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Spin dependent interfacial resistance �RI� is crucial for achieving high spin injection efficiency from a
ferromagnetic �FM� metal into a semiconductor �SC�. We present a self-consistent model of spin transport
across interfacial resistances at the FM–SC junctions of a FM–SC–FM trilayer structure. The SC layer consists
of a highly doped n++ AlGaAsuGaAs 2DEG while the interfacial resistance at the FM–SC junction is
modeled as delta potential ��� barriers. The self-consistent scheme consists of a ballistic model of spin-
dependent transmission across the � barriers to evaluate RI, and a drift-diffusion model to obtain the spin–split
�� in the electrochemical potentials. The RI values of the two junctions were found to be asymmetric despite
the symmetry of the trilayer structure. This asymmetry arises from the finite biasing voltage which causes a
difference in electrochemical potentials and spin accumulation at the two interfaces. The effect of RI on the
spin-injection efficiency and magnetoresistance is studied over a range of �-barrier heights. Significant spin-
injection efficiency �50% � requires high �-barrier heights approaching 1 eV. Even higher barrier heights are
required to obtain equivalent magnetoresistive effect.
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I. INTRODUCTION

Semiconductor �SC�-based spintronics1 which exploits the
spin as well as the charge property of carriers, is a fast grow-
ing field of research. The long spin coherence of electrons in
SC,2 coupled with the ability to control spin orientation by
electrical means3 has opened the possibility of realizing de-
vices such as the Datta–Das spin field effect transistor4 �spin-
FET�. A chief prerequisite of such devices is the ability to
inject spin-polarized current into the semiconductor material,
which are usually nonmagnetic. Early experimental efforts at
spin injection were not very successful with spin injection
efficiency � of the order of 1% only.5,6 More recent attempts,
however, have achieved reasonably high injection efficiency
� exceeding 30%.7 The crucial element for their success is
the incorporation of interfacial barriers, e.g., tunnel or
Schottky barriers between the FM and SC layers.

Thus, the main focus of this article is to investigate the
effect of the interfacial resistances �RI� at the FM–SC bound-
ary on the spin injection efficiency and overall magneto-
resistance of a FM–SC–FM trilayer. Our model is based on
the spin-dependent drift-diffusion �DD� equation. Previously,
van Son et al.8 applied the DD equation in the case of a
single FM–NM junction with a finite RI. His calculations
yield a split in the electrochemical potential � for carriers of
minority and majority spin directions, as well as a disconti-
nuity of the potentials �� at the interface due to RI. Subse-
quently, Schmidt et al.9 applied the DD model to a trilayer
structure. They found that in the absence of RI, the resultant
spin injection efficiency � and magnetoresistance are heavily
suppressed due to the conductivity mismatch between the
metallic FM and the SC layers. This accounts for the low �
of the device by Hammar et al.5 Rashba10 proposed a solu-

tion to this problem, by incorporating a tunnel barrier. How-
ever, in Rashba’s model, the interfacial resistances are as-
signed arbitrary values, and these are taken to be identical for
the left and right interfaces for a symmetric FM–NM–FM
trilayer �i.e., identical FM material�. Similar assumptions are
also made by Yu and Flatte11 in applying the DD model to a
FM/NM/FM trilayer.

