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Vibrational spectra of amorphous clusters: Universal aspects
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We have performed extensive numerical computations on the vibrational spectra of isolated amorphous
clusters of medium to large size and containing one or two types of atoms. The interaction potential is also
varied to study possible universality. For all the potentials and cluster sizes we find that the cumulative density
of states can be described very accurately by the same functional form over a large central region of the
spectrum. This functional form contains only one scale of frequency. We also find that the statistical fluctua-
tions of the spectra are described by the Gaussian orthogonal ensemble of random matrices. For the largest
clusters this is tested to a very high degree of precision in the central region and to a somewhat lower degree
for most of the rest of the spectrum. We put forward a conjecture regarding the domain of the space of local
minima of the potential energy function where universality with respect to the density of states function may

be expected.
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I. INTRODUCTION

An important component of the process of understanding
amorphous states is the study of vibrational properties since
these features are related to both structural and thermody-
namic aspects of the material. This area of research has been
pursued for several decades now but many key questions
remain unanswered. To a large extent this is due to the dif-
ficulties arising out of the inherent nonlinearity of the prob-
lems. However, over the last few years, important progress
has been made—sometimes following leads given many
years ago.'2® One key ingredient in this development has
been the renewed emphasis on a systematic study of the in-
herent structures which are the configurations corresponding
to the local minima of the potential energy function used to
describe the interactions between the constituent particles of
the system. This is in contrast to some studies in which ex-
plicit models are made for both the geometry of the disor-
dered state and the nature of the interaction. Thus, these in-
vestigations involving inherent structures have relegated the
task of modeling to the more basic level of interparticle in-
teractions. Once a choice is made for the interactions all the
disordered inherent structures that can be generated from it
are potential candidates for the geometry of the frozen amor-
phous state. Hence, the importance of a thorough study of
the geometry, dynamics, and thermodynamics of the inherent
structures in the understanding of amorphous systems is ob-
vious. However, since the local minima depend on the choice
of the interaction potential, presence of an element of uni-
versality is essential to make the conclusions generally rel-
evant and to make comparisons to experimental results
possible—unless the potential is derived from ab initio cal-
culations. In this paper we present some such universal as-
pects of the vibrational spectra of model potentials for highly
disordered states. Computations are done here for medium to
large isolated clusters but some of our most important results
are expected to become exact only in the bulk system limit.
Calculation of vibrational frequencies is done by solving a
suitable eigenvalue problem involving the Hessian matrix of
the potential energy function corresponding to the inherent
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structure. Since we are dealing with disordered configura-
tions it is natural that there is an element of randomness in
this matrix and thus concepts familiar in the context of ran-
dom matrix theory play a role in the way we describe the
statistical fluctuations of the spectra—as has been done in the
quantitative description of many physical problems, includ-
ing that of vibrational spectra, in recent times.?’3?

Two of the key results that will be presented in this paper
are the following: (i) universality in the form of the density
of states (DOS) over a large central part of the vibrational
spectrum, defined as region II later in the paper, and (ii)
universality in the nature of the statistical fluctuations of the
spectra. In the language of random matrix theory, we find
that the spectral fluctuations are of the type characteristic of
the Gaussian orthogonal ensemble (GOE) of random matri-
ces. To check for universality we study different types of
potential available from the literature. The number of par-
ticles in the cluster is varied to study the effect of system
size. We also address two general questions pertaining to the
domain of universality for the density of states: (i) Which
region of the space of all amorphous local minima can be
expected to show universal properties? and (ii) for the region
selected according to this criterion, does universality apply to
the whole of the vibrational spectrum or only to a large part
of it?

It is important to note here that a necessary condition for
the universality of the density of states, even if over only a
large part of the spectrum, is the disappearence of material-
specific features as one goes from the crystalline state to
highly disordered states. An understanding of how this hap-
pens in general was provided in an early work by Rehr and
Alben. In this picture the computation of the vibrational
spectrum of a disordered system involves two steps. The first
step is the construction of the geometry of the disordered
configuration around which the vibration takes place. In the
second step one constructs a model of vibration in which all
pairs of elements within a suitable distance of each other are
connected by linear springs—the spring constant for every
such spring being, in general, a well-defined function of the
distance between the pair of elements it connects. Even if
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this spring constant is the same for every pair many of the
features of the crystalline spectrum will be eliminated purely
due to positional disorder and consequent change in the con-
nectivity pattern compared to the ordered state. Thus this
“topological disorder” will typically result in the survival of
broad features since even disordered states have local geom-
etry which is not very unlike that of the crystalline state.
Now if we consider a situation in which the spring constants
do depend on the distances between pairs through a suffi-
ciently smooth function, disorder in pair separation will ef-
fectively generate another source of smearing of time scales
of vibration. The actual magnitude of this effect will depend
on how strongly the spring constant varies with distance
(quantified by the third derivative of the pair potential). This
is referred to as “quantitative disorder” and when this is in-
creased progressively it will eventually remove all traces of
even the broad features that survived topological disorder—
leaving a spectrum with just one broad peak but otherwise
featureless. Absence of features, however, does not automati-
cally imply the presence of universality in the density of
states. Universality is an additional and nontrivial property
that our work suggests.

This paper is organized as follows. In Sec. II we describe
the various potentials used by us. The methodology of the
investigation and some related data are also presented in de-
tail. Section III contains the results on single-component
clusters with three different types of potentials. Results on
binary mixtures are given in Sec. IV. In Sec. V we address
issues regarding the domain of universality. Reference to
some recent experiments on bulk glassy systems** is also
made here in the light of our observations on universality.
This is followed by discussion and conclusions. A brief ac-
count of some of the results reported here has already been
published.?”

