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Many-particle electron states in semiconductor quantum dots with carrier-mediated ferromagnetism are
studied theoretically within the self-consistent Boltzmann equation formalism. Depending on the conditions, a
quantum dot may contain there phases: partially spin-polarized ferromagnetic, fully spin-polarized ferromag-
netic, and paramagnetic phases. The physical properties of many-body ferromagnetic confined systems come
from the competing carrier-mediated ferromagnetic and Coulomb interactions. The magnetic phases in gated
quantum dots with holes can be controlled by the voltage or via optical methods.
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I. INTRODUCTION

Diluted magnetic semiconductors1 represent an important
class of materials and structures where ferromagnetism can
be tuned by voltage.2 This ability comes from the carrier-
mediated character of the ferromagnetic interaction.3–5 The
ferromagnetic ordered state in these systems appears due to
mobile carriers interacting with stationary spins of magnetic
impurities. To date, Curie temperatures as high as 40 K have
been observed in a technologically important class of the
Mn-doped III-V semiconductor structures.6–8 When the mag-
netic semiconductors become combined with the conven-
tional field-effect layered structures, the number of mobile
carriers and the ferromagnetic interaction become tunable by
the voltage.9 This ability to externally control the properties
of magnetic crystals with means other than the external mag-
netic field may have important device applications. A further
step from magnetic semiconductor layers would be zero-
dimensional systems, quantum dots �QDs�. Magnetic quan-
tum dots can be viewed as nanoscale memory elements
where information is stored in the form of magnetic polar-
ization. Such a system may have important advantages com-
pared to the conventional metal spin-valve memories: �1�
small sizes and relatively small number of carriers and �2�
voltage control of the number of electrons which was already
demonstrated in many experiments for nonmagnetic
QDs.10,11 Therefore it is important to develop the understand-
ing of magnetic QDs with interacting carriers.

Here we develop a theory of magnetic QDs with many
carriers where Coulomb, ferromagnetic, and single-particle
energies contribute to the formation of the equilibrium state.
Using the quasiclassical description, we show that a QD may
be split into three phases with different physical properties.
The geometrical sizes of these phases are determined by the
Coulomb, ferromagnetic, and single-particle contributions to
the chemical potential of a QD. For calculations, we employ
the mean-field theory and the Boltzmann kinetic equation.
This approach becomes reduced to the Thomas-Fermi model
at low temperatures. We should note that our approach ig-
nores the discrete structure of single-particle spectrum of QD
and is valid when electrons occupy at least several quantum
levels. At the same time, this approach has an important
advantage: it allows us to describe the Coulomb effects in

relatively large QDs where, as it is shown below, the Cou-
lomb interaction is very strong and significantly exceeds the
ferromagnetic interaction and the kinetic energy of carriers.
The hole-mediated ferromagnetism in quasi-two-dimensional
�2D� systems is strongly anisotropic due to the heavy hole-
light hole splitting in the valence band. Therefore, the mag-
netic polarization occurs predominantly in the growth direc-
tion. Then, two magnetic states of a QD with spin
polarizations “up” and “down” can represent a single bit.

Presently QDs and other nanostructures doped with mag-
netic �Mn� impurities attract a lot of attention. Among other
studies, several recent theoretical papers investigate QDs and
their electron and excitonic states in the presence of a single
Mn ion.12–15 In particular, it was suggested in Ref. 14 that a
QD with a single Mn ion can act as a multiqubit which can
be controlled optically. Another direction of research de-
scribes the magnetic states and polarons in QDs with many
Mn ions and one or several carriers.16–21 Among the above
publications, the paper21 demonstrates that the Coulomb-
interaction effects in few-electron QDs can determine a col-
lective magnetic state of holes and Mn spins. Ferromag-
netism and spin separation in digital layered structures and
quantum wells were also studied in several experimental6,22

and theoretical publications.5,23,24

II. MODEL

As a model system, we are going to use a QD “made out
of” a 2D quantum well. Such a zero-dimensional system can
be fabricated by etching and lithographical methods. Within
the lithographical method, a QD can be defined, for example,
by using the top metal gates �Fig. 1�a��. The number of car-
riers in such a QD is a voltage tunable parameter.

