PHYSICAL REVIEW B 72, 075423 (2005)
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Electronic and optical properties of silicon nanocrystals are calculated and discussed within a semiempirical
tight-binding approach, which allows to study systems composed of thousands of atoms. Oscillator strengths,
frequency-dependent optical absorption cross sections, and static dielectric constants are investigated for both
spherical and ellipsoidal nanocrystals, with the aim of pointing out their size- and shape-dependent features.
We show that the anisotropy of the optical functions follows the nanocrystal shape, and a comparison is
discussed between very elongated structures and quantum wires.
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I. INTRODUCTION

Great interest has been devoted in the last years to the
study of the optical properties of silicon nanocrystals and
porous silicon. Despite the large amount of papers that have
been published on this subject, there still are some aspects
which are controversial and not fully understood. Just to give
a few examples, we can mention the Stokes shift between the
absorption gap and the photoluminescence peak,'= the anni-
hilation of the oscillator strengths,*> the origin of the photo-
luminescence, the role of excitons and surface states.®®

From the theoretical point of view, there are many ap-
proaches which allow the investigation of the optical and
electronic properties of nanostructured materials. Ab initio
methods'®!3 have been widely used, due to the possibility of
giving a fully atomistic description of these systems. They
have become very efficient thanks to the continuous increas-
ing of both computer performance and algorithm speed. Nev-
ertheless, semiempirical methods remain a powerful tool,'*!>
giving the chance to simulate real nanocrystals, made of tens
of thousands of atoms, with diameters of several nanometers.
The properties of large nanocrystals are both quantitatively
and qualitatively described within such approaches, provided
that the transferability of the parameters from the bulk to the
nanoscale is an acceptable approximation. In this paper we
consider a semiempirical tight-binding (TB) method,'® based
on a set of localized wave functions, that is very efficient in
the study of large structures. The determination of the elec-
tronic spectrum is reduced to the diagonalization of a reason-
able matrix, having the dimension of a few times the number
of atoms, and a very high degree of sparsity. Taking advan-
tage of both the matrix sparsity and the symmetry of the
structure under study, one can have a significant reduction of
the computational load. However, most of the semiempirical
TB methods do not generally allow an explicit calculation of
the nanocrystal wave functions, and a suitable approximation
for the momentum matrix elements between atomic orbitals
is needed for optical properties calculations.'”?!

Using a TB approach, which will be described in the next
section (Sec. II), we have performed a detailed analysis of
size- and shape-dependent features of the electronic spectra
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and absorption cross section of silicon nanocrystals. First,
quantum confinement effects are investigated for spherical
structures with different size (Sec. III). We show results con-
cerning the optical absorption cross section and the oscillator
strength, and compare them with previous calculations. Next,
the dependence of such properties on the nanocrystal shape
will be addressed (Sec. IV). Recently, we have studied the
infrared optical properties of ellipsoidal silicon nanocrystals,
calculating the electronic states within both the effective
mass theory?>* and the TB formalism.?>?® Here, we extend
this study to across-gap transitions motivated by the fact that
the dielectric function for ellipsoidal structures has not been
widely investigated, and a systematic study is still lacking.
The effects of moderate deviations from the spherical shape
on the energy levels and on the photoluminescence proper-
ties have been studied within the framework of the effective
mass approximation.?” These studies have been performed
especially for direct gap semiconductors, such as the II-VI
nanocrystals.?® For silicon nanocrystals the subject has been
discussed in a recent paper,” where the question of the lu-
minescence polarization in elongated silicon nanocrystals is
addressed and a comprehensive study of the optical transi-
tion rates is made within a TB scheme. However, the authors
have considered nanostructures with a limited number of as-
pect ratios and, more importantly, have not studied the ab-
sorption cross section, which is an experimentally accessible
quantity. In this paper we shall attempt to fill this important
gap for both the spherical and ellipsoidal silicon nano-
crystals, underlining, for the latter ones, the interplay be-
tween the nanocrystal shape and the absorption spectrum
asymmetry.

