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The vibration analysis of multilayered graphene sheets �MLGSs� using a continuum model is reported in this
paper. An explicit formula is derived to predict the van der Waals �vdW� interaction between any two sheets of
a MLGS. Based on the derived formula, a continuum-plate model is developed for the vibration of MLGSs.
Our investigation indicates that the lowest natural frequency �classical natural frequency� of a MLGS for a
given combination of m and n is independent of the vdW interaction, but that all of the other higher natural
frequencies �resonant frequencies� are significantly dependent on this interaction. The mode shapes that are
associated with the natural frequencies are investigated for double-layered and ten-layered graphene sheets. We
find that the vibration modes that are associated with the classical natural frequency of all the sheets are in the
same direction and have the same amplitude, whereas the vibration modes of the sheets that are associated with
the resonant frequencies are different due to the influence of the vdW interaction. Thus various resonance
modes can be obtained by varying the number of layers of a MLGS.
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I. INTRODUCTION

Recently, many continuum models have been proposed
for the study of carbon nanotubes �CNTs�. These include the
atomistic-based continuum theory1–3 for the mechanical
properties of CNTs, the Euler-Bernoulli beam theory4–6 for
the bending and the critical buckling load, elastic cylindrical
shell models6–8 for the axial compression buckling and tor-
sional buckling, space truss/frame models9,10 for the Young’s
and shear moduli and the equivalent wall thickness, and the
finite element technique,11–13 which links the conventional
finite element method with the atomistic-based potential for
the bending and axial compression of CNTs. The results that
have been obtained from these continuum models show a
good agreement with experimental results or molecular dy-
namics simulations of single-walled carbon nanotubes
�SWNTs�, which indicates that with the suitable modifica-
tion, conventional continuum mechanics can obtain results
that are as accurate as molecular-dynamics simulation, but
that are much more efficient, especially for large-scale simu-
lations. It should be mentioned that most of these continuum
models focus on SWNTs. For multiwalled carbon nanotubes
�MWNTs�, which are composed of several layers of carbon
tubes, the establishment of a continuum model is more diffi-
cult, because van der Waals �vdW� forces occur between the
tubes. Finding an appropriate description for the vdW force
is the critical challenge to establishing a continuum model
for the analysis of MWNTs. To investigate the mechanical
behavior of double-walled CNTs, Ru14 proposed a con-
tinuum model for the vdW interaction between two adjacent
layers, and applied the developed vdW force model to buck-
ling and vibration analyses14–19 using the elastic shell and
beam theory. He obtained an explicit formula for the critical
axial strain of a double-walled CNT, and his vibration analy-
sis shows that the vibration mode that is associated with the
fundamental frequency is coaxial, whereas the vibration
modes that are associated with the other higher natural fre-
quencies are noncoaxial. Li and Chou20–22 investigated the
elastic and vibrational behavior of double-walled CNTs us-

ing the finite element method, in which the interlayer vdW
forces are modeled by a nonlinear truss rod. Their simula-
tions show that ultrahigh-frequency nanomechanical resona-
tors can be achieved by using a MWNT. In addition, Pantano
et al.23 carried out a finite element simulation on the bending
and buckling of a MWNT, in which the interlayer vdW force
was treated as a function of the interlayer distance by using
the Lennard-Jones potential. More recently, the authors24 of
this paper derived two explicit formulas for the interlayer
vdW force between two adjacent layers and any two layers
of a MWNT. These formulas indicate clearly the dependence
of the interlayer vdW force �before and after buckling� on
both the change in interlayer spacing and the tube radius.
Based on these two formulas for the interlayer vdW force, a
continuum algorithm was established for the buckling of a
MWNT.