To describe a state of many carriers confined in a QD,
we start from the local properties of the coupled hole-Mn
system in a 2D quantum well. In our system, a mobile hole
and Mn spins experience an exchange interaction

Ûexc=−� /3�i�Ŝz,i ĵz���rh−Ri�, where � is the exchange inter-

action constant, and Ŝz and ĵz are the z components of the
spin operators for a Mn spin and hole, respectively; rh and Ri
are the coordinates of hole and i impurity, respectively. The
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above operator describes the interaction between Mn spins
and heavy holes and assumes a sufficiently large energy
separation between the heavy-hole and light-hole quantized
states in the valence band. The corresponding effective spin-
dependent potential of a single hole has a form

Uspin�jz� =
jz

�jz�
Uspin

0 , �1�

where

Uspin
0 �Nspin� = −

�

3
xeff N0

�� dz�0
2�z�SMnBSMn

�− �

3

3

2
Nspin�0

2�z�	 .

�2�

Here Nspin=N+3/2−N−3/2 is the net spin 2D density, Njz
are the

2D densities of the spin components, BSMn
is the Brillouin

function, N0 is the number of cations per unit cell, and SMn
=5/2. N2D=N+3/2+N−3/2 is the total 2D density in a quantum
well. For the ground-state wave function in a quantum well,
we will use �0�z�=
2/L sin �z /L, where L is the quantum
well width. The chemical potential for a 2D gas depends on
Uspin

0 and N2D:

�2D�T,N2D,Uspin� = kBT ln�− cosh�Uspin
0

kBT
�

+
cosh �Uspin
0

kBT
�2

+ exp� 2Ef

kBT
� − 1	 ,

�3�

where Ef�N2D�=�N2D�2 /mhh. Now we calculate the spin po-
larization

Nspin =
kBTD2D

2
ln�1 + e�2D−Uspin

0 �Nspin�/kBT

1 + e�2D+Uspin
0 �Nspin�/kBT	 , �4�

where D2D=mhh / ���2�. The Zener ferromagnetic phase tran-
sition occurs when Eq. �4� has a nonzero solution. Figure

1�b� shows the data for spin density Nspin for a
GaAs/AlGaAs quantum well with the following parameters:
mhh=0.38 m0, L=70 Å, N0=23 nm−3, �N0=−2.2 eV, xeff
=0.01. The above exchange parameter � is comparable to
that used in other publications on magnetic semiconductors
�see, e.g., Ref. 23�. Since the exchange interaction is antifer-
romagnetic ��	0�, the case Nspin
0 corresponds to the
negative average polarization of Mn ions, BSMn

	0. Curie
temperature can be analytically calculated in the high-density
limit: kBTC=S�S+1��2xeff N0mhh / �8��2� �kBTc�Ntot /D2D�.

The in-plane potential in a lateral QD near its center can
be approximated by the parabolic function

e�0�r� = U0 +
mhh2

2
r2, �5�

where e
0 is the electron charge and  is a characteristic
frequency of a confining potential. The potential U0 deter-
mines a depth of a lateral potential well. In a QD defined by
metal gates �Fig. 1�a��, the parameters U0 and  are func-
tions of the gate voltages. In equilibrium, the carrier distri-
bution function, which satisfies the Boltzmann equation, has
a form

f�p,r, jz� =
1

e�p2/2mhh+e��r�+Uspin�jz,r�−��/kBT + 1
, �6�

where r= �x ,y� is the lateral position vector and p is the
in-plane momentum. The self-consistent scalar potential of a
hole is composed of two terms