It is worth mentioning that recent papers*=? have shown
the possibility of forming porous silicon samples whose
nanostructures are mainly made of anisotropic nanocrystal-
lites. The photoluminescence from these samples is charac-
terized by a significant polarization anisotropy which has
been interpreted within a dielectric model made of ellipsoi-
dal structures, with a given static isotropic dielectric con-
stant, embedded in an effective medium. Polarization aniso-
tropy related to across-gap transitions has not been
considered and will be discussed in the following sections.
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Moreover, very recently, polarized optical gain has been ob-
tained from a porous silicon layer.?* It is likely that ultras-
mall elongated silicon nanostructures are responsible for this
phenomenon.

II. THE TIGHT-BINDING METHOD

We use an sp° TB model with inclusion of three center
integrals, and interactions up to the third-nearest neighbors.
This model is based on a set of 20 independent parameters,
fitted to obtain a reasonable band structure and good values
of the main band gaps and effective masses.'> These param-
eters allow the calculation of the density of states and of the
electronic spectra of silicon structures. The optical dielectric
function within the random-phase approximation (RPA) can
be written as
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where Q=Nga®/8 is the structure volume (Ng; is the number
of silicon atoms, and a 1is the bulk silicon lattice
constant),’>3* m is the free-electron mass, 7, is the occupa-
tion number for the nth nanocrystal state, E, ,» and F Z‘i , are,
respectively, the transition energy and the «, 8 component of
the oscillator strength associated with the |n)—|n') transi-
tion; a factor of 2 takes into account the spin degeneracy and
the sum is done over all the states. In our calculations local
field and excitonic effects are neglected and a Lorentzian
shape is used for the broadening. The oscillator strength is
defined by
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where the matrix elements between the nanocrystal states are
given by
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In this equation, R is the position of an atom in the structure,
o labels the symmetry of the atomic orbital [R, o), B, ,(R)
are the eigenvectors coming from the diagonalization of the
TB Hamiltonian, and the sum is done all over the silicon
atoms contained in the structure. The corresponding equa-
tions for a bulk periodic crystal are easy to write. In both
cases, it is necessary to have an evaluation of the momentum
matrix elements between the atomic orbitals which, in an
empirical TB scheme, are not explicitly known. A procedure,
developed in Ref. 35, has raised new interest in recent years,
and many researchers have been trying to deduce it from a
very general point of view.?36-3% Starting from the param-
etrization of the position operator matrix elements, the mo-
mentum elements are calculated by making use of both the
almost completeness of the TB basis set and the operator
identity '3
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Because of the translational symmetry, the bulk Si position
matrix elements in an orthogonal TB basis set can be written
as

(R,a|f'|R’,a’) =RORR 050 + [D(R - R’)](w,, (5)
where
[D(R)]U,o’ = <0»0-|f‘|R70J>- (6)

The approximation that we use consists of retaining only the
diagonal term in Eq. (5), therefore treating the TB atomic
orbitals as eigenstates of the position operator. By using this
approximation, the momentum matrix elements in the TB
basis set are written as

P(R,R’):%[R—R’]H(R,R’). (7)