In our model, these assumptions are removed, and instead
the RI values are obtained self-consistently with the diffusive
spin transport in the bulk FM and SC layers. The RI values
are evaluated by considering ballistic tunneling transmission
across �-function potential barriers at the FM–SC interfaces.
The incorporation of interfacial � barriers makes our model
similar to that of Heershe et al.,12 but the latter assumes fully
ballistic transport through the structure and is limited to a
single junction. Similarly, Tao et al.13 have also done a fully
ballistic analysis of spin transport in a FM/SC/FM double
tunnel junction based on a quantum statistical approach.
Their model does not take into account the diffusion equa-
tion and Ohm’s law, both of which describes the spin trans-
port away from the interfacial zones. However in this paper,
we consider a trilayer structure in which the SC layer thick-
ness w is assumed to be larger than the carrier mean free path
�MFP�, although it is comparable to the spin diffusion length
in the SC material. It is thus necessary to model charge trans-
port in the SC layer away from the interfacial zones, in the
diffusive regime. In our model, the overall spin current is
determined self-consistently, taking into consideration the
ballistic transmission through the interfacial � barriers and
diffusive transport in the bulk of the SC and FM layers, away
from the interfaces. The trilayer material consists of a highly
doped n++ AlGaAsuGaAs 2DEG �SC� layer sandwiched
between two Fe �FM� layers.
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The �-potential barriers at the two FM–SC interfaces are
expressed as U���x�+��x−w��, with the barrier height U be-
ing spin dependent, as was assumed by Yu et al.,11 and Smith
et al.14 In fact, the quantitative description of tunneling at the
FM–SC interface is rather complicated because the transport
properties are strongly dependent on the potential barrier
height and thickness, and are highly sensitive to interfacial
roughness and impurity states within the barriers. As a first
approximation, we ignore any type of electron scattering
within the barriers and assume purely ballistic transport
through them. It should be noted this ballistic transport
analysis applies only in the vicinity of the �-potential barriers
at the interfaces of the trilayer structure. The transport across
rest of the bulk structure is governed by the DD model.

II. MODEL

For transport in the bulk FM and SC layers, we consider
the drift-diffusion model, which is based on the following
equations:

�2��↑ − �↓�
�x2 =

�↑ − �↓

�2 , �1�

��↑�↓�
c

�x
=

ej↑�↓�
c

�↑�↓�
c , �2a�

��↑�↓�
s

�x
=

ej↑�↓�
s

�↑�↓�
s , �2b�

where � is the spin-diffusion length and e is the magnitude of
electronic charge. Subscripts c and s refers to FM contact
and 2DEG SC layer. �↑�↓�

c,s , j↑�↓�
c,s , and �↑�↓�

c,s , are respectively,
the electrochemical potentials, current densities, and conduc-
tivities for majority �minority� spin electrons, each of which
are different in FM and SC 2DEG region. Equation �1� is the
diffusion equation which describes the relaxation of the
spin–split ��↑−�↓�, while Eqs. �2a� and �2b� are Ohm’s law
in FM and 2DEG regions, respectively, relating current flow
to the potential gradient. In our model, we consider the con-
duction in a highly doped 2DEG. In such a system, it is a
good approximation to assume charge neutrality, i.e., no
charge accumulation. Such an approximation has been made
by Zhang et al.15 in their diffusive transport model where
they have dropped the terms involving charge accumulation.
Furthermore, although the electrochemical potential and
charge accumulation are related by the Poisson equation, it
does not matter how the two are distributed as far as trans-
port equations are concerned, according to Stiles and
Zangwill.16 Thus, there is a freedom in choosing the solution
of Poisson’s equation and for simplicity we choose a solution
corresponding to zero charge accumulation. Hence, instead
of solving the diffusion equation and Poisson’s equation self-
consistently, we model the diffusive spin transport by solving
the diffusion equation alone.

The spin diffusion length in SC can be several orders of
magnitude larger than that in FM.2 In the FM layer away
from the interfaces at x=0 and at x=w, the spin–split ��↑

−�↓� tends to 0, but as the potentials approach the interfaces,
an appreciable spin–splitting occurs. In contrast to FM, the
SC layer has the same density of states for up-spin and
down-spin electrons, so spin–splitting in electrochemical po-
tentials is required to achieve spin polarization. We have as-
sumed no spin–flip scattering at the interface so that j↑ and j↓
are continuous at the interfaces.