e��r� = e�0�r� + UCoul�r� , �7�

where UCoul�r� is the electrostatic potential induced by a
nonuniform spatial distribution of carriers, n2D�r�=n+3/2�r�
+n−3/2�r�. In addition, the distribution function �6� depends
on the spin of hole through the exchange interaction which is
a function of the local spin density nspin�r�=n+3/2−n−3/2 �see
Eqs. �1� and �2��. At the same time, the function nspin�r� itself
is determined by the total local density of holes n2D�r� and is
given by the numerical solution of Eq. �4� �see the data in
Fig. 1�b��. Therefore, it is convenient to regard Uspin as a
function of n2D, i.e., Uspin�jz ,r�=Uspin�jz ,nspin�n2D��
=Uspin�jz ,n2D�r��. By integrating the function �6� over mo-
menta we come to two nonlocal nonlinear equations for the
densities n±3/2�r�. Then, these equations can be solved for the
chemical potential and rewritten in the form resembling the
central equation of the Thomas-Fermi model:

� = e�0�r� + UCoul�r� + �jz/�jz��Uspin
0 �ntot�r��

+ kBT ln�e2��2njz
/mhhkBT − 1�, jz = ± 3/2, �8�

where jz= ±3/2 and UCoul�r�=e2d2r��n2D�r� /�eff��r�
−r���r�−r��, where ��eff�r�−r�� is an effective nonlocal di-
electric constant of a system with metal gates.25 We should
also note that UCoul�r� was written as a 2D integral and this it
valid if the lateral size of a QD is greater than the quantum-
well width L.

FIG. 1. �Color online� �a� Model of a Mn-doped lithographically
defined QD based on a semiconductor quantum well. The number
of particles is controlled be the voltage applied between the top and
back gates. The QD confinement for holes is given by a voltage
difference �V=V1−V2	0. �b� Calculated 2D spin density as func-
tion of the total 2D density of holes at various temperatures; mhh

=0.38m0, L=70 Å, N0=23 nm−3, �N0=−2.2 eV, xeff=0.01. Curie
temperature for the above parameters is about 6.4 K.
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In the system with the top gates closely located to a quan-
tum well, the 2D integral in the equation for UCoul�r� is re-
duced to a linear function of n2D

25 and is given by a local
flat-capacitor formula

UCoul�r� =
4�e2d1n2D�r�

�s
, �9�

where d1 is the distance between the QD plane and the top
gate; the distance to the back metal contact is assumed to be
larger, i.e., d2�d1; �s is a dielectric constant of the semicon-
ductor ��s=12.5�. The approximation �9� has been success-
fully used in the past for description of several experiments
on optical and electronic properties of modulated lateral
structures.26,27 By using the local approximation for the self-
consistent potential �9�, we reduce Eq. �8� to coupled nonlin-
ear local equations which should be solved numerically. The
total number of holes in a QD is determined by the chemical
potential � and the lateral-potential depth U0. Electrostatics
of the structure under study �Fig. 1�a�� is similar to that stud-
ied in Refs. 26–28 and we can use here the results of the
above publications. If the barrier between the QD and back
contact permits efficient tunneling, the chemical potential in
the QD coincides with the potential of the back contact �i.e.,
�=0�. Simultaneously, the front barrier �usually made of Al-
GaAs� blocks tunneling between the QD and the top gate.
Also, if d1�d2, the potential U0 becomes close to eV1.

III. MAGNETIC PHASES IN QUANTUM DOTS

Figures 2–4 show numerical calculations for the local
spin densities in a circular QD with d1=300 Å, �=2 meV,
and �=0; for the QD depth, we take U0=−0.08, −1, and
−2 eV. A QD with the minimum free energy is circularly
symmetric and can be split into different phases. The total
number of holes in a QD is given by an integral Ntot,QD
=n2D�r�d2r. The corresponding Ntot,QD for the above values