Here, H(R,R’) is the Hamiltonian matrix. From Eq. (7) it is
seen that P depends only on the Hamiltonian matrix; it is
very simple to evaluate, no additional parameters being re-
quested in the calculation (the Hamiltonian matrix is fully
determined from the bulk band structure fitting). This ap-
proach satisfies the gauge invariance and the q— 0 limit of
the charge-conserving equation.?®3® This is an important
check of self-consistency that every model should satisfy, in
order to have equality between density and current
response.!” There has been a recent discussion in the litera-
ture on whether the further on-site position matrix elements
should be added in Eq. (5).37-*° These terms are related to
the atomic polarizability. Since we expect, on physical
grounds, that an atom in a bulk semiconductor crystal is less
polarizable than the bonds with its neighbors, we neglect
these contributions, retaining only the first term in Eq. (5). It
is difficult to give an estimation of the error induced by this
approximation because it may strongly depend on the TB
parametrization used, and also because it could break the
gauge invariance.?”3® Nevertheless, for addressing the qual-
ity of both the TB parametrization and the approximation in
Eq. (7), we have calculated the imaginary part of the optical
dielectric function for bulk silicon and compared it with both
the experimental data and those obtained from an empirical
pseudopotential calculation. In this last case we have used
the pseudopotential form factors of Ref. 41 with a standard
Monkhorst-Pack procedure for the integration in the first
Brillouin zone. The results are shown in Fig. 1, where the TB
curves are calculated with the parameters of Refs. 15 and 16,
and the experimental data are taken from Ref. 42. It can be
seen from this figure that there is a satisfactory agreement
between the three calculated curves and the experimental
data, with the exception of the peak around ~3.4 eV, which
is related to the formation of excitons*® which are not con-
sidered in this work. As a check, following Refs. 19 and 40,
we have also added just one intra-atomic dipole matrix ele-
ment through Eq. (6), setting D(R-R')=d,, og_g' with
dS,,X:O.027 nm. We have found that this addition introduces
only minor numerical changes to the TB curves of Fig. 1.
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FIG. 1. (Color online) Imaginary part of the bulk silicon dielec-
tric function. The empty circles are experimental data (Ref. 42); the
solid and the dot-dashed lines are the TB curves calculated using,
respectively, Tserbak (Ref. 16) and Niquet (Ref. 15) parameters; the
dashed line refers to a local empirical pseudopotential calculation
performed with the Chelikowsky-Cohen (Ref. 41) form factors.

This insensitivity is surely due to the TB parametrization we
are using, which includes interactions up to the third-nearest
neighbors, whereas those used in Refs. 19 and 40 is an sps”
with only first neighbors.

The static dielectric constant can be obtained as

+zfx@dE. (8)

=1

; w)y E
From our TB curves we get 10.63 and 10.74 using Tserbak'®
and Niquet!> parameters, respectively. These values are com-
parable with the experimental result** of 11.4 and with the
local empirical pseudopotential result of 10.3 (a 10% error is
usually ascribed to exciton effects). As a final check, we have
calculated the “f-sum rule” for the imaginary part of the
dielectric function

me) *
m Ee(E)dE=1, 9)
0

where N is the number of electrons contained inside the vol-
ume (). In the case of bulk silicon, we obtain the value of
1.077 with both sets of TB parameters so that the sum rule is
satisfied to within 10%. The calculations for both the spheri-
cal and ellipsoidal nanostructures we are going to discuss in
the following sections are all based on the TB parameters of
Ref. 15.

An optical function closely related to the imaginary part
of the dielectric function is the absorption cross section,

which we define as®
0-6'
o(E)=2—= 2 0,(1= 7,)F,yS(E=E,,).  (10)
4N,

!
U nn

Here, we have used S(E) for indicating the broadening of the
energy levels; a factor of 2 takes into account the spin de-
generacy, while o,=27#e?/mc=1.098 eV A? is the com-
plete one-electron oscillator strength. In our calculations, we
assume that the nanocrystal is embedded in a dielectric me-
dium with a refraction index of 1, and we neglect local field
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FIG. 2. Extinction coefficient for a Si nanocrystal having the
diameter of about 1.8 nm, obtained from absorption measurements
(Ref. 50) (dashed line), compared to the SijsoH;54 (d=1.83 nm)
extinction coefficient, calculated within our TB method (solid line).
The arrow labels the first calculated transition energy. Our theoret-
ical data have been rescaled in such a way that the two curves have
the same height of the main peak.

effects. The choice of calculating the absorption cross section
concerns both the fact that it is experimentally accessible®*0
and useful for evaluating the absorption gap energy.”*”*8 In-
deed, the onset of the optical absorption can be defined by
requiring that the integration up to this energy of the absorp-
tion cross section is a certain fraction p of the complete
one-electron oscillator strength o,. We have used a threshold
parameter p=10"*, which is fully consistent with the very
recent measurements of oscillator strengths.*’

III. SPHERICAL NANOCRYSTALS

In this section we investigate the optical properties of
spherical silicon nanocrystals with all the surface dangling
bonds saturated by hydrogen, with the aim of pointing out
their size-dependent features. Dipole-allowed transition ener-
gies, as a function of the nanocrystal diameter, have already
been reported in Ref. 15, and the comparison with the ex-
perimental data is discussed in Ref. 2. Since we use exactly
the same TB parametrization, we will not reproduce those
results here.