II. METHODOLOGY

For our study of clusters in three dimensions we have
used four different types of potentials. They are the Lennard-
Jones (LJ), Morse, Sutton-Chen, and Gupta potentials. The
explicit forms of the potentials are as follows: (1) LIJ:
42, (1/ rl.'jz— 1/ r?j) with the factor of 4 omitted for calcula-
tion of vibrational frequencies; (2) Morse: X ;- {exp[-2a(r;;
—-1)]-2exp[-a(r;—1)]} with a=6; (3) Sutton-Chen:
(1712221 r7)]- BELNZ 2 (1179) with B=39.432;
and (4) Gupta: EZI{AE#i exp[-p(r;= 11}
—Eﬁil\/Eﬁi exp[-2¢(r;;—1)]. Here N is the number of par-
ticles in the cluster and r;; is the distance between particles i
and j. The value of the parameter 8 for the Sutton-Chen
potential is the one that describes nickel. Parameters of the
Gupta potential have been varied to make it applicable to
either nickel or vanadium.?-¢ The interesting point to note
about these four potentials is that the expressions for the LJ
and Morse types are of the form of sums over pairs of par-
ticles whereas those for the Gupta and Sutton-Chen types,
used for describing metallic clusters, have many-body terms
in them. For LJ clusters some results of the present investi-
gation have already been published.’”

PHYSICAL REVIEW B 72, 075401 (2005)

Before the vibrational spectrum can be calculated, the
configuration about which the vibration takes place needs to
be known. These configurations can be any of the inherent
structures of the potential in question and there are several
methods available to generate them. We have used the
method of homotopy minimization in which a local mini-
mum for a function V is found by minimizing a sequence of
functions of the form #V+(1-6)U where U is a suitably
chosen simple function. 8 is changed from zero to one in a
finite number of steps (about 20 in practice) and for each
value of 6 the initial guess for the configuration is the mini-
mizing configuration for the previous value of .37 In the first
step the initial guess is a compact but random configuration.
For the number of particles that we are dealing with, this
method generates, in one trial, one of the higher-energy local
minima with disordered geometry. With change in the ran-
dom initial condition different local minima are produced.
The number of distinct high-energy local minima that can be
generated is, for all practical purposes, limitless for the sys-
tem sizes we consider. But given the relatively small number
of trials we are constrained to use, the energies produced for
a given potential and for a given number of particles lie in a
rather narrow range. Once an inherent structure is produced
one computes the corresponding Hessian matrix and subse-
quent steps for computing the normal mode frequencies are
standard. In this paper, unless stated otherwise, densities and
fluctuation properties will always be computed for the
squares of the vibrational frequencies (which are obtained as
a result of solving a suitable eigenvalue problem). This has
no effect on any of the conclusions drawn. For a particular
inherent structure, we denote the elements of the eigenvalue
spectrum (arranged in an increasing order) by \(i) with i
=1,2,...,3N. The first six of them will be identically equal
to zero as a consequence of the translational and rotational
symmetries of the potential. Characterization of the remain-
ing nonzero eigenvalues is done by defining the mean local
density as well as fluctuation around it. If we consider the
spacing between two nearest neighbors in a spectrum then
the variation of this spacing across the spectrum can be de-
scribed as the sum of a component that changes rather
smoothly and one that fluctuates very strongly—even be-
tween two adjacent pairs. The inverse of the first part is
called the density of states and is an object of great physical
interest since it is directly measurable through several experi-
mental techniques and has immediate bearing on various
physical properties of materials. Here we denote the DOS by
g(\). As we will see later, an accurate knowledge of this
function is also of crucial importance in doing a quantita-
tively precise analysis of the fluctuation aspects of the spec-
trum. Unfortunately, an analytic determination of g(\) is
rarely possible and that is also true in our case. Starting from
an eigenvalue spectrum obtained numerically we extract the
DOS through the procedure described next.

Let H(\) be the number of eigenvalues less than or equal
to A and let S(\) be a sufficiently smooth function that passes
through the staircase function H in the best-fit sense. Given
the H(\) function resulting from a specific eigenvalue spec-
trum, S(\) is in practice constructed by first generating a
suitable function space through a combination of various el-
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FIG. 1. (a) Filled circles: Eigenvalue (\) vs eigenvalue number
plot of a complete spectrum (Morse potential with N=2000). Some
data points have been removed for clarity. Continuous line: Best-fit
curve obtained after removing bottom 10% and top 20% of the
spectrum. (b) Misfit function in the region of best fit for the same
spectrum.

ementary functions and then performing an optimal fit in this
space. The numerically determined DOS function is simply
the derivative of this best-fit S(\). The first major result of
this paper is contained in the following statement: Excluding
relatively small regions (about 10-15 % of the levels) at each
end of the spectrum, S(\) can be approximated extremely
well by a function of the form D(\)=a—b exp(—c\). This is
true of all the spectra of all the potentials we have studied. A
measure of how well the best-fit D(\) approximates S(\) can
be constructed by defining the misfit function m(i)=i
—D(\(i)). Within the domain of the fit, let m,,,, be the maxi-
mum absolute value of this misfit function as calculated for
the best-fit values of the adjustable parameters (a, b, and ¢)
in the fitting function D. Then, m,,,, divided by the number
of eigenvalues within the domain of the fit constitutes a
proper measure of the accuracy of the approximation. We
find that this quantifier stays at the level of one in 100 or
less. Figure 1(a) provides a demonstration of this high accu-
racy of fit in a typical case. Figure 1(b) shows the misfit
function for the same spectrum.

