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In the paper we present results of the calculations of the electron energy loss spectra of the rare-gas
precipitates in metals. The theory of the inelastic scattering of fast electrons by the excitations localized on
inclusions is developed. The excitations of the system are both quantized exciton-polariton levels of the
precipitates and localized surface plasmons, which can strongly interact with each other. The angular depen-
dence of the electron energy loss spectra is analyzed. It is shown that for the small angle scattering the structure
of the electron energy loss spectrum is mainly due to the size quantization of excitonic levels. The levels
closest to the surface polariton frequency are the strongest. At larger scattering angles the discrete structure of
the electron energy loss spectrum is caused by the excitations with different orbital quantum numbers l and the
separation of those levels is larger.
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I. INTRODUCTION

Rare-gas atoms introduced into metals by ion irradiation
or as products of the radioactive decay tend to gather into
bubbles due to low solubility. The behavior of the bubbles of
noble gases in materials has been studied extensively be-
cause of problems associated with the development of fusion
and fission reactors.1

Because of the high pressure of a gas in small size
bubbles, rare-gas atoms in them form a crystalline phase that
can exist up to the temperatures exceeding by much the melt-
ing temperature of the rare-gas crystals at normal conditions.
For instance, crystallized Kr in Ni exists up to the tempera-
ture of 825–875 K, while at atmospheric pressure melting
occurs at 115 K2. The phenomenon of the formation of the
crystallites of the rare-gas atoms in metals has been a subject
of intense studies for many years by a number of different
methods, including x-ray diffraction,2–13 neutron
diffraction,14 and the Mössbauer effect.15 The rare-gas pre-
cipitates in metals form a truly unique system, where the
crystal order exists at a very high temperature and very high
pressure, the interatomic distances are small, and the sym-
metry of the crystallites is imposed by the host metal.

The recent studies16,17 have attracted attention to the fact
that such crystallites are, in fact, quantum dots for the exci-
tons. As the oscillator strengths of the exciton transitions in
the noble gas crystals are large, a strong mixing of the exci-
ton and electromagnetic waves results, in fact, in the polar-
iton nature of the quantized excitations of the precipitates.
Additionally, the frequency of the atomic transitions of the
rare-gas atoms are close to the frequencies of the plasmon
excitations of the host metals �for example, aluminum�. This
leads to the strong mixing of the excitations in the precipi-
tates and the plasmons, resulting in the strong enhancement
of the spectral bands due to the excitations of the discrete
quantized level of the excitations of the precipitates.18

The optical study of such systems, suggested in Refs. 16
and 17, is difficult for experiment due to the strong absorp-
tion. An alternative method is the study of the spectrum of
the electron energy losses. In the present paper we develop a
theory of the inelastic scattering of the incident high-energy
electrons on the quantized excitations of the quantum dots in
the form of the rare-gas precipitates. The technique of the
electron energy loss spectra has been applied to the study of
the rare-gas inclusions in metals and produced some interest-
ing results.19 In the present paper the theory of the inelastic
scattering of electrons on a spherical inclusion with account
for the spatial dispersion inside is extended to the case of
nonzero scattering angles.

II. SPECTRUM OF EXCITATIONS OF A DIELECTRIC
SPHERE IN A METAL TAKING INTO ACCOUNT THE

EFFECTS OF THE SPATIAL DISPERSION

The spectrum of the electronic excitations of a dielectric
sphere embedded in metal has been found and analyzed in
Ref. 17 in the framework of the phenomenological approach
as a solution of the system of Maxwell equations for the
electric field and the model equations describing electrons
inside and outside of the dielectric sphere. Here, only the
starting equations and the expansions of the solutions neces-
sary for the determination of the interaction of the external
electron with the excitations are written down.

In the case when the wavelength of the electromagnetic
field is much larger than the radius of the sphere, the quasi-
static approximation can be used for the electric field. The
electronic subsystems inside the sphere and outside of it is
described within different model approaches. Outside the
sphere, electrons are described classically by the Drude
model of a free electron gas. Inside the dielectric sphere,
where size quantization is important, a quantum mechanical
model for the exciton polarization is used.
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Outside of the sphere, in the metal, the free electron gas
polarization in the Drude model and the electric field obey a
following set of equations:

�m0 �� − 4� div P = 0, �1�

P̈ +
�p

2

4�
� � = 0. �2�

Solutions of this system of equations are sought in the form

� = �
l,m

alm�R/r�l+1Ylm��,��e−i�t, �3�

P = �
l,m

blm � ��R/r�l+1Ylm��,���e−i�t; �4�

Ylm�� ,�� are spherical harmonics. The substitution the ansatz
solution into the set of equations gives a relationship be-
tween unknown coefficients alm and blm.