Using the method described in the previous section, we
have calculated the nanocrystal absorption cross section. As
a further check of the method, we have compared the calcu-
lated extinction coefficient of the SijsoH;,4 nanocrystal
(which has an equivalent diameter of 1.83 nm) to the experi-
mental curve given by Wilcoxon et al.*° for a silicon nano-
crystal with an estimated diameter of about 1.8 nm. The two
curves are shown in Fig. 2, where the arrow indicates the
first calculated dipole-allowed transition energy. We have
rescaled our theoretical data in such a way that the two
curves have the same height at the main peak. We want to
point out the great similarity of the two curves. In fact, al-
though an overestimation of the calculated dielectric function
is intrinsic to the parametrization we use, as it was already
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FIG. 3. Absorption cross section for a set of spherical nanocrys-
tals. A 0.1 eV Gaussian broadening has been used. The solid arrows
show the first dipole-allowed transition (HOMO-LUMO gap); the
dashed arrows point to the absorption gap, as defined in the text.
For the first two structures, the first allowed transition and the ab-
sorption gap have the same value. Calculations have been per-
formed for structures with increasing diameter.

clear for the bulk in Fig. 1, a fair agreement in the relative
positions and intensities of the two main peaks emerges from
Fig. 2.

The absorption cross section for a set of nanocrystals with
increasing size is shown in Fig. 3. In this figure the full
arrows mark the energy of the first dipole-allowed transition,
which, for our structures, coincides with the HOMO-LUMO
gap, defined as the difference between the lowest unoccupied
state (LUMO) and the highest occupied state (HOMO) en-
ergy, while the dashed arrows indicate the energy of the op-
tical absorption threshold calculated with the criteria de-
scribed at the end of the previous section. An interesting
result is that, for small structures, the two onsets are basically
coincident while, upon increasing the dimension, the optical
absorption gap approaches the bulk I'-I" gap while the
HOMO-LUMO gap goes to the bulk I'—X indirect gap. Ex-
tensive calculations on clusters even larger than those
showed in Fig. 3 have confirmed this trend, with the optical
functions progressively matching those of bulk silicon. For a
deeper understanding of this trend, we have calculated the
projections of the nanocrystal wave functions on the first
bulk Brillouin zone. This is motivated by the fact that the
transition rates are basically proportional to the k-space over-
lap between the HOMO and LUMO wave functions. In Fig.
4 we report the A line projection of the nanocrystal states
(the sum is done on all the quasidegenerate energy levels) on
the bulk Si band complex subspace constituted by the upper
valence bands and the lower conduction bands included in
our TB calculation. It emerges from this figure that, while
HOMO states are localized around I', the LUMO takes com-
ponents mainly around the six X valleys. It is worth noting
that, upon increasing the nanocrystal diameter, the overlap
between HOMO and LUMO states annihilate very quickly.
Moreover, the LUMO projection is well centered on X when
the nanocrystal size is smaller than a certain threshold. For
diameters higher than this threshold, the maximum of the
LUMO states goes away from X, tending to the bulk limit of
about 0.83. This behavior leads to a fast annihilation of the
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FIG. 4. (Color online) k-space projection of the spherical nano-
crystals eigenstates on the bulk Si band complex. The curves cen-
tered on I' and X are, respectively, the projections of the HOMO
and LUMO nanocrystal states. The normalization has been done in
such a way that the HOMO states projection is 1 at I'.

oscillator strengths upon increasing the nanocrystal size.
Therefore, although for a nanocrystal all the transitions are
direct, the indirect nature of the starting bulk material is still
there. We think that this behavior, characteristic of indirect
semiconductors, is at the basis of the difficulties of a correct
understanding of the silicon nanostructures photolumines-
cence phenomena.’