For a given type of potential, the DOS function g(\)
should have the structure Nf(\) in the large-N limit. Here
f(\) is a function that is independent of the number of par-
ticles but will, in general, depend on the energy per particle
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for the particular local minimum under consideration. With
the kind of approximation we are using g(\)/N
=(bc/N)exp(—c\). Thus the scales of N\ and the normalized
density of states are set by ¢ and bc/N, respectively, both of
which will depend on the specific local minimum. However,
since we are generating minima only in a narrow energy
range for a given potential and for a given number of par-
ticles, fluctuation of these two parameters of the DOS should
be small—if we assume, as is conventional, that the energy
of the inherent structure is the only parameter that controls
the DOS function. Data in Table I on the values of the mean
and standard deviation of ¢ and bc/N show that this is indeed
the case. In all cases the standard deviation decreases with
increase in N. In the same limit the mean values appear to
converge to nonzero values suggesting the existence of a
well-defined DOS function in the large-system-size limit. Al-
though we have no direct control over the energy of the
inherent structure produced, this apparent convergence also
suggests that the algorithm used ensures that the energy per
particle indeed converges in the large-N limit (to a value on
which we have no a priori control). It should be mentioned
here that in our analysis of the central part of the spectrum
we have consistently excluded the lowest 10% and the high-
est 20% of the data to get a fit that is of the quality men-
tioned earlier. We call this large central range “region II.”
The spectral regions below and above this range are referred
to as “region I and “region III,” respectively. Data for these
two relatively small regions have also been analyzed in ways
that will be described later in the paper.

Statistical fluctuations of the eigenvalue spectra are ana-
lyzed using the procedures established in the theory of ran-
dom matrices.*33 First of all, the raw spectrum of eigenval-
ues is transformed into an “unfolded” spectrum by using the
map s(i) =S(\(i)). The unfolded spectrum thus generated de-
rives its name from the fact that the smooth part of the DOS
for these transformed eigenvalues is unity everywhere in the
spectrum. It is this transformation that makes it possible to
compare the fluctuation characteristics of two different spec-
tra or two different parts of the same spectrum. Also, if there
is reason to believe that in some situation all members of a
set of spectra have the same kind of statistical fluctuation the
information available from all the spectra can be combined
to improve the statistics of the analysis. This is permissible
only after the unfolding. Thus, for the purpose of analysis of
fluctuations, spectrum will always mean unfolded spectrum.
For a given potential and a given size of the cluster we gen-
erate a chosen number of local minima (in a narrow range of
energy) and for every local minimum we derive the unfolded
spectrum—bearing in mind that the transformation from the
raw spectrum to the unfolded one is effected by the D(\)
function with the parameters of D being the best fit values of
a, b, and c for that particular spectrum. On this collection of
unfolded spectra we perform the following statistical analy-
sis: (i) Calculate the distribution of nearest-neighbor spacing
denoted by the function p(s), and (ii) characterize the prob-
ability distribution of the random variable n(r), the number
of eigenvalues within a singly connected domain of width r
selected randomly from within the spectrum, in terms of its
variance [22(r)], skewness [y;(r)], and excess [y,(r)].
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TABLE I. Statistical properties of the parameters of the best-fit cumulative density-of-states function in region II, and variance of the

normalized nearest-neighbor spacing.

c cb/N K
Standard Standard
Potential Number of particles Average deviation Average deviation Variance
Lennard-Jones 200 1.60X 1072 6.80 X 1074 1.56 X 1072 4.02x107* 0.2844
500 1.38x 1072 4.49x107* 1.37x1072 2.18x107* 0.2844
1000 1.26x 1072 2.51x107* 1.27x1072 1.34x107* 0.2852
2000 1.17x 1072 1.51x107* 1.20x 1072 8.19x 1073 0.2854
Morse 200 3.63%X1073 1.43%x 1074 3.65x1073 9.59 X 1073 0.2864
500 3.21x1073 7.97 1073 3.29x1073 5.07x1073 0.2844
1000 2.97x1073 5.50X 1073 3.09x 1073 3.29%107° 0.2857
2000 278X 1073 3.66X 1073 295X 1073 226X 1075 0.2845
Sutton-Chen 100 1.74 X 107 6.76 X 107° 1711074 6.44 X 107° 0.2908
200 1.65x 107 419X 107° 1.65Xx 1074 434x107° 0.2882
300 1.60x 1074 3.37%107° 1.62%x 1074 4.25%107° 0.2833
400 1.58x107* 270X 107° 1.61x107* 4.45%107° 0.2856
Gupta 100 1.96 X 1072 8.76x 1074 1.86X 1072 8.53x 1074 0.2942
(Nickel) 200 1.71%x1072 6.14%x 107 1.63% 1072 3.83%x 107 0.2838
400 1.49 % 1072 7.39x 1074 1.46 X 1072 2.48% 1074 0.2841

III. SINGLE-COMPONENT CLUSTERS WITH MORSE,
GUPTA, AND SUTTON-CHEN POTENTIALS

In this section we present the data on the nature of statis-
tical fluctuations in the spectra of the local minima obtained
with Morse, Gupta (with parameter values applicable to
nickel), and Sutton-Chen types of potentials. The maximum
cluster sizes used with these three types are 2000, 400, and
400, respectively. The much smaller system sizes for the
Gupta and Sutton-Chen cases is caused by the nature of the
expressions of the potential energy which are not of the form
of sums over pairs. Due to this very large enhancement in the
requirement of computation time, system sizes as well as the
number of minima generated for these two cases are substan-
tially less than those for the Morse potential.

A. Region I1

First we present the data for the central 70% (region II) of
the spectra as mentioned in Sec. II. For all the three types of
potentials, analysis of randomly picked individual spectra
suggested that the spectral fluctuations are of the GOE
type—although with poor statistics. To improve statistics we
combine the information from all the unfolded spectra for a
given system size and a given potential.