Inside the sphere, the dispersion effects and size quanti-
zation are described with the vector of exciton polarization
that obeys the Maxwell equation in the electrostatic approxi-
mation,

�0 �� − 4� div P = 0, �5�

and an equation for the polarization derived from the
Schrödinger equation in the case when excited levels are
three times degenerate,

P̈ + �0
2P − � �P + � � � = 0, �6�

where �=	�0 /M and M is the effective exciton mass. �
=�LT�0�0 /2�, where �LT is the transverse-longitudinal
splitting, �0 is the frequency of the exciton band bottom for
the material of the dielectric sphere, �0 is the low-frequency
dielectric constant of the material of the sphere due to tran-

sitions other than the considered excitonic band.
The ansatz solution is

� = �
l,m

�clm
0 jl�
r� + clm

1 �R/r�l+1�Ylm��,��e−i�t, �7�

P = − ���
l,m

�dlm
0 jl�
r� + dlm

1 �R/r�l+1�Ylm��,���e−i�t

+ i�
l,m

dlm
2 curl�jl�kr�L̂Ylm��,��� , �8�

where jl�x� are spherical Bessel functions, L̂=−i�r���,
�
2=�2−�0

2−4�� /�0, and �k2=�2−�0
2.

The substitution of the ansatz solutions into Eqs. �6� gives
relationships between the pairs of unknown coefficients clm

0

and dlm
0 , clm

1 and dlm
1 .

The sets of equations inside and outside the sphere should
be completed with the boundary conditions at the interface.
Besides the usual boundary conditions of the electrostatics,

�− �m0
��

�r
+ 4�Pr	

R+0
= �− �0

��

�r
+ 4�Pr	

R−0
, �9�

��R + 0� = ��R − 0� . �10�

An additional boundary equation for the exciton polarization
is chosen in the form suggested by Pekar,20

Pr�R − 0� = 0, �11�

which assumes a specular reflection of excitons at the bound-
ary of the dielectric sphere.

Boundary conditions allow us to find relationships be-
tween the all unknown coefficients. The additional boundary
conditions determine the frequency spectrum of the elec-
tronic excitations by the equation with respect to �:

�0l + �m0�l + 1� = l
4��

�0��2 − �0
2�

�

Sl�k���0R
d

dR
jl�
R� + �m0�l + 1�jl�
R�	

R
d

dR
�jl�
R��

d

dR
�Rjl�kR�� − l�l + 1�jl�
R�jl�kR�

, �12�

where

Sl�x� = x
djl�x�

dx
− ljl�x� . �13�

The roots of Eq. �12� include all different types of exci-
tations that could be localized on the dielectric sphere with
spatial dispersion in a metal matrix: excitonic and polaritonic
excitations inside the sphere and localized surface plasmons;
all types of excitations interact with each other.

III. QUANTIZATION OF THE EXCITATIONS.
SCATTERING CROSS SECTION

In order to describe the interaction of the excitations
found in the previous section with an external fast electron,
one has to write down the Hamiltonian of the system in the
second quantization approximation.

Following the established procedure, the quantization
starts with the action

S = 

t1

t2

L dt . �14�
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The action has to be defined in such a way that the cor-
responding Lagrange equations,

d

dt

�L

�q̇
−

�L

�q
= 0, �15�

where q are the variables of the problem, which, in this par-
ticular case, are the electric field potential � and the polar-
ization P, would produce the set of equations and boundary
conditions describing the problem

S =
1

16�



t1

t2

dt�

r�R

d3r��m0 � � � �* + 4��* divP

+ 4�� div P* +
�4��2

�p
2 P̈*P̈	 + 


rR

d3r��0 � �* �

+ 4��* divP + 4�� div P* +
4�

�
P̈*P̈ −

4�

�
P*P

−
4��

�
�curl P* curlP + div P* divP�	 + 4�R2
 d��Pr

*�

+ �*Pr�R+0� . �16�

This action is completed by a requirement for the un-
known functions � and P to satisfy the boundary conditions

��R + 0� = ��R − 0� �17�

and

P�R − 0� = 0. �18�

Taking variations of the fields one should demand that
���R+0�=���R−0� and �P�R−0�=0.