In order to be more quantitative, we show in Fig. 5 the
lowest-energy oscillator strengths and the electron-hole ra-
diative recombination time versus the transition energies for
a set of spherical nanocrystals. It is clearly seen that, even for
very small crystallites, the dipole-allowed transitions have
oscillator strengths of the order of magnitude of 107!, tend-
ing to annihilate rapidly as the nanocrystal size increases.
The point here is that, going from the HOMO-LUMO gap to
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FIG. 5. (Color online) Oscillator strengths (left) and electron-
hole radiative recombination times (right) for the lowest-energy
transitions, calculated for a set of spherical silicon nanocrystals. The
results shown in figure refer to the following nanocrystals: SiygH3¢
(d=1nm), squares; SigsH75 (d=1.5 nm), circles; SijoHg (d
=1.9 nm), triangles-up; SisesHos, (d=2.6 nm), triangles-right;
SizgsH30 (d=3 nm), diamonds.
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FIG. 6. Calculated spherical nanocrystal static dielectric con-
stant. The circles correspond to our TB results (the line is only a
guide for the eyes). The solid line is the pseudopotential result from
Ref. 34, while the dot-dashed line is the TB calculation of the
screening average dielectric constant of Ref. 54. The data from Ref.
34 have been taken without any rescaling (see the text).

well above the optical absorption gap, there is a large num-
ber of transitions with relatively small oscillator strengths
reflecting the intrinsic indirect nature of silicon mentioned
above. This finding is consistent with the theoretical work of
Ref. 4. Moreover, it seems that both the trend and the order
of magnitude of our calculated oscillator strengths are in a
good agreement with the recent experimental measurements
of Ref. 49. Instead, upon increasing the nanocrystal size, the
radiative recombination times increase. We found that, for a
3 nm nanocrystal (with energies at about 2 eV), the recom-
bination time is already 7,,;,~= 10 us. When the nanocrystals
size changes from a few angstrom to several nanometers, the
radiative recombination times change from the range of the
nanosecond (d=1 nm) to the microsecond (d=3 nm) to the
millisecond (bulk Si). For large-size nanocrystals, the
electron-phonon contribution should be added into the
calculation.’'”? The general trend of our results is in agree-
ment with previous findings in the literature.'?>3

Finally, we have calculated the static dielectric constant €
using Eq. (8). The results are shown in Fig. 6, together with
both the empirical pseudopotentials results of Wang et al.>*
and the self-consistent TB results of Allan et al.>* It should
be noted that Wang et al.>* have rescaled their data in such a
way to reproduce the measured bulk silicon static dielectric
constant. We preferred to avoid such a rescaling so that, in
order to have a consistent comparison with our results, we
have rescaled back their data. The good agreement between
our results and those of Ref. 34 is expected simply because
in both cases ¢, is calculated from Eq. (8). The TB result of
Ref. 54 is reported here for completeness and lies lower,
being the average screening dielectric constant of a hydro-
genic impurity.

Although the calculated dielectric constant shows a small
scatter due to the molecular structure of the nanocrystals,54
we can safely confirm that it is an increasing function of the
nanocrystal size.

IV. ELLIPSOIDAL NANOCRYSTALS

Shape-dependent features of the dielectric and optical
properties can be obtained applying the TB approach to el-
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lipsoidal nanocrystals. The nanocrystals are built starting
from a central silicon atom, and including all the atoms (at
the bulk positions) lying inside the surface

X2+ y?

2

Z
+5=1, 11
2t (11)

where the z axis has been taken along the [001] direction,
and all the surface silicon atoms have been saturated by hy-
drogen. We define y=c/a as the ellipsoid aspect ratio. In
Ref. 25, where some computational details may be found, we
already analyzed the LUMO states and the corresponding
infrared transition energies. Moreover, some preliminary re-
sults on the optical dielectric tensor have been presented in
Ref. 26. Here, we focus on the across-gap optical properties
and the degree of linear polarization, showing how they de-
pend on the geometrical anisotropy. The static dielectric ten-
sor of silicon ellipsoidal nanocrystals is calculated and dis-
cussed. Finally, we consider the limit of elongated ellipsoidal
quantum dots, comparing the calculated absorption cross
section with that of a quantum wire. It is worth pointing out
that anisotropy-dependent optical properties are closely re-
lated to the recent measurements of birefringence in optical
waveguides made on silicon nanocrystal superlattices, and
can be at the basis of a theoretical explanation of the polar-
ized optical gain found in porous silicon layers.*?