In contrast to CNTs, very limited work has been done on
analyzing the mechanics of graphene sheets �GSs� using a
continuum method, despite the fact that graphite possesses
many superior properties,25 such as good flexibility, low ther-
mal expansion, and high electrical and thermal conductivity.
Dubay and Kresse26 calculated a set of force constants using
ab initio density-functional theory, and then calculated the
phonon dispersion relation of graphite using these force con-
stants. Their numerical results are in reasonable agreement
with the experimental results. Xu and Liao27 studied the elas-
tic response of a circular single-layered GS under a trans-
verse central load using molecular dynamics, the closed-
form elasticity solution, and the finite element method. Their
simulation gave consistent predictions for the elastic defor-
mation of a GS using molecular dynamics and conventional
continuum mechanics. Graphite is composed of multiple lay-
ers of GSs that are attracted to each other through the vdW
force. It has been reported28 that single-layered GSs can be
detected in carbon nanofilm, but so far single-layered GSs
have not been separable from graphite. In this work, an ex-
plicit formula is derived for the vdW interaction between any
two layers of a MLGS. Based on the derived formula for the
vdW interaction, an efficient algorithm is established for the
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vibration analysis of MLGSs, in which an individual layer is
modeled as a classical thin plate. Our numerical simulation
for a double-layered GS shows that the two sheets resonate
in opposite directions when the sheet is excited at the reso-
nant frequency. This resonance characteristic is useful for the
separation of a MLGS into individual single-layered sheets.

II. MODEL DEVELOPMENT

Consider a MLGS that consists of two or more single-
layered GSs, as is shown in Fig. 1. The length of each sheet
is a, the width is b, the thickness is h, the mass density is �,
and the Young’s modulus is E. We assume that the interlayer
friction between any two adjacent layers is negligible. The
governing equations for the vibration of a MLGS can there-
fore be derived as the N coupled equations, i.e.,

D�4w1 + �h
�2w1

�t2 = q1

D�4w2 + �h
�2w2

�t2 = q2

�

D�4wN + �h
�2wN

�t2 = qN, �1�

where wi �i=1,2 ,… ,N� is the deflection of the ith sheet, qi

is the pressure that is exerted on sheet i due to the vdW
interaction between layers, and D is the bending stiffness of
the individual sheet. Note that the attractive vdW force that
is obtained from the Lennard-Jones pair potential29,30 is
negative, the repulsive vdW force is positive, and the down-
ward pressure is assumed to be positive in Eq. �1�. As only
infinitesimal vibration is considered, the net pressure due to
the vdW interaction is assumed to be linearly proportional to
the deflection between two layers, i.e.,

qi = �
j=1

N

cij�wi − wj� = wi�
j=1

N

cij − �
j=1

N

cijwj , �2�

where N is the total number of layers of the MLGS.

The vdW interaction coefficients can be obtained through
the Lennard-Jones pair potential,24

cij = − �4�3
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�224�
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i � j . �3�

It is obvious from Eq. �3� that cij =cji, and that the pressure is
caused by the vdW interaction between all of the layers,
rather than between two adjacent layers only.

Suppose that all of the edges are simply supported, then
the deflection of all of the layers can be approximated by a
periodic solution of the form

wk�x,y,t� = Aksin
m�x

a
sin

n�y

b
ei�t, �4�

where i=�−1, � is the frequency of natural vibration, Ak�k
=1,2 ,… ,N� are N unknown coefficients, a is the length and
b the width of the GS, and m and n are the half wave num-
bers in the direction of x and y, respectively.

The substitution of Eqs. �2� and �4� into Eq. �1� gives


D��m�

a
�2

+ �n�

b
�2	2

− �
j=1

N

ckj − �h�2�Ak

+ �
j=1

N

ckjAj = 0 �k = 1,2,…,N� . �5�

The natural frequency can then be obtained by solving the
eigenvalue equation

��h�2IN�N − HN�N
�
A1

A2

�
AN

� = 0, �6�

where I is an identity matrix and the elements in the matrix
H are

hij = cij, i � j , �7�

and

hii = D��m�

a
�2

+ �n�

b
�2	2

− �
j=1

j�i

N

cij . �8�

Obviously, the natural frequencies that are obtained from Eq.
�6� are relative to the wave numbers of m and n, and espe-
cially in the case of a double-layered GS, the existence con-
dition for a nonzero solution of A1 and A2 leads to two sets of
explicit formulas for the natural frequencies