Variations of the action of Eq. �16� with respect to the
fields � and P give the full system of equations and the
boundary conditions

0 =
�S

��* = �
− �m0 �� + 4� div P , r � R;

− �0 �� + 4� div P , r  R;

− ��m0
��

�r
+ 4�Pr	

R+0
+ �0

��

�r R−0, r = R . �
�19�

0 =
�S

�P* =− �4��2/�p
2P̈ − 4� � � , r � R;

− 4�/�P̈ − 4��0
2/� �P − 4� � � , r  R .

�
�20�

The next step is to expand all unknown functions in a
series of the eigenfunctions of the system determined in the
previous section and obtain a classical Lagrange function
depending on the expansion coefficients alm�t� of Eq. �3�
only,

L =
R

16�
�
l,m,i

�älmi
* älmi − �li

2almi
* almi�Bli

2 , �21�

where Bli
2 is obtained by the integration

Bli
2 =

�p
2

�li
4 �l + 1� +

4�

�
��0l + �m0�l + 1�

4�S�
� 	2

��I2�
� + l�l + 1�
Sl

2�
�
l2Sl

2�k�
I2�k�

+
4��Sl�
�

�0��li
2 − �0

2�

�0R
d

dR
jl�
R� + �m0�l + 1�jl�
R�

�0l + �m0�l + 1� � ,

�22�

I2�x� =
1

2
��x

djl�x�
dx

	2

+ xjl�x�
djl�x�

dx
− �l�l + 1� − x2�jl

2�x�� .

�23�

In the representation of the second quantization, one has
to build a Hamiltonian on the basis of this classical Lan-
grange function,

Ĥ =
1

2 �
l,m,i

�Âlmi
† Âlmi + ÂlmiÂlmi

† �	�li, �24�

where the creation and annihilation operators Âlmi
† and Âlmi,

respectively, replace the classical amplitudes almi.
The potential of the electric field can be represented by an

operator,

�̂ =
1

2 �
l,m,i

�ÂlmiDligli�r�Ylm��,�� + c.c.� , �25�

where

gli�r� = �R/r�l+1, r � R ,

clm
0 jl�
r� + clm

1 �r/R�l, r  R ,
�26�

Dli
2 =

2�li

	
Bli

2 . �27�

The relationship of the coefficients clm
0 and clm

1 with the
classical amplitude alm was obtained in the previous section.

The Hamiltonian describing the interaction of an incident
high-energy electron with the electric field of the electronic
excitations localized on the spherical inclusion takes the
form

Ĥ = −
	2�

2m
− e�̂ , �28�

where m is the electron mass and �̂ is given by Eq. �25�.
Now, one can consider a process of the inelastic scattering

of an incident electron from a state with the wave vector K,

�in =
1

�V
eiKr, �29�

to a state with the wave vector K�,

� f =
1

�V
eiK�r. �30�
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Introducing a vector, Q=K�−K, the matrix element of
the transition becomes

−
e

2
Dli�K��gli�r��K�

= −
e

2
�− i�l�2�

V
Dli


0

�

r2jl�Qr�gli�r�dr . �31�

The cross section of the inelastic scattering with the exci-
tation of the lith mode in the sphere is

�li

�
=

1

4�
� em

	2 	2�1 −
	�li

�K
�2l + 1��Dlif li�Q,R��2, �32�

where

Q = K�2 −
	�li

�K
− 2 cos ��1 −

	�li

�K
	1/2�1/2

, �33�

� being the angle between K and K�,

�K =
	2K2

2m
, �34�

f li =
R

Q2��l + 1�jl�QR� + R
�jl�QR�

�R

+ cli
0 Q2

Q2 − 
2�R
�jl�
R�

�R
+ jl�QR� − R

�jl�QR�
�R

jl�
R�	
+ cli

1�ljl�QR� − R
�jl�QR�

�R
	� . �35�

The spectrum of the excitations of a spherical inclusion is
discrete. In order to obtain a continuous spectrum of the
electron energy losses, each of the lines corresponding to the
excitation of a discrete level has been approximated with a
Lorentz curve,

f��� =
1

�

�

�� − �l,i�2 + �2 , �36�

where � is a broadening factor, the same for all lines.
In order to decrease the dependence of the spectrum on

the broadening factor and taking into account the fact that
the radius of inclusions in metals has some scatter, the result-
ing spectrum was averaged over a certain radius range.