of U0 are estimated as 23, 3550, and 14 200. In QDs with
relatively small Ntot,QD �Fig. 2�, the system is split into fer-
romagnetic �F� and paramagnetic �P� phases. In Fig. 2, the
carriers with spin jz= +3/2 are pushed away from the center
of QD, the total spin of holes is negative, and the Mn sub-
system has a positive magnetization. This situation corre-
sponds to the anti-ferromagnetic hole-Mn coupling ��	0�.
With increasing the total number of carriers �Fig. 3�, one can
see the formation of another stripe within the ferromagnetic
phase. This stripe is located between the center region of a
QD and the paramagnetic phase and the holes in this stripe
are almost fully spin-polarized. With further increasing
Ntot,QD �Fig. 4� and for relatively low temperatures, the for-
mation of the ferromagnetic stripe �F2� with fully-polarized
holes becomes evident. Simultaneously, the paramagnetic

FIG. 2. �Color online� Calculated hole density as a function of
the distance from the center of QD for a relatively small number of
holes. The QD is divided into ferromagnetic �F� and paramagnetic
phases �P�. The dashed line represents the total 2D density. Inset:
sketch of the QD structure.

FIG. 3. �Color online� Calculated hole density as a function of
the distance from the center of QD for a larger number of holes. The
QD is divided into ferromagnetic �F1 and F2� and paramagnetic
regions �P�. Inset: schematics of the QD structure.

FIG. 4. �Color online� Calculated hole density as a function of
the distance from the center of QD for a large number of holes at
low temperature. The QD is divided into ferromagnetic �F1 and F2�
and paramagnetic phases �P�. Inset: schematics of the QD structure.
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stripe becomes very narrow. Such a magnetic stricture of a
QD can be understood by looking at the data in Fig. 1�b�. At
low temperatures, the function Nspin�N2D� becomes very
close to the linear function N2D in an extended interval of
N2D. For example, at T=4 K, Nspin�N2D��N2D for 0.2
�1012	N2D	3�1012. In the above interval of N2D at T
=4 K, the hole subsystem is almost completely spin polar-
ized.

It is interesting to estimate different types of energies con-
tributing to the formation of stripes. It is easy to see that the
Coulomb energy in Eqs. �8� dominates the ferromagnetic and
single-particle �kinetic� energies. The Coulomb energy
UCoul=4�e2dN2D/�s�90 meV for N2D=2�1011 cm−2 while
the spin energy �Uspin

0 ��2 meV for Nspin=2�1011 cm−2 at
T=4 K. The single-particle kinetic energy under the similar
conditions Ekin�n2D/D2D�1.2 meV. For QDs with more
carriers and higher n2D, the above energies become increased
but the condition UCoul� �Uspin

0 ��Ekin remains.
We can also obtain analytic solutions of Eqs. �8� under

certain conditions. If both spin subsystems of holes �jz

= ±3/2� form a degenerate Fermi gas, the last term in Eqs.
�8� becomes proportional to the Fermi energy 2njz

/D2D.
Then, we can sum up the equations for jz= ±3/2. The result-
ing equation does not contain the spin energy Uspin

0 and can
be solved analytically:

n2D�r� =
1

4�e2d/�s + ��2/mhh
��U0� −

mhh2

2
r2	 . �10�

This formula can be applied, for example, to large QDs in
the spatial region of the ferromagnetic phase F1, 0	r
	RF1, where RF1 is the radius of the F1 phase �see Fig. 4�.
For this phase, spin densities can also be found analytically,
by using the condition nspin=n−3/2−n+3/2=−Nspin,saturation,
where Nspin,saturation is a positive constant equal to Nspin at
high N2D in Fig. 1�b�; for T=4 K, Nspin,saturation=3.26
�1012 cm−2 �see Fig. 1�b��. The formula �10� also describes
the density distribution in the paramagnetic phase in the re-
gions where the hole gas is degenerate �Ef =n2D/D2D


kBT�. For many other regimes, the spin densities should be
found numerically. Since the Coulomb energy dominates the
magnetic and kinetic terms, the total radius of a QD can be
well estimated from Eq. �10� by putting n2D�RQD�=0. The
resulting estimate RQD�
2�U0� / �mhh2� is valid at low tem-
peratures.