Shape-related aspects due to quantum confinement in an-
isotropic structures are investigated considering a set of el-
lipsoidal nanocrystals all having the same a semiaxis in the
x—y plane but different values of the aspect ratio y. Within
this set, a wide range of geometries is considered, retrieving
a disklike structure or a cylindrical quantum wire in the lim-
its y—0 and y— oo, respectively.

Because of the rotational symmetry (all the ellipsoids are
built in such a way to have D,, symmetry>®), we have two
possible polarizations for the ellipsoid optical transitions: the
perpendicular polarization whose vectors lie in the plane or-
thogonal to the ellipsoid symmetry axis, and the parallel po-
larization, whose vectors lie along the ¢ direction. Figure 7
shows the independent components of the absorption cross
section for a set of ellipsoids with a=1 nm and with the
aspect ratio ranging from xy=0.5 to y=3. We also show, for
each ellipsoid, the first dipole-allowed transition energy (dot-
ted arrow), which we find to be insensitive to the transition
polarization, and the absorption gap calculated as in the pre-
vious section for both the perpendicular (solid arrow) and the
parallel (dashed arrow) polarization. We point out the inter-
esting result that, contrary to the first transition energy, the
absorption gap depends on the polarization. The anisotropic
effects are especially pronounced in the oblate case (y<1).
Instead, in the limit of large, prolate (x> 1) nanocrystals, the
difference between the two curves becomes quite small. At
the same time, the first dipole-allowed transition goes far
away from the absorption threshold. In the limit of a very
elongated structure, we retrieve the quantum wire absorption
spectrum. In order to check this point, we have calculated, in
an independent way, the absorption cross section of a [001]
quantum wire having a circular section radius =1 nm. The
comparison between the ellipsoid with y=3 and the quantum
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FIG. 7. (Color online) Absorption cross section for a set of Si
ellipsoids with a=1 nm, as a function of the aspect ratio y. The
solid and the dashed curves refer, respectively, to the perpendicular
and the parallel polarization. The dotted arrow is the first transition
energy, which is almost insensitive to the polarization. The solid
and dashed arrows point, respectively, to the perpendicular and par-
allel absorption thresholds. A 0.1 eV Gaussian broadening has been
used.

wire limit is shown in Fig. 8 for both the perpendicular (up-
per figure) and the parallel (lower figure) polarization. From
Fig. 8 emerges an overall agreement between the ellipsoid
and wire results. This is not surprising, in that the number of
Si atoms along the z direction is huge, and so we expect that
the quantum confinement has a non-negligible effect only
along the other directions. Nevertheless, we note here the
presence of an energy gap between the onsets of the two
structures, due to a slow convergence of the ellipsoid transi-
tion energies to the quantum wire limit.’” Finally, it is worth
remarking that our results are consistent with other calcula-
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FIG. 8. Comparison between an ellipsoid with a=1 nm, y=3
(dashed lines), and a [001] cylindrical quantum wire having a radius
r=1 nm (solid lines). The absorption cross section is shown for
both the perpendicular (upper panel) and the parallel (lower panel)
polarization. The arrows point to the first dipole-allowed transition,
whereas the lines point to the absorption threshold.
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FIG. 9. (Color online) Degree of linear polarization p for the
ellipsoid frequency-dependent absorption cross section, defined in
Eq. (12), plotted for a=1 nm and different values of the aspect
ratio: x=0.5, solid line; y=0.6, double dot-dashed line; x=1.8, dot-
dashed line; y=3.0, dashed line.

tions. Indeed, our dielectric function can be compared to pre-
vious quantum wire results.?!3859