IV. NUMERICAL RESULTS AND DISCUSSION

One of the most prominent features of the system is the
repulsion of the states of the atomic excitations inside the
rare-gas inclusions and the localized plasmons. It is known
that a free electron gas around a small void in a metal has its
own excitations called localized plasmons. The spectrum of
the localized plasmons in the case of a spherical void in a
metal can be estimated by an equation,

�l = �p� l + 1

2l + 1
, �37�

where �l is the frequency of a localized plasmon and l is the
orbital quantum number. With increasing l the levels con-

verge to the frequency of a surface plasmon �p /�2. It is
important to note that the spectrum of the local plasmons
does not depend on the radius of the voids, provided the
voids are small enough, i.e. much smaller than the wave-
length of light with the same frequency.

In the case of rare-gas precipitates in the metal, the local-
ized plasmons can interact with the atomic excitations of the
gas atoms in the precipitate. This interaction leads to a strong
mixing of the states and repulsion of their levels. This effect
is demonstrated in Fig. 1 for the states with l=1. The effect is
essential for the rare gases that have the frequency of the
lowest transition below the plasmon frequency of the host
metal. The magnitude of the frequency shift of the excita-
tions in proportional to ��LT�p and can reach up to 1 eV.

Another prominent feature of the spectrum of the excita-
tions localized on the crystalline inclusions is the size quan-
tization. The precipitates of the rare-gas atoms in metals can
be rather small, i.e., of the order of several nanometers. Such
small precipitates are examples of the quantum dots and the
electronic or excitonic spectrum in them is quantized. The
quantization is sensitive to the radii of the precipitates and is
smeared down to a large extent in the spectra.

Figures 2–6 show the electron energy loss spectra of the
spherical inclusions of the crystallites of different rare-gas
atoms for the case of scattering forward, i.e., �=0. For the
calculations, the size of the precipitates was considered to
vary in the range from 2.0 nm to 3.0 nm. All electron energy
loss spectra were averaged in this range. The energy of the
incident electron was chosen to be 20 keV. The parameters
of the excitonic bands for the crystals were taken from the
data obtained at normal pressure and low temperatures.21

These values can undergo changes in the case of the rare gas
in precipitates, yet these effects were not taken into account
in the present paper. The broadening factor � was taken to be
0.01 eV. In the case of the scattering forward, i.e., �=0, the
main contribution into the electron energy loss spectra comes

FIG. 1. The repulsion of states of the atomic excitations and
localized plasmons as a function of the energy of exciton band
bottom �0. The values of �0 for real noble gases are indicated.
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from the dipole excitations with l=1. The same excitations
are the most active in the optical spectra and contribute to the
dielectric function of the metal with embedded precipitates.

The EEL spectrum of the Xe precipitates in Al in Fig. 2
does not show a strong shift of the positions of levels due to
the mixing of atomic excitations and surface plasmons, as
expected according to Fig. 1. The structure due to the size
quantization does not appear in this case either.

The electron energy loss spectrum for the scattering for-
ward for Kr precipitates in Fig. 4 shows quite a significant
shift of the position of the atomic excitations expected at
10.19 eV for the bulk Kr. The peak of the surface plasmons
is significantly shifted as well. In between these two major
peaks, there is a weak structure that corresponds to the exci-
tations of the quantized states in the precipitate. The two
large peaks that appear in Fig. 4 are due to the mixed states
of the excitons inside the precipitates and the localized plas-
mons. The energy of the bottom of the exciton band is below
the frequency of the localized plasmons, thus the lowest of

the peaks should be attributed mainly to the polaritonic state
shifted to the low-energy side of the bottom of the exciton
band due to interaction with the free electron gas of the host
metal. The weak structure between the two major peaks is
due to the proper exciton states.

The quantization is more pronounced in the electron en-
ergy loss spectrum for �=0 for Ar precipitates in Al, as seen
in Fig. 5. The main peak of the atomic excitations is strongly
shifted from the bottom of the exciton band at 12.06 eV. It is
surrounded by a distinct structure due to the size quantization
effect.

A similar structure is seen in the spectrum for Ne and He
precipitates shown in Figs. 5 and 6, respectively. In these
cases, the interaction with surface plasmons is not significant
as the bottoms of the exciton bands for those rare-gas crys-
tals are above the plasmon frequency for the metal.

Among the levels of the discrete spectrum, those that are
closest to the level of the surface polariton manifest them-
selves most strongly as one can see in Figs. 4–6.

The contribution of the higher harmonics may be seen in
the electron energy loss spectra for nonzero scattering

FIG. 2. EELS spectrum of Al with Xe precipitates for the scat-
tering forward. Parameters of the Xe crystal in the precipitates are
�0=8.36 eV, �LT=0.11 eV, �0=2.22, M =2.2m0, where m0 is the
free electron mass.