Figures 2(a)-2(c) show the distribution p(s) of the nor-
malized nearest-neighbor spacing (s) for the largest system
size used with each potential. We also superimpose the pre-
dictions from the Wigner surmise [p(s)=(ws/2)
Xexp(-ms?/4)] and the exact predictions for the GOE in
each case.’! The difference between the two predictions is at
the level of 1% or less but the statistics for the Morse case is
good enough (of the order of 10° levels after combining the
spectra) to suggest convincingly that our data follow the ex-

act GOE prediction rather than Wigner’s surmise. The agree-
ment for the Sutton-Chen and Gupta cases with much lower
statistics looks significantly worse. But even for these cases
the calculated values of p(s) are within permissible limits of
statistical fluctuation. For reference, the absolute number of
data points in the bin at the peak of the p(s) curve is about
1200 and 2300 for the Gupta and Sutton-Chen cases,
respectively—compared to about 19 000 for the Morse po-
tential. Data on the variance of the nearest-neighbor spacing
are available in Table I. Exact calculation for the GOE and
the analysis of Wigner’s surmise lead to the values of 0.286
and 0.273, respectively, for this quantity. Agreement of the
computed values of variance with the exact GOE result,
rather than with Wigner’s surmise, is extremely good.

For reliable computation of 32(r), the variance of the
number of levels within a window of length r placed ran-
domly in the spectrum, special attention has to be paid to the
quality of the procedure that leads to the construction of the
unfolded spectrum. As mentioned in Sec. II the function
D(\) is indeed a very close approximation to the ideal func-
tion S(\). However, as can be seen from Fig. 1(b), there is
also a systematic mismatch between these two. Even though
the amplitude of the mismatch is only of the order of 1% (or
less) of the range of fit it is enough to render the calculation
of the variance for larger window sizes quite meaningless.
This is due to the following reason. The spectrum of the
GOE is extremely rigid and the variance 22(r) grows only as
In(r) whereas the error caused by the mismatch between the
ideal fitting function and the one actually used is propor-
tional to r>—with the proportionality constant increasing
with the level of mismatch. This makes it imperative that the
mismatch be reduced to the lowest possible level and should
ideally contain only statistical fluctuations inherent in the
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FIG. 2. Probability density [p(s)] for normalized nearest-
neighbor spacing (s) in the region II of the spectrum. Filled circles:
our data. Crosses: Wigner’s surmise for GOE. Continuous line: Ex-
act prediction for the GOE. (a) Morse (N=2000), (b) Sutton-Chen
(N=400), and (c) Gupta potential for nickel (N=400).

GOE spectrum. To accomplish this we construct a correction
to the dominant fitting function D(\) by first eliminating
from further consideration the regions in a spectrum where
the mismatch function has rather irregular behavior and then
fitting, in each of the remaining (typically two or three) rela-
tively regular regions, quadratic functions to the mismatch
function. Correcting D(\) by these quadratic functions leads
to the desired unfolding functions. For a given value of r we
combine the data for n(r) from all the subregions of all the
spectra for a given system size and potential before calculat-
ing 3*(r), %(r), and y,(r).
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FIG. 3. Variance of the number of levels in intervals of length r
plotted as a function of r for the region II of the spectrum. Continu-
ous line: Prediction for the GOE. Filled circles: Our data. Number
of particles (N) increases from top to bottom in each figure. (a)
Morse with N=200, 500, 1000, and 2000; (b) Sutton-Chen with
N=100, 200, and 400; and (c) Gupta potential for nickel with N
=100, 200, and 400.

Figures 3(a)-3(c) show the data for 3%(r) in the Morse,
Sutton-Chen, and Gupta cases, respectively. In each figure
data for several values of N are included to show the trend of
variation with system size. In all cases the general trend is
that the agreement between the computed data and the GOE
prediction improves with increasing system size. A limitation
of the procedure that we have actually used to compute vari-
ance here is that the subdomains into which every spectrum
has been divided to avoid irregular regions contain eigenval-
ues with the same set of indices for all the local minima for
a given potential and a given system size. Although the broad
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tion of r for the region II of the spectrum. Filled circles: Our data.
Continuous lines: Predictions for GOE. (a) Morse with N=2000; (b)
Sutton-Chen with N=400; and (c) Gupta potential for nickel with
N=400.

contour of the misfit function is the same for every spectrum,
exact locations of the irregular regions do vary somewhat
from spectrum to spectrum. This simplification of the analy-
sis is made due to the very large number of spectra that we
are dealing with. However, in the case of the Lennard-Jones
system with 2000 particles we have performed the analysis
with spectrum-specific choice of subdomains. The resulting
data for 22(r) are in practically overlapping agreement with
the GOE prediction all the way up to »=20. Finally, we show
the data for the excess (y;) and skewness (y,) parameters in
Figs. 4(a)-4(c) along with the corresponding GOE predic-
tions. It should be mentioned here that the predictions for
skewness and excess parameters have been calculated by us-
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ing a large ensemble of 500 X 500 matrices drawn from the
Gaussian orthogonal ensemble. For each potential we display
only the data for the largest system size since there is very
little variation with system size. Values of » beyond 5 are not
included since both ,(r) and v,(r) are very close to zero
anyway in this range. Up to r=5 the agreement between the
GOE prediction and our numerical data is very close—even
with rather small system sizes.