FIG. 1. A continuum plate model of a multilayered graphene
sheet.
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�1 =� D

�h
��m�

a
�2

+ �n�

b
�2	 �9�

and

�2 =� D

�h��m�

a
�2

+ �n�

b
�2	2

− 2
c12

�h
. �10�

It is observed from Eq. �9� that �1 is the same as the natural
frequency of a simply supported single-layered GS that is not
relative to the vdW interaction. As c12=−108 �GPa/nm�,
which is calculated from Eq. �3�, a comparison of Eqs. �9�
and �10� gives us �1��2, which means that the vdW inter-
action between layers raises the natural frequency. This phe-
nomenon is expected, because when a layer deflects away
from the other layers, the vdW force that is created is attrac-
tive, whereas when the layer deflects toward the other layers,
the vdW force is repulsive. Hence the vdW interaction al-
ways has an effect against deflection, and thus exerts a re-
striction on the MLGS that leads to the raising of its natural
frequencies. As can be seen from Eq. �6�, the number of
solutions to the natural frequencies is the same as the number
of layers. To distinguish the lowest natural frequency that is
independent of the vdW interaction from the other higher
natural frequencies that are significantly dependent on the
vdW interaction for a given combination of m and n, we
refer to the lowest solution �1 as the classical natural fre-
quency, and to the other higher natural frequencies �k as the
resonant frequencies. Here, �1��k with k=2,3 ,…N.

III. DISCUSSION

Suppose that each layer has the same length a and width
b. The initial interlayer separation between the two adjacent
layers is assumed to be 0.34 nm. The vdW interaction coef-
ficients cij are calculated using the derived Eq. �3�, and the
parameters are taken to be �=2.968 meV and �=3.407 Å.31

It should be noted that the vdW interaction coefficient be-
tween two adjacent layers is −108 �GPa/nm�, which is al-
most the same as that of an MWNT �Ref. 24� when the
radius is large enough. To calculate the natural frequencies,
each layer is modeled as an individual classical thin plate

with the same length, width, and thickness. For all of the
considered examples, the thickness of each GS is taken to be
h=0.34 nm. The Young’s modulus of a carbon GS E
=1.02 TPa, the Poisson ratio 	=0.16,32 and the mass density
�=2250 kg/m3.

Let us first consider a square five-layered GS with width
b=10 nm. It can be seen from Eq. �6� that there are five
equations that give five different natural frequencies �1
��2��3��4��5 for every combination of m and n.
Here, the lowest natural frequency �1 is the natural fre-
quency of a single-layered GS that is independent of the
vdW interaction, whereas the other four higher natural fre-
quencies from �2 to �5 are the resonant frequencies that are
caused by the vdW interaction. If the vdW interaction is
ignored, then each sheet of the five-layered GS behaves like
an individual sheet, and the five natural frequencies are re-
duced to the same value as the natural frequency of a single-
layered GS. Five sets of natural frequencies from �1 to �5
are obtained from Eq. �6� for m , n=1, 2, 3, as is shown in
Table I. It can be seen that the natural frequency �1�m ,n�
varies significantly as the mode order increases. For ex-
ample, the fundamental frequency �1�1,1�=0.069 THz and
the sixth-order classical natural frequency �1�3,3�
=0.622 THz, which is nine times �1�1,1�. For the resonant
frequency �2�m ,n�, the sixth-order resonant frequency
�2�3,3�=1.292 is 1.14 times the first-order resonant fre-
quency �2�1,1�=1.135, which demonstrates that the effect
of the mode order on the resonant frequency �2 cannot be
neglected. However, all of the other higher resonant frequen-
cies from �3 to �5 are insensitive to the mode order, for
example, �3�3,3� /�3�1,1�=1.04, �4�3,3� /�4�1,1�=1.02,
and �5�3,3� /�5�1,1�=1.01, which indicates that the vdW
interaction plays a dominant role in the higher-order resonant
frequencies but that the effect of the mode order can be ne-
glected.