At the FM–SC interface, there is a discontinuity in both
�↑ and �↓, which is given by

��↑,↓
0,w =

ej↑,↓
c

G↑,↓eq.
L,R , �3�

where G↑,↓eq.
L,R =G↑,↓

L,R /AFM is the equivalent interfacial conduc-
tance experienced by electrons as seen from FM side with
units of �−1 cm−2, AFM is the cross-sectional area of ferro-
magnetic layer, and G↑,↓

L,R �in units of �−1� is the reciprocal of
the interfacial resistance obtained through Landauer’s for-
mula �see below�. We introduce � and 	 as the spin polar-
ization of current and conductivity, respectively, i.e., j↑=	j,
j↓= �1−	�j, �↑=��, and �↓= �1−���, where j is the total
current density. 	 is continuous across the FM–SC inter-
faces, because we assume no spin–flip scattering at the inter-
faces. As the electron density is high in the FM contact re-
gions and is not much affected by spin accumulation, its
conductivity �c there can be taken to be constant. For the SC
region, we have used a 2DEG in which the Fermi level lies
in the conduction band. For such a highly doped semicon-
ductor in the metallic regime, we can to a first approxima-
tion, neglect the change in the conductivity due to the elec-
trochemical potential difference ��↑−�↓�. Thus, based on
this approximation, the conductivity in the SC is spin inde-
pendent and the polarization parameter �s in the SC takes a
constant value of

�s =
�↑

�↑ + �↓
=

1

2
. �4�

The solutions to Eq. �1� for the three regions can be written
as

��↑ − �↓� = Aex/�c, x 
 0, �5�

��↑ − �↓� = Be−x/�s + Ce−�w−x�/�s, 0 
 x 
 w , �6�

��↑ − �↓� = De−�x−w�/�c, x � w . �7�

To determine the coefficients A to D, we apply Eqs. �2a� and
�2b� on both sides of the left FM-SC interface, which yields
the following relations:

ejc

�c
� 	L − �c

�c�1 − �c�
� =

A

�c
, �8�

ejs

�s
� 	L − �s

�s�1 − �s�
� =

− B + Ce−w/�s

�s
. �9�

Similarly, we apply Eqs. �2a� and �2b� on both sides of the
right SC-FM interface, which gives

ejs

�s
� 	R − �s

�s�1 − �s�
� =

− Be−w/�s + C

�s
, �10�
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ejc

�c
� 	R − �c

�c�1 − �c�
� = −

D

�c
. �11�

In the above equations, 	L,R refer to the interfacial values of
the spin polarization of current �i.e., 	L=	�0�, 	R=	�w��. In
FM contact, jc and �c are expressed in conventional units of
A/cm2 and �−1 cm−1, respectively, while in 2DEG js and �s
are expressed in A/cm and �−1, respectively, so that �jc /�c�
and �js /�s� have the same units. The value of �s �see Table I�
is assumed to be comparable to that of Drichko et al.17 An-
other set of relations between parameters A, B, C, and D can
be obtained by applying Eq. �3� at the left and right inter-
faces. The discontinuity in the potential for both spin orien-
tations, i.e., ��↑, and ��↓ are obtained in terms of G↑�↓�, and
subtracted from each other to yield

ejc�	L� 1

G↑eq.
L +

1

G↓eq.
L � −

1

G↓eq.
L � = B + Ce−w/�s − A ,

�12�

ejc�	R� 1

G↑eq.
R +

1

G↓eq.
R � −

1

G↓eq.
R � = D − Be−w/�s − C ,

�13�

at the left �L� and right �R� FM–SC interfaces. Thus we have
six relations, i.e., Eqs. �8�–�13�, which determine all the four
constants �A–D� in the expression for the electrochemical
potential split, and the two interfacial values of 	L,R. Once
the interfacial quantities are known, the position dependence
of 	�x� throughout the trilayer can be found by considering
Eqs. �8�, �9�, and �11�, but this time evaluated at an arbitrary
position x. Substituting 	�x� in Eqs. �2a� and �2b� �i.e., j↑
=	�x�j� and integrating, we then obtain the spatial depen-
dence of electrochemical potentials of both spin types, i.e.,
�↑�x� and �↓�x�. From the solutions, we obtain the interfacial

discontinuities in � at the FM–SC interfaces, i.e.,

��↑
0 =

ejc	
L

G↑eq.
L , �14�

��↓
0 =

ejc�1 − 	L�
G↓eq.

L , �15�

��↑
w =

ejc	
R

G↑eq.
R , �16�

��↓
w =

ejc�1 − 	R�
G↓eq.