B. Regions I and III

Now we present the spectral statistics for the top 20%
(region III) and the bottom 10% (region I) of the spectra for
the LJ and Morse cases. It is for only these potentials that the
largest system size we have used is sufficiently big. As a
result there are a meaningfully large number of levels even in
these relatively small segments. There are two reasons why
the analysis for the two ends of the spectra are being per-
formed separately. (1) Due to our inability to find a single
functional form that describes the density of states over the
entire spectrum sufficiently accurately we cannot carry out
the process of unfolding for all the eigenvalues in a single
step. (2) Calculation of the participation ratios for the eigen-
modes indicates that the modes belonging to the central 70%
are extended. As one approaches the top of the spectra, the
modes get progressively more and more localized until they
become completely localized at the very top. At the lowest
end the eigenmodes are a mixture of both localized and ex-
tended types. Since prevailing wisdom suggests a direct con-
nection between the localization properties and the nature of
spectral fluctuations it makes sense to analyze these regions
separately so that the possibility of mixing different types of
spectral statistics can be avoided. For the functional form of
the cumulative density of states that is required for unfolding
of spectra we choose a quadratic function in region I since
the domain of fit is rather narrow. For region III the fitting
function has the same form as in region II but the best-fit
parameter values are substantially different. To achieve an
acceptable quality of fit we remove a further 1% of the spec-
trum from the bottom of region I and 5% from the top of
region III. Since there is hardly any difference between the
results for the LJ and Morse cases we present the data only
for the latter. Figures 5 and 6 display the data for the nearest-
neighbor spacing and 32(r), respectively. It can be seen that
the closeness of the nearest-neighbor spacing distribution for
regions I and III to the GOE prediction is essentially of the
same level as that for region II—except for somewhat higher
degree of scatter on account of poorer statistics. This implies
that departure from GOE statistics, if any, is weak among the
levels included even though some of them are relatively
more localized. Thus, for the spectrum as a whole, any de-
viation from GOE statistics must be confined to a rather
small fraction of the levels at the two extremes. Since these
excluded fringes contain only a small number of levels it is
not presently possible to perform a statistically meaningful
analysis of fluctuations independently for these regions.

Inspection of the data for 32(r), however, reveals a much
greater deviation from the GOE prediction compared to re-
gion II when larger values of r are considered. This may be
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FIG. 5. Probability density [p(s)] for normalized nearest-
neighbor spacing (s), obtained with Morse potential (N=2000), in
the regions I and III of the spectrum. Filled circles: Our data.
Crosses: Wigner’s surmise for GOE. Continuous line: Exact predic-
tion for the GOE. (a) Region I and (b) region III.

caused by a combination of two factors: (1) the quality of fit
for the unfolding function (the nearest-neighbor spacing dis-
tribution is not so sensitive to the quality of fit) and (2) the
genuine presence of some Poissonian statistics due to in-
creasing localization at the two ends where regions I and III
are located. However, it is difficult to estimate the relative
contributions of the two factors—although the situation re-
garding the nearest-neighbor spacing would suggest that it is
the quality of unfolding that is the dominant reason. A more
careful analysis, with bigger system sizes, is required to
settle these issues.

IV. BINARY MIXTURES

Results presented in Sec. III related to single-component
systems. Given the hints of universality that are apparent in
these data, it is obviously desirable to investigate whether
these results are applicable to more general situations. To-
ward this goal we have studied binary LJ mixtures with vari-
ous ratios of the numbers of the two types of particles, dif-
ferent system sizes, various rules for the construction of the
LJ interaction parameters between the two species and with
the masses of the two species being either the same or dif-
ferent. Here we present the data for only two cases. Denoting
the two types of atoms by A and B, we take the ratio of the
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FIG. 6. Variance of the number of levels in intervals of length r
plotted as a function of r for the regions I and III of the spectrum
obtained with Morse potential (N=2000). Continuous line: Predic-
tion for the GOE. Filled circles: Our data. (a) Region I and (b)
region III.

masses (mg/my) to be 1.5. Let us recall that the complete
expression of the LJ potential between two atoms of type P
and Q, separated by the distance r, is given by
depol(opp/r)'2=(op/r)®]. Using this notation we take
€gp! €44=0.5 and opp/ 044=0.88. Ny+Nz=2000 in both the
cases. Here N, and Ny denote the numbers of atoms of type
A and B, respectively. However, the values of N,:Np,
€rpl €ay, and o,/ 04, for the two cases are different. They
are taken to be 50:50, \egp/ €44, and [1+(opp/ o44)]/2, re-
spectively, for case I (Lorentz-Berthelot rule) and 80:20, 1.5,
and 0.8, respectively, for case IL.'4

Once again we find that the function D(\) provides an
excellent fit to the cumulative density of states in region
[I—with the maximum absolute value of the misfit function
not exceeding 1.5% of the range of fit for any of the local
minima generated. Thus we can proceed with the process of
unfolding as for the single-component systems. Figures 7-9
show the data for p(s), 2(r), and skewness (plus excess),
respectively for the two cases. The level of agreement with
the GOE prediction is as good as in the case of a single-
component LJ system of the same size for all aspects other
than 32(r)—where the disagreement for larger values of r is
somewhat higher.

V. UNIVERSALITY OF THE DENSITY OF STATES

Until now we have been concerned almost exclusively
with the fluctuational aspects of the spectrum in the language
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FIG. 7. Probability density [p(s)] of normalized nearest-
neighbor spacing (s) for the binary LJ mixture (N=2000) in the
region II of the spectrum. Filled circles: Our data. Crosses: Wign-
er’s surmise for GOE. Continuous line: Exact prediction for the
GOE. (a) Case I and (b) case II.

of random matrix theories. We recall that the highly accurate
unfolding of the spectrum, which is an essential first step of
this kind of description, was made possible by the existence
of a simple analytical formula D(\) that fitted the cumulative
density of states very closely, but not exactly, over the region
IT of the vibrational spectra for all the amorphous local
minima associated with the different types of potentials and
the system sizes that we have studied. It is important to note
that the function D(\) contains only a single scale (1/c¢) for
N. This implies that all the DOS curves can be mapped into a
single master curve to a good approximation in region II
through a choice of frequency scale decided by the best-fit
value of c. This demonstrates the existence of at least quasi-
universality in the form of the density of states. In this sec-
tion we investigate the issue of whether rigorous universality
with respect to potential exists—at least in some well-
specified situations. The first question we address here is the
following. We are comparing the vibrational spectra of dif-
ferent potentials. For a given system size each potential has
its own set of amorphous local minima in a broad and con-
tinuous range of energies and each such local minimum has
an associated vibrational spectrum. Out of this range of pos-
sibilities for each potential which spectra should be consid-
ered while comparing different potentials? Establishing the
existence of true universality with respect to potentials, if
there is any, will require making the right choice of local
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plotted as a function of r for the binary LJ mixture (N=2000) in the
region II of the spectrum. Continuous line: Prediction for the GOE.
Filled circles: Our data. (a) Case I and (b) case II.