Table II shows the natural frequencies �1��10 of a
square ten-layered GS with width b=10 nm. Compared to
the results for a five-layered GS, as is shown in Table I, the
classical natural frequencies �1�m ,n� are the same, and are
equal to the natural frequency of a single-layered GS for any
combination of �m ,n�, whereas the resonant frequencies
�10�m ,n� are very close to �5�m ,n� of a five-layered GS.
Thus the interval between any two adjacent resonant fre-

TABLE I. Classical natural frequencies and resonant frequencies �THz� of a square five-layered GS with
width b=10 nm.

m n �1 �2 �3 �4 �5

1 1 0.069 1.135 2.193 3.052 3.604

1 2 0.173 1.146 2.198 3.056 3.608

1 3 0.346 1.184 2.219 3.071 3.620

2 1 0.173 1.146 2.198 3.056 3.608

2 2 0.276 1.166 2.209 3.064 3.614

2 3 0.449 1.219 2.237 3.084 3.632

3 1 0.346 1.184 2.219 3.071 3.620

3 2 0.449 1.219 2.237 3.084 3.632

3 3 0.622 1.292 2.278 3.114 3.657
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quencies is only half that of a five-layered GS. It can be seen
from Table II that at first the difference between the first few
resonant frequencies is large; for example, the relative differ-
ence between the first two resonant frequencies �2�1,1� and
�3�1,1� is 98%. As the resonant frequency increases, the
difference between a pair of adjacent resonant frequencies
decreases greatly; for example, the relative difference be-
tween �9�1,1� and �10�1,1� is reduced to 4%. As is ex-
pected, the resonant frequencies will approach a constant as
the number of layers increases.

To examine the effect of the vdW interaction, the classical
natural frequency �1 and the resonant frequency �2 of a
double-layered GS are calculated using Eqs. �9� and �10�,
and are plotted in Fig. 2 for m=1 and various n. The values
of �1 are the same as those of a five- or ten-layered GS for
the same combination of m and n, which confirms again that
the classical natural frequencies �1 are independent of both
the vdW interaction and the number of layers of a MLGS,
and can thus be calculated from Eq. �9�. It is observed that
the influence of the vdW interaction is most significant on
the lowest order resonant frequency �2�1,1�. As the mode
order increases, the influence of the vdW interaction on the
resonant frequency decreases gradually until it can be ig-

nored altogether when the mode order is large enough.
The classical natural frequency �1 and the resonant fre-

quencies from �2 to �5 of a five-layered GS are obtained
from Eq. �6� for n=1 and various m, and are presented in
Fig. 3. Similar conclusions can be obtained for the effect of
the vdW interaction on the resonant frequencies. It can be
seen from Figs. 2 and 3 that the difference between �1 and
�2 of a double-layered GS is almost the same as the differ-
ence between �1 and �5 of a five-layered GS. The interme-
diate resonant frequencies, �2, �3, and �4, of the five-
layered GS are inserted between �1 and �5 at almost the
same interval, which again indicates that the more layers
there are, the closer the resonant frequencies.