Experimentally, the stripe structure of a QD can be ob-
served, for example, by spatially resolved optical
spectroscopy.29 In optical spectroscopy, a spatial resolution
can be as small as 0.1 �m.29 Simultaneously optical emis-
sion is sensitive to the spin-polarization of carriers. In an
optical experiment, a ferromagnetic QD would be excited
with weak nonpolarized illumination; the resulting local pho-
toluminescence will be circularly polarized and reveal the
formation of stripes with different magnetic structures.

Optical methods can also be used to write a magnetic state
of QD �bit: “up”-“down”�. This may be done with circularly
polarized light. Polarized optical pumping can bring a QD
into a required collective magnetic state with spins “up” or
“down.” In order to prepare a quantum dot in a required

magnetic state, one can also use the magnetic field induced
by an electric current driven through a metallic wire on the
surface of a sample.

Another method to observe the magnetic phases in nano-
structures is the electrical-capacitance spectroscopy27,28

which was successfully applied to observe, for example,
compressible and incompressible stripes in electron quantum
wires in the regime of the quantum Hall effect.27,28 The ca-
pacitance spectroscopy has been also applied to lateral and
self-assembled quantum dots �see, e.g., Ref. 11�. For the
nanostructures with relatively large sizes considered in this
paper, the signature of the ferromagnetic phase in the capaci-
tance spectra is expected to be relatively weak because of the
inequality UCoul� �Uspin

0 �. However, the formation of the fer-
romagnetic phase can be recognized from a critical behavior
of the capacitance spectrum as a function of temperature and
voltage.

IV. CAPACITANCE SPECTROSCOPY AND MAGNETIC
PHASES IN QUANTUM WIRES

As an example, we consider here quantum wires in a
structure with the interdigitated metal gate �see inset in Fig.
5�. In such a system, alternating voltages are applied to the
metal strips located on the surface of a quantum well. Similar
structures were studied experimentally in Ref. 27. We can
calculate the capacitance of a wire as a derivative C�V1�
=e�dNtot,QW/dV1�l�e2�dNtot,QW/dU0�l, where Ntot,QW is the
linear density of carriers in a quantum wire and l is the
length of a wire in the in-plane y direction. In the local
approximation for the Coulomb potential �Eq. �9��, the prob-
lems of quantum dot and wire become similar. Figure 5
shows the capacitance of a quantum wire as a function of
voltage for two temperatures, just below and above the Curie
temperature TC=6.4 K. One can see in Fig. 5 that at low
temperatures �T	TC� the capacitance becomes increased
starting from a critical voltage U0 /e�0.02 V. This voltage

FIG. 5. �Color online� Calculated capacitance of a nanowire in
the system with interdigitated metal gate �see inset on the left-hand
side� for two temperatures 4 and 7 K. The inset on the right-hand
side shows a top view of a nanowire with two phases.
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corresponds to the minimum 2D density ��5�1010 cm−2 at
T=4 K; see Fig. 1�b�� which is necessary to obtain the fer-
romagnetic phase stripe in the center of nanowire. Starting
from this voltage, the central region of a nanowire contains a
ferromagnetic stripe. The capacitance of a partially ferro-
magnetic wire becomes increased since the spin interaction
makes a lateral potential well a little deeper and a wire can
accommodate more carriers at a given voltage. If tempera-
ture increases just by 3 K, the ferromagnetic stripe vanishes
and capacitance becomes reduced. This peculiar temperature
behavior for U0
0.02 eV can be taken as an evidence for
the ferromagnetic phase.

V. CONCLUSIONS

In this paper, we studied quantum dots and wires with
many interacting carriers within the quasiclassical approach.

The strongest interaction in quantum dots with a relatively
weak confinement and a large number of carriers comes from
the Coulomb forces. However, a weaker ferromagnetic inter-
action determines the spin structure of a large quantum dot.
Depending on the parameters, a quantum dot can be split into
three phases.
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