minima also. We are not able to address this issue conclu-
sively at this stage but we formulate a conjecture that is
based on general theoretical considerations and plausibility.
For the local minima that do satisfy the conditions of univer-
sality stated in this conjecture one may ask, is the universal-
ity applicable to the entire spectrum or only to a large part of
it including region II? We analyze our existing data bank of
vibrational spectra and present a likely scenario. In contrast
to the previous sections here the density of states, unless
otherwise stated, will refer to the vibrational frequency w
(A=w?) since that is the quantity directly measured in labo-
ratory experiments. We denote the DOS for w by G(w).
Our discussion here will assume that we are dealing with
local minima corresponding to compact and connected clus-
ters of a given shape (let us say spherical)—although in the
large-size limit shape should be irrelevant. The existence of
universality of the kind we are going to discuss here requires
rigorous validity of the following assumptions which are
consistent with our numerical data. (i) At least for system
sizes that are large enough, the G(w) function depends only
on the energy and is not influenced by other details of the
minima. (ii) The dependence of G(w) on energy is smooth.
Let us now order the elements of the set of all local minima
according to energy. At the top of this energy-ordered family
lie the completely amorphous structures which span a range
of energies that is bounded above by, let us say, E,,,.. We
know that the minima for which we have obtained the DOS
curves satisfying approximate universality constitute a subset
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for GOE. (a) Case I and (b) case 1I.

(within a narrow range of energies) of this family. However,
we do not know how to locate E,,,, systematically and thus
the location of the band of energies for our local minima
with respect to E,,,, is uncertain. Our conjecture now is the
following: As the size of the cluster increases towards the
bulk limit, the DOS function corresponding to the local
minima with the maximum possible energy (E,,,,) will ap-
proach a shape that is universal in the sense of being inde-
pendent of potential. Should several universality classes ex-
ist, the asymptotic shape is decided by the class that the
potential in question belongs to. Formulation of this conjec-
ture is based on excluding the rather unnatural possibility
that the evolution of the vibrational spectrum with the energy
of the local minimum should saturate somewhere in the
middle of the band representing completely amorphous
states. Also, the lowest-lying minima (which lie well below
this band of disordered states) correspond to quasicrystalline
geometries with vibrational spectra that will clearly be po-
tential specific. Thus, on grounds of continuity, we eliminate
all local minima other than those at E,,,, as candidates for
true universality. However, for the same reason of continuity,
if the energy of a local minimum is close to E,,,, the associ-
ated vibrational spectrum will display a correspondingly
close-to-universal shape. We presume this to be the explana-
tion for the observation of near-universality in our numerical
data. Finally, the energy per particle, the scale of frequency,
and the normalized DOS for the highest-energy minima can
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reasonably be expected to have a well-defined bulk limit that
is independent of shape.

We now address the question of whether shape universal-
ity is limited only to the large central part of the spectrum or
is applicable to the whole of it. We presently have no theo-
retical tools to tackle this issue. Even a computational ap-
proach is beset by the difficulty that we are first of all re-
quired to identify the local minima with maximum possible
energy—according to the conjecture stated above. Since we
do not have access to a systematic method of doing this for
clusters as large as the ones we are dealing with, we attempt
to provide an approximate answer by assuming that the local
minima that we have generated are not too far below E,,,,, in
energy. Stated in another way, we assume that the vibrational
spectra that we have are close enough to that at E,,, to
ensure that our conclusions (which are qualitative anyway)
based on the analysis of these somewhat lower-lying minima
will be valid even at E,,,,, the point of true universality ac-
cording to our conjecture. To proceed with the analysis we
assume, to begin with, that the universality of shape applies
to the whole of the spectrum and then check if our data are
consistent with this assumption. To compute the universal
shape of the vibrational spectra a proper choice of scale is
needed for the individual frequencies in a spectrum. For a
given spectrum a choice that would be consistent with our
initial assumption is the average value of w in that spectrum.
Thus, we first rescale each frequency by this average. Next
the DOS function for the rescaled w is normalized so that the
area under the DOS curve is unity. In Fig. 10(a) we display
such normalized DOS functions for six different cases. The
system size N is kept comparable (400 or 500) to minimize
any possible discrepancy on this account. The six cases
shown are (with the size of the cluster in parentheses) (i)
single-component LJ (500), (ii) Morse (500), (iii) Sutton-
Chen (400), (iv) Gupta for nickel (400), (v) Gupta for vana-
dium (400), and (vi) binary LJ mixture (500). For the binary
LJ mixture the system parameters, other than size, are as in
case I of Sec. I'V. Before rescaling, the maximum values of w
for the six cases are around 16, 33, 150, 18, 5, and 32, re-
spectively. Figure 10(b) shows similar data with N=2000 for
(i) LJ, (ii) Morse, (iii) binary LJ, case I, and (iv) binary LJ,
case II. Given the wide range of intrinsic frequency scales
for the different potentials and mixtures, the conformity of
Figs. 10(a) and 10(b) to the possibility of universality over
the full spectrum would be considered to be strong in some
instances. But considering that D(\) describes the cumula-
tive DOS to within 1% in region II, which includes 70% of
the whole spectrum, this apparent overlap is somewhat mis-
leading. To show this we plot in Figs. 11(a) and 11(b) the
data of Figs. 10(a) and 10(b), respectively, but with the scale
of frequency taken to be y1/c—the frequency scale sug-
gested by the functional form of D(\). Notice that the quality
of overlap of the normalized DOS curves in region II (and
the much smaller region I) is now much better. This suggests
that universality may exist only in region II (and perhaps
region I) and that the degradation in the quality of overlap all
through the spectra in Figs. 10(a) and 10(b) is caused by the
forced inclusion of region III where there is a breakdown of
universality. Please note that in region III eigenmodes get
progressively more localized as frequency increases. Density
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FIG. 10. Normalized density of states [n(v)] for rescaled fre-
quency (v) with rescaling done by the average frequency of the
corresponding spectrum. Vertical bars denote approximately the
limits of region II. (a) Filled circles: LJ (500). Open circles: Morse
(500). Open triangles: Sutton-Chen (400). Stars: Gupta for nickel
(400). Filled squares: Gupta for vanadium (400). Open squares:
Binary LJ (500). (b) Filled circles: LJ (2000). Open squares: Morse
(2000). Crosses: LJ mixture, Case I (2000). Open inverted triangles:
LJ mixture, case II (2000).