Figure 4 shows the first �m=1,n=1� and fourth �m=2,n
=2� order mode shapes that are associated with the classical
natural frequencies �1 for a square double-layered GS with
width b=10 nm. The amplitude ratio A1 /A2=1 is obtained
by substituting Eq. �9� into Eq. �5�. This implies that the
resonances of the two sheets are always in the same direction
and have the same amplitude when a double-layered GS is
excited at a classical natural frequency. This is because the
classical natural frequency �1 is independent of the vdW
interaction, as can be seen from Eq. �9�, and thus the two

TABLE II. Classical natural frequencies and resonant frequencies �THz� of a square ten-layered GS with width b=10 nm.

m n �1 �2 �3 �4 �5 �6 �7 �8 �9 �10

1 1 0.069 0.572 1.132 1.674 2.184 2.645 3.042 3.364 3.600 3.743

1 2 0.173 0.593 1.143 1.682 2.190 2.649 3.046 3.368 3.603 3.746

1 3 0.346 0.665 1.181 1.708 2.210 2.666 3.061 3.381 3.616 3.758

2 1 0.173 0.593 1.143 1.682 2.190 2.649 3.046 3.368 3.603 3.746

2 2 0.276 0.631 1.163 1.696 2.200 2.658 3.054 3.375 3.610 3.753

2 3 0.449 0.724 1.216 1.732 2.228 2.682 3.074 3.393 3.627 3.769

3 1 0.346 0.665 1.181 1.708 2.210 2.666 3.061 3.381 3.616 3.758

3 2 0.449 0.724 1.216 1.732 2.228 2.682 3.074 3.393 3.627 3.769

3 3 0.622 0.842 1.290 1.785 2.270 2.716 3.104 3.420 3.652 3.794

FIG. 2. Classical natural frequencies and resonant frequencies of
a square double-layered GS with a half wave number m=1 vs a
number of half wave numbers n.

FIG. 3. Classical natural frequencies and resonant frequencies of
a square five-layered GS with a half wave number n=1 vs a number
of half wave numbers m.
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sheets vibrate independently at the same classical natural fre-
quency �1. Regardless of the number of layers a MLGS has,
all of the sheets vibrate in the same direction and with the
same amplitude when the MLGS is excited at the classical
natural frequency �1. We refer to this kind of vibration as
identical vibration. However, for vibration that is associated
with the resonant frequency, each sheet of a MLGS vibrates
either in a different direction or at a different amplitude. We
refer to this kind of vibration as nonidentical vibration.

Figure 5 shows the first- and fourth-order mode shapes
that are associated with the resonant frequencies �2 for a
square double-layered GS with width b=10 nm. It can be
seen from Eq. �10� that the vibration that is associated with
the resonant frequency �2 is dependent on the vdW interac-
tion. The substitution of Eq. �10� into Eq. �5� gives A1 /A2
=−1, which indicates that the vibrations of the two sheets are
always of the same amplitude, but are in opposite directions
due to the vdW interaction. Note that graphite is usually
formed by stacked GSs, and current research efforts involve
the attempt to peel GSs from graphite. Thus the characteristic
of the opposite vibration of two sheets is useful for separat-
ing a double-layered GS into two individual single-layered
sheets. The opposite resonant vibrations of the two sheets
can be produced by exciting a double-layered GS at the reso-
nant frequency, which can help overcome the vdW attraction
between the two sheets to allow a single-layered sheet to be
peeled from a double-layered GS.

To illustrate that various resonance patterns for MLGSs
can be obtained, the amplitude ratios of a square ten-layered
MLGS are calculated and presented in Table III for the clas-
sical and resonant frequencies with m=1 and n=1. For the
vibration mode that is associated with the classical natural
frequency �1, all of the amplitude ratios are equal to unity,
which indicates again that all of the sheets resonate identi-
cally, regardless of the number of layers, when a MLGS is
excited at a classical natural frequency. This phenomenon is
expected, because the classical natural frequencies for any
given combination of m and n are the same for MLGSs with
any number of layers, and are independent of the vdW inter-
action, as discussed above for Table I for the five-layered GS
�Table I�, for the ten-layered GS �Table II�, and for the
double-layered GS �Fig. 2�. The amplitude ratios for the vi-
bration modes that are associated with the resonant frequen-
cies are not the same for all of the sheets, which indicates
that the resonances of the sheets that are associated with the
resonant frequencies from �2 to �10 are nonidentical. The
difference in the amplitude ratios is caused by the vdW in-
teraction. Because the vdW interaction is dependent on the
distance between layers, the amplitude ratios vary with the
number of layers of a MLGS, and thus various resonance
patterns can be obtained as the number of layers changes. As
can be seen from Table III, there are two kinds of vibration
modes that are associated with the resonant frequencies:

TABLE III. Amplitude ratios of a square ten-layered GS for the vibration modes that are associated with various resonant frequencies
�m=1,n=1�.