It is useful to give a quantitative estimation of the optical
anisotropy effects by introducing the degree of linear polar-
ization for the absorption cross section (according to the

usual definition given for the photoluminescence
intensity?®3%), defined as
o -0
=L (12)
aj +0,

In Fig. 9 we show p, obtained from the data of Fig. 7, as a
function of the energy. An interesting feature is that, for each
nanocrystal, a sign inversion of p appears at a fixed energy of
about 5 eV. For this energy the cross section is independent
of the polarization. A symmetry change comes out in corre-
spondence with the geometrical shape change from oblate to
prolate structures. For energies lower than 5 eV, the degree
of linear polarization o is negative for oblate structures and
positive for the prolate ones. This means that, in the range of
energies below 5 eV, oblate silicon ellipsoids mainly absorb
an x—y polarized radiation, while prolate nanocrystals
mainly absorb a z-polarized radiation. It is worth pointing
out again that within this analysis we do not take into ac-
count depolarization factors and local field effects, which
may be important for porous silicon.?!

The static dielectric constant can be obtained from the
optical dielectric function using Eq. (8). In this case the two
different components €;, and €, have to be considered, and
are shown in Fig. 10 (left panel) as a function of y. The
crossing between the two components occurring at y=1
(spherical nanocrystal) is due to the change of the structure
from oblate to prolate. Also, in this case we can define a
degree of linear polarization p, with a formula similar to Eq.
(12). The results are shown in Fig. 10 (right panel), where p,
has been calculated as a function of y. From this figure we
notice an interesting correlation between the nanocrystal
shape and the dominant component of the static dielectric
constant. For oblate structures the perpendicular component
is larger, while for the prolate ones the parallel component is
larger.
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FIG. 10. (Color online) Left panel: Principal components of the
static dielectric tensor for a set of ellipsoids with a fixed semiaxis
a=1 nm. The circles and the squares are, respectively, the perpen-
dicular and the parallel component with respect to the nanocrystal
symmetry axis. Right panel: The static dielectric tensor degree of
linear polarization. The lines are guides for the eyes.

V. CONCLUSIONS

We have used a TB approach for the study of size- and
shape-dependent features of the optical properties of silicon
nanocrystals. Single-particle energy spectra, dipole-allowed
transition energies, oscillator strengths and radiative life-
times, absorption cross section, and static dielectric constant
have been calculated for both spherical and ellipsoidal sili-
con nanocrystals. The results for both the spherical and el-
lipsoidal structures show a significant annihilation of the os-
cillator strengths with the nanocrystal size. At the same time,
the HOMO-LUMO gap and the optical absorption gap be-
come different for large structures and, in the case of a
spherical shape, the limit values are the indirect and direct
bulk silicon gap, respectively. We have also found that very

PHYSICAL REVIEW B 72, 075423 (2005)

elongated nanocrystals show the limit behavior of the quan-
tum wire. It is expected that very flattened structures have a
quantum disk as a limit.

The optical dielectric function has been calculated from
the dipole matrix elements without the addition of on-site
terms. The good agreement with the measured bulk e, is an
indication that the neglected terms would have very little
numerical significance on the calculated curves. Assuming
the transferability of the dipole matrix elements from the
bulk to the confined structure (this is a prerequisite of any
semiempirical method), we have calculated the optical ab-
sorption cross section for both spherical and ellipsoidal
structures. Our calculations are consistent with previous
empirical-pseudopotential results on spherical nanocrystals.
More interestingly, the absorption cross section of ellipsoidal
nanocrystals is shown to have an anisotropy which follows
the nanocrystal shape. The same behavior has also been
found for the static dielectric constant.

We believe that these results can help in a full understand-
ing of some aspects related to quantum confinement in po-
rous silicon samples. In fact, models based on ensemble of
silicon ellipsoids have been shown to give a good agreement
with the photoluminescence data.>*3? Moreover, this study
can help in understanding the polarized optical gain recently
obtained from a porous silicon layer.?* In addition, recent
experiments have demonstrated the possibility of fabricating
well-passivated, small-diameter silicon nanowires.® It is not
difficult to think that, in a few years, silicon nanorods and
ellipsoids will be available as well.
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