of states for fully localized modes at the highest frequencies
may reasonably be expected to be potential specific. Thus a
plausible explanation of the absence of universality in the
DOS function in region III might be that a crossover takes
place across this region from the universality of region II to
the potential specificity of the upper end of region III. How-
ever, while examining the validity of this explanation, the
following point must be kept in mind: The spectral fluctua-
tions in region III, excluding only the top 5% of the levels,
are clearly of the GOE type for the largest system size we
have studied and does not show the presence of any Poisso-
nian contribution. It is not clear whether this observation and
others connected with the issue of localization will remain
unchanged as the system size keeps increasing toward the
bulk limit. In particular the possibility that region III, the
domain of violation of universality, will eventually start
shrinking with increasing system size cannot be ruled out. In
some cases exactly the opposite may also happen. To under-
stand this possibility it has to be recognized that the presence
of a surface in a cluster can be thought of as a topological
disorder’ as discussed in the Introduction and the smaller the
cluster size the more severe is the effect. So when the cluster
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FIG. 11. Normalized density of states [n(v)] for rescaled fre-
quency (v) with rescaling done by the best-fit frequency parameter
of the region II of the corresponding spectrum. Vertical bars denote
approximately the limits of region II. (a) Filled circles: LI (500).
Open circles: Morse (500). Open triangles: Sutton-Chen (400).
Stars: Gupta for nickel (400). Filled squares: Gupta for vanadium
(400). Open squares: Binary LJ (500). (b) Filled circles: LJ (2000).
Open squares: Morse (2000). Crosses: LJ mixture, case 1 (2000).
Open inverted triangles: LJ mixture, case II (2000).

size increases, leading to a smaller fraction of the atoms
being present at the surface, the smearing effect of the topo-
logical disorder will also be reduced and the single broad
peak might split into more than one peak. We believe this to
be the explanation for the presence of additional peaks which
are small but still clearly visible in the Sutton-Chen spectrum
for nickel and the Gupta spectrum for vanadium in Figs.
10(a) and 11(a). This may also provide clues to the limits of
the universality class.

Recently, the suggestion of universality in the density of
states for the vibrational spectra of highly disordered states®
has also been made on the basis of data from laboratory
experiments with a variety of glasses.’ These experiments
involve bulk systems and the constituents are more complex
than in our case where position is the only degree of free-
dom. Thus there are additional complex spectral features
present. However, data of the type presented in Fig. 3(b) and
3(c) of Ref. 34, when interpreted in the way it is done in that
work, support the same concept of universality that we dis-
cuss in this paper. The functional form of the universal DOS
function in the trans-boson-peak region put forward in Ref.
34 is different from that implied by our D(\) function. How-
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TABLE II. Ratio of moments for various potentials, compositions, and system sizes.

Potential Number of particles N N2/\2 N33 NN
Sutton-Chen 100 5644.5 1.6676 3.4641 8.1032
200 5657.8 1.6513 3.3821 7.7913
300 5677.3 1.6368 3.3139 7.5395
400 5693.4 1.6286 3.2775 7.4116
Gupta (nickel) 100 56.9 1.8360 4.5041 13.0656
200 61.7 1.8087 4.3018 11.9598
400 66.3 1.7621 4.0328 10.7267
Gupta (vanadium) 400 7.9 1.7034 3.6336 8.7015
Morse 200 261.5 1.7452 3.9473 10.3628
500 280.4 1.7063 3.7216 9.3429
1000 291.6 1.6825 3.5934 8.7990
2000 300.8 1.6634 3.4933 8.3869
Lennard-Jones 200 62.8 1.7968 4.2480 11.7732
(monatomic) 500 69.0 1.7621 4.0360 10.7592
1000 72.7 1.7375 3.8950 10.1187
2000 75.8 1.7148 3.7687 9.5627
Lennard-Jones 500 195.8 1.9088 4.9043 14.9385
(binary, case I) 1000 206.2 1.8798 4.7182 13.9731
2000 214.7 1.8558 4.5728 13.2627
Lennard-Jones 1000 376.6 1.7662 4.0473 10.7777
(binary, case II) 2000 364.2 1.7684 4.0430 10.7030

ever, it does have only one scale of frequency which is a
necessary condition of shape universality. We have verified
that this alternative functional form also fits our numerical
data quite closely. This should not be considered particularly
surprising since the domain of fit is limited. The procedure
used to test the suitability of the alternate functional form for
our data is the following. In Ref. 34 the DOS function for w
is G(w)=aw? exp(-Bw). For the cumulative density of states
of w this implies a functional form I(w)=const—(2a/B)[1
+Bw+(1/2)(Bw)*lexp(—Bw). Now we repeat the analysis
described in Sec. IT with \ and D(\) replaced by w and I(w),
respectively. We find that the misfit function now has com-
parable or somewhat smaller amplitude than what is obtained
with the combination of N and D(\). This change, however,
has no discernible quantitative effect on the analysis of fluc-
tuations since any difference in the quality of unfolding due
to the difference of functional form is compensated by the
subsequent process of correction with the quadratic fit to the
residue.