The amplitude ratios of various sheets to the top sheet

Associated natural frequencies �THz� A2 /A1 A3 /A1 A4 /A1 A5 /A1 A6 /A1 A7 /A1 A8 /A1 A9 /A1 A10/A1

�1=0.069 1 1 1 1 1 1 1 1 1

�2=0.572 0.9043 0.7184 0.4614 0.1590 –0.1590 –0.4614 –0.7184 –0.9043 −1

�3=1.132 0.6249 0.0036 –0.6209 –1.0076 –1.0076 –0.6209 0.0036 0.6249 1

�4=1.674 0.1874 –0.7944 –1.1199 –0.5161 0.5161 1.1199 0.7944 –0.1874 −1

�5=2.184 –0.3652 –1.2448 –0.3947 1.0047 1.0047 –0.3947 –1.2448 –0.3652 1

�6=2.645 –0.9778 –1.0189 0.9893 1.0042 –1.0042 –0.9893 1.0189 0.9778 −1

�7=3.042 –1.5888 –0.0360 1.6098 –0.9850 –0.9850 1.6098 –0.0360 –1.5888 1

�8=3.364 –2.1374 1.4901 0.3653 –1.9248 1.9248 –0.3653 –1.4901 2.1374 −1

�9=3.600 –2.5696 3.1206 –2.5043 0.9532 0.9532 –2.5043 3.1206 –2.5696 1

�10=3.743 –2.8445 4.3538 –5.4438 6.0152 –6.0152 5.4438 –4.3538 2.8445 −1

FIG. 4. Two identical resonance modes that are associated with
the classical natural frequencies �1=0.069 THz �m=1,n=1� and
�1=0.276 THz �m=2,n=2� for a simply supported square double-
layered GS.

FIG. 5. Two nonidentical resonance modes that are associated
with the resonant frequencies �2=2.683 THz �m=1,n=1� and �2

=2.697 THz �m=2,n=2� for a simply supported square double-
layered GS.
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modes that are symmetrical about the middle plane of the
MLGS, such as the modes that are associated with �2, �4,
�6, �8, and �10; and modes that are antisymmetrical, such as
the modes that are associated with �1, �3, �5, �7, and �9. To

illustrate clearly the resonance modes that are shown in Table
III, the resonance mode that is associated with �4
=1.674 THz is plotted in Fig. 6. It is observed that the mode
is symmetrical about the middle plane of the ten-layered
MLGS.

IV. SUMMARY

In conclusion, an explicit formula is derived to predict the
vdW interaction between any two sheets of a MLGS. The
derived formula indicates that the vdW interaction is signifi-
cantly dependent on the interlayer spacing. A continuum-
plate model is proposed for the vibration of MLGSs based on
the derived formula for the vdW interaction. The number of
natural frequencies of a MLGS is the same as the number of
layers for any given combination of wavenumbers m and n,
and the lowest natural frequency �classical natural fre-
quency� �1 is independent of the vdW interaction and the
number of layers of a MLGS, and thus the classical natural
frequencies can be calculated from the simple formula in Eq.
�9�. However, all of the other resonant frequencies �k �k
�1� are significantly dependent on the vdW interaction. The
associated mode shapes of all the sheets for the classical
natural frequencies of a MLGS are in the same direction and
of the same amplitude. However, the vibration modes that
are associated with the resonant frequencies are different be-
cause of the influence of the vdW interaction, and thus vari-
ous resonance modes can be achieved by varying the number
of layers of a MLGS.
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