy within the HF theory. For CuGeO3, two
RIXS peaks located near 3.5 and 6.5 eV with very small
dispersions of less than 0.2 eV against �k are predicted,
where the spectral weight near 3.5 eV is much smaller than
that near 6.5 eV. The Slate-Koster hopping parameters for
CuGeO3 were chosen as V�pd��=−1.6 eV and V�pd��
=0.65 eV. The V�pp��=0.5 eV parallel to the chain �0.7 eV
perpendicular to the chain� and V�pp��=−0.25 V�pp��. The
3.5-eV peak corresponds to the excitation from the so-called
Zhang-Rice singlet �ZRS�, which is made of the Cu 3d hole
coupled with the O 2p hole,14 to the upper Hubbard band
�UHB�. The energy loss near 6.5 eV is ascribed to the exci-

FIG. 1. �Color online� RIXS spectra of edge-sharing CuGeO3 at
room temperature. The error bar of the intensity is within the size of
symbols. �a� h� dependence measured at �k=3�. �b� Same spectra
as �a� but expanded in the low-energy region. �c� �k-resolved RIXS
spectra at h�=8.995 keV. The inset shows the Cu 1s absorption
spectrum.

FIG. 2. �Color online� RIXS spectra of corner-sharing Sr2CuO3

at room temperature. The error bar is shown, for example, at h�
=9.005 keV. �a� h� dependence measured at �k=3�. The inset
shows the Cu 1s absorption spectrum. �b� �k-resolved RIXS spec-
tra at h�=8.999 keV. Some representative structures are indicated
by vertical bars for a guide to the eye.
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tation from the bonding state �BS� �in terms of the electron
character� between the Cu 3d and O 2p states to the UHB.
These structures are in a good agreement with the experi-
mental spectra. Furthermore, the extended d-p model sug-
gests that the intensity ratio between the ZRS→UHB to
BS→UHB is enhanced when the low-energy absorption
��1s13d10L4p1�� peak is excited, which is in a qualitative
agreement with the h�-dependent experimental result in Fig.
1�a�. On the other hand, the experimentally observed peak at
1.6 eV in the RIXS spectra of CuGeO3 cannot be predicted
from both theories. We interpret the 1.6-eV structure as the
d-d transition taking place on the same Cu site, as implied
from the electron-energy-loss spectroscopy �EELS� �Ref. 15�
and soft x-ray O 1s RIXS �Ref. 16�. Since the dx2−y2 and dxy

orbitals can hybridize via the O 2p orbital in edge-sharing
CuGeO3 with �=99°, the d-d transition takes place between
these states. The strong suppression of this peak at h�
=8.990 eV in RIXS is decisively understood because the
�1s13d10L4p1� is dominant at this h� and the d-d transition
does not take place in the 3d10 configuration.

Figure 3 shows the calculated results for Sr2CuO3 with
tx,dp=−1.4 eV, ty,dp=−1.4 eV, and t�pp=−0.7 eV; and Udd
=11 eV in the HF theory. The incident h� is fixed to 8.999
keV. We have obtained a better fitting for the peak positions
than in the previous calculation13 by using another reason-
able parameter set as above. Both UHB and ZRS have no-
ticeable dispersions caused by the strong hybridization be-
tween the Cu 3d and O 2p states and large transfer energies.
The dispersions show the � periodicity reflecting the antifer-
romagnetic ground state. The calculated RIXS spectra in Fig.
3�b� for typical �k values of 2n� , �2n+0.5�� and �2n+1��

with integer n show the 2� periodicity13 instead of � peri-
odicity, reflecting the partial occupation number of the Cu
3dx2−y2 electrons for each spin component in the band. The
2� periodicity is in full agreement with the experimental
results. The 2� periodicity was already reported in Sr2CuO3
�Ref. 2� and SrCuO2 �Ref. 17�. According to Fig. 3�b�,
ZRS→UHB excitation is predicted to have a large dispersion
and more than two components �the dispersion of the RIXS
features is quantitatively different but qualitatively similar to
Fig. 4 of Ref. 13�. It is noticed that its spectral weight shifts
toward smaller energies near �k=2n� �n=0, 1, 2, …� in
agreement with the experimentally observed dispersive fea-
ture through 2.3–3.2 eV. In this calculation the ZRS→UHB
excitation at �k= �2n+1�� has a weak low-energy shoulder
near the energy loss of 2 eV, which is also consistent with the
experimental results. Although several arguments have been
paid to this threshold structure,17,18,2 it is demonstrated that
this structure is inherent in the ZRS→UHB excitation. The
upper and lower BS between the Cu 3d and O 2p states have
also noticeable dispersions, whereas the O 2p nonbonding
band �NB� at −3.5 eV, the middle BS at −4.8 eV, and the Cu
3d lower Hubbard band �LHB� at −8.3 eV have very small
dispersions as predicted in Fig. 3�a�. The smallness of the �k
dependence of the 5.2-eV structure in Fig. 2�b� is ascribable
to the small dispersion of the middle branch BS→UHB ex-
citation. The excitation from the NB and upper BS states is
not strong in RIXS because of the little partial occupation
number of the Cu 3dx2−y2 electrons. According to this calcu-
lation, an additional structure due to the lower BS→UHB
excitation is predicted around 6.0–7.0 eV. Although there is
some hint of such a structure in the region between 6 and 8
eV in Fig. 2�a�, further studies are necessary to confirm the
prediction. The intensity of ZRS→UHB excitation is dra-
matically reduced at h�=9.005 keV. This is because this h�
corresponds to the intermediate �1s13d94p1� state and further
Cu 3d excitation requiring the correlation energy Udd is very
unfavorable. The distinct d-d excitation is not observed in
corner-sharing Sr2CuO3 because the hybridization is strong
between the Cu 3dx2−y2 and O 2p states and then the hole is
not localized on the Cu site, making the on-site d-d transition
not a well-defined excitation. On the other hand, the intensity
of the ZRS→UHB excitation relative to the BS→UHB exci-
tation is much stronger than CuGeO3, reflecting the easy
formation of the ZRS in corner-sharing system. Although the
observed structures in the RIXS spectra and their h� depen-
dence for Sr2CuO3 are mostly explained, there is still an
unsolved problem with respect to the weak shoulder struc-
ture near 3.7 eV for �k=3� �Fig. 2�a��. Further theoretical
study is required to interpret this weak structure, even though
it seems to be related to the main ZRS→UHB branch exci-
tation. Finally, in order to make a complete discussion on the
h� dependence of RIXS, we require more detailed informa-
tion on the Cu 4p electronic structure. Such a discussion will
be reported in a future work.

In conclusion, clear contrasts between the edge-sharing
CuGeO3 and corner-sharing Sr2CuO3 are revealed by virtue
of the h�-dependent and �k-resolved RIXS, reflecting the
different natures of the electronic states. The high potential
of RIXS for the study of strongly correlated insulator sys-
tems is thus demonstrated.

FIG. 3. �a� Electronic structure predicted by the Hartree-Fock
calculation �depicted in the electron presentation�. Hopping param-
eters are taken as tx,dp=−1.4 eV, ty,dp=−1.4 eV, and t�pp=−0.7 eV
with the correlation energy Udd=11 eV. �b� predicted RIXS spectra
at three typical �k=2n�, �2n+0.5�� and �2n+1�� with integer n.
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