Finally, the universality of the DOS function can also be
tested through a study of the various moments of frequency
since the discrete but infinite collection of all moments car-
ries the same information as the single but continuous DOS
function. A random matrix type theory of universality is
more likely to concentrate on those moments that can be
defined for both A and w. However, since N plays a more
immediate role for theoretical calculations we will use only
this variable here. Universality of the DOS in the present
context implies the existence of a single scale for N in the
DOS function. Defining R(n)=(\")/{\)" for every positive

integral value of n, it follows that R(n) should be universal.
In Table IT we present the data on this ratio for n=2, 3, and
4 for the various systems we have studied. The first point to
be noted here is the wide variation of the scale of frequency
(represented by average frequency in the table) for the vari-
ous systems. It extends over almost three decades. Second,
as the order of the moment increases the higher-frequency
domain becomes progressively more dominant in determin-
ing the ratio. Thus any deviation from universality in the
numerical data for the high-frequency region will be re-
flected more and more in the moment ratios for higher order.
The utility of the data presented in Table II should be evalu-
ated with these factors in mind. We find, almost without
exception, that R(n) decreases gradually as the system size
increases while keeping the value of n, the potential, and the
composition fixed. However, convergence is weak. Compari-
son of the data for different types of potentials also shows
that the pattern of convergence is not conclusive but it is also
not inconsistent with the conjecture of universality at this
level. Bigger system sizes are clearly required to clarify this
issue.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented numerical results on the
universal nature of certain aspects of the vibrational spectra
of amorphous clusters. They can be classified into three main
categories: (i) universality of statistical fluctuations, (ii) uni-
versality of the density of states over the large central region
of the spectrum, and (iii) analysis of the domain of
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universality—both in the space of all local minima and
within each spectrum. For the various potentials that we have
used the quality of the numerical evidence regarding the first
two types of results is quite convincing for both single-
component systems and binary mixtures—as long as the ex-
plicitly stated limits are understood. However, since it is not
possible to generalize the conclusions of any such numerical
work, it will be desirable to derive these results analytically.
This will help establish the limits of validity and perhaps
classification into various universality classes. It may also
shed light on the validity of the rather strong conjecture put
forward in Sec. V. A further incentive toward this goal is
provided by the experimental evidence of universality in the
vibrational spectra of collective modes of several glassy ma-
terials that have been studied recently.*

Some amorphous systems are clearly beyond the scope of
the present study. For example, materials in which bonding is
at least partially directional will require the inclusion of de-
grees of freedom beyond just the positions of the atoms.
There are also systems (e.g., gold) in which the smallest-
sized clusters have amorphous states as the lowest-energy
structures—as opposed to our systems where the amorphous
states correspond to the highest-energy local minima. How-
ever, even for these materials, when the cluster size is suffi-
ciently large, the normal relationship between order and en-
ergy is restored.®

One important aspect of our calculations is that the amor-
phous systems that we study have geometrical disorder that
is generated naturally from the interactions and they do not
involve any kind of modeling. Combined with the property
of universality, this feature leads us to expect that our calcu-
lations will correspond directly with the observations in
laboratory experiments. Thus analysis of the vibrational
spectra obtained experimentally for various glassy materials
can provide very important complementary strands in the
examination of the theme of universality in the density of
states.

As far as statistical fluctuations are concerned the numeri-
cal evidence in favor of the GOE type is exceptionally
strong. However, it cannot be claimed that we have a satis-
factory understanding of why it is so. It is true that the ma-
trices that are diagonalized to get the spectra have some of
the properties that are included in the definition of GOE. But
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it is not clear at this time why the correlations that are obvi-
ously present in the Hessian matrices turn out to be of no
consequence. Clarification of this issue requires further
study.

Verification of the presence of GOE statistics beyond
model potentials will require a sufficiently precise and com-
plete cataloging of at least parts of a spectrum. For labora-
tory experiments on clusters this goal poses a stiff challenge
but some progress in this direction has been reported
recently.?® It is encouraging to note that the nearest-neighbor
spacing distribution as well as the skewness and excess pa-
rameters are very close to the exact GOE predictions for a
cluster size as small as 100. This brings the job of verifica-
tion much closer to the realm of possibilities—especially
with regard to ab initio calculations. For larger systems, the
issue of resolution will obviously make impractical any at-
tempt to obtain even a part of the vibrational spectrum. An
alternative could be to look for the influence of the statistics
on some thermodynamic properties. Unfortunately, at this
time, we are not aware of any such effect.

In the absence of a convincing theoretical argument, evi-
dence in favor of or against our conjecture regarding the
domain of universality for the density-of-states function in
the space of all amorphous local minima can still be pro-
duced, in principle, numerically for specific choices of po-
tential. But that will require a methodological improvement
in the way local minima are generated. It is necessary to have
access to a systematic and practically feasible method that
can generate the highest-energy minima for large clusters. In
particular any claim of having generated such states must be
accompanied by a proof that local minima with higher ener-
gies do not exist. The data bank generated by the present
method suffers from uncertainty in this respect. The mapping
of DOS curves with a large range of intrinsic frequency
scales into an almost single curve in a broad range is strongly
suggestive. But the discrepancies that still exist warrant fur-
ther investigation—given the generality and wide physical
ramifications of the theme of universality. In particular, labo-
ratory experiments and ab initio calculations on a larger va-
riety of systems would be helpful.
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