FIG. 3. EELS spectrum for Al with Kr precipitates for the scat-
tering forward. Parameters of the Kr crystal in the precipitates are
�0=10.19 eV, �LT=0.12 eV, �0=1.88, M =2.2m0.

FIG. 4. EELS spectrum for Al with Ar precipitates for the scat-
tering forward. Parameters of the Ar crystal in the precipitates are
�0=12.06 eV, �LT=0.15 eV, �0=1.66, M =2.22m0.

FIG. 5. EELS spectrum for Al with Ne precipitates for the scat-
tering forward. Parameters of the Ne crystal in the precipitates are
�0=17.36 eV, �LT=0.2 eV, �0=1.24, M =2.22m0.
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angles. The scattering forward spectra contain mainly the
dipole excitations with l=1. In the case of ��0, the levels
for which l is of the order of QR would be the strongest. It is
necessary to note, however, that the intensity of the scatter-
ing strongly drops with increasing the angle.

The evolution of the shape of the spectrum with increas-
ing the scattering angle is shown in Fig. 7 for Ar precipitates.
The series of the peaks that appear above 9.0 eV correspond
to the localized plasmons with different l. Note that the en-
ergies of the surface plasmons with different l depend on the
radii of the precipitates insignificantly. As a result the peaks
in the EEL spectra are not smeared by the averaging and are
quite significantly separated due to the large value of the
plasmon frequency in Al. With increasing the scattering
angle the strongest peaks with l=1 gradually disappear and
become comparable with the peaks with l=2, which is no-
ticeable in the next curve. The third curve shows the situa-
tion where several different l contribute comparably to the
EELS spectrum. The series of peaks converges to the fre-
quency of surface plasmons on a flat surface. This trend is
visible in the case of the highest curve.

A similar evolution of the spectrum with increasing the
scattering angle is shown in Fig. 8 for the case of Kr precipi-
tates in Al. The interpretation of the spectrum is more diffi-
cult in this case. The bottom of the exciton band for Kr is at
10.19 eV, which is very close to the frequency of the surface
plasmon with l=1 at approximately 10.5 eV. Therefore, for
l=1 the lowest of the peaks is rather the polaritonic excita-
tion than the localized plasmon, as the energy of the local-
ized plasmon is shifted toward the blue side of the spectrum.
At the same time the frequencies of the localized plasmons
with l�1 are situated below the bottom of the exciton band
and experience a red shift due to the mixing with the exci-
tonic states in the Kr precipitates. The excitonic states with
l�1 move to the higher energies due to the mixing with
plasmons, but the value of the shift is not the same as the
shift of the energy of the localized plasmon with l�1. Figure
8 shows that for the larger values of the scattering angles a
broad plateau at a new place appears above the frequency of
the bottom of the exciton band. The excitonic levels undergo
size-dependent quantization and, therefore, their positions
depend on the radii of the precipitates. Due to this reason the
contribution of the quantized states is spread over a signifi-
cant region, forming a plateau.

V. CONCLUSIONS

The electron energy loss spectra of the nanosize rare-gas
precipitates in the metal matrix has been considered, taking
into account effects of size quantization of the excitations
inside the precipitates and their interaction with the free elec-
tron gas in the host metal. The manifestation of the excitonic
levels and their quantization is most pronounced for the
cases where the mixing of two different types of excitations,
excitons and localized plasmons, is strongest. In the row of
the noble gases, this is realized for Kr and Ar precipitates.
For the small angle scattering the structure of the electron
energy loss spectra is caused by the quantization of the ex-
citon levels while the magnitude of the scattering is en-
hanced by the interaction with the localized plasmons. The
spectra of the electron losses for greater angles provide the

FIG. 6. EELS spectrum for Al with He precipitates for the scat-
tering forward. Parameters of the He crystal in the precipitates are
�0=21.0 eV, �LT=1.0 eV, �0=1.0, M =2.2m0.

FIG. 7. EELS spectrum for Al with Ar precipitates for different
scattering angles �=0.0 �the lowest curve�, 0.001, 0.005, 0.01.

FIG. 8. EELS spectrum for Al with Kr precipitates for different
scattering angles �=0.0 �the lowest curve�, 0.001, 0.005, 0.01.
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possibility of observing higher harmonics of the excitations,
which is impossible in the optical spectra. The energy differ-
ence of the levels corresponding to the excitations with dif-
ferent l can be large �more than 0.5 eV�. The experimental

study of the EELS for the rare-gas precipitates may be useful
for the determination of the parameters of the precipitates
such as size of the precipitates, effective mass of the excitons
in high-density noble gas crystals, etc.
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