R , �17�

Eqs. �14�–�17� follow directly from Eq. �3�. Note, that we
have assumed initial arbitrary values for the interfacial con-
ductances G↑,↓

L,R. In actual fact, G↑,↓
L,R depends on the barrier

height and profile at the FM–SC interfaces, as well as the
potential discontinuity ��↑,↓

L,R across the interfaces. Due to
the dependence of G↑,↓

L,R on ��↑,↓
L,R, a self-consistency loop is

formed in which ��↑,↓
L,R of Eqs. �14�–�17�, which are deter-

mined by the DD model, is fed into the ballistic model to
evaluate G↑,↓

L,R.
The ballistic tunneling model to evaluate G↑,↓

L,R is illus-
trated schematically in Fig. 1. The potential � is drawn only
for the majority spin and a similar one can be drawn for the
minority spin. For simplicity, the barrier profile is assumed to
be delta functions with spin-differential heights, i.e.,
U↑,↓

L ��x�+U↑,↓
R ��x−w�. We also assume symmetry of the two

FM–SC junctions, so that the barrier height is the same for
both left and right interfaces, i.e., U↑,↓

L =U↑,↓
R . Both FM layers

are taken to be semi-infinite. EB is the shift in 2DEG Fermi
level so as to align it with the Fermi level of the FM layers,
i.e., EB=EF �Fe�-EF �2DEG�. The Fermi-wave vectors at x
=0± and x=w± can, respectively, be written as

TABLE I. Parameter values assumed in numerical calculations.

jc, current density in the FM region 1 A/cm2

�c, FM contact conductivity 106 �−1cm−1

AFM, cross-sectional area of FM contact 200 nm�200 nm �in yz plane�
js, current density in the 2DEG region jc�200 nm=2�10−5 A/cm

�s, 2DEG conductivity 5.55�10−6 �−1

m* �GaAs�, effective mass of 2DEG GaAs 0.067 me �me=9.1�10−31 kg�
m* �Fe�, effective mass of Fe 1 me

�s, SC spin-diffusion length 1 �m

�c, contact spin-diffusion length 100 nm

�c
L=�c

R, contact polarization parameter 0.7

�t, barrier thickness 1 nm

EF �Fe�, Fermi level of Fe 11.10 eV

EF �GaAs�, Fermi level of GaAs 2DEG 3.5 meV

h0, molecular field 0.25 eV

EB, diff in Fermi levels of FM and 2DEG EF�Fe�−EF�2 DEG�
w, 2DEG layer width 100 nm

h, Planck’s constant 6.6�10−34 Js
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k↑
1 =	2mFe

* �EF
Fe + ��↑

1,n.l.�
2 , �18a�

k↓
1 =	2mFe

* �EF
Fe + ��↓

1,n.l. − h0�
2 , �18b�

k↑
2 =	2mGaAs

* �EF
Fe + ��↑

0 + ��↑
2,n.l. − EB�

2 , �19a�

k↓
2 =	2mGaAs

* �EF
Fe + ��↓

0 + ��↓
2,n.l. − EB�

2 , �19b�

k↑
3 =	2mGaAs

* �EF
GaAs + ��↑

3,n.l.�
2 , �20a�

k↑
3 =	2mGaAs

* �EF
GaAs + ��↓

3,n.l.�
2 , �20b�

k↑
4 =	2mFe

* �EF
Fe + ��↑

w + ��↑
4,n.l.�

2 , �21a�

k↓
4 =	2mFe

* �EF
Fe − h0 + ��↓

w + ��↓
4,n.l.�

2 , �21b�

where ��↑,↓
n.l. represents the nonlinear �non-Ohmic� part of

electrochemical potential � in the vicinity of both interfaces,
due to spin accumulation. By flux and wave function match-
ing at the interfaces, the transmission coefficients across the
interfaces are given by

T↑,↓
L =

v↑,↓
L,GaAs

v↑,↓
L,Fe 
 2v↑,↓

L,Fe

v↑,↓
L,Fe + v↑,↓

L,GaAs − 2U↑,↓
L �t/i


2

, �22�

T↑,↓
R =

v↑,↓
R,Fe

v↑,↓
R,GaAs
 2v↑,↓

R,GaAs

v↑,↓
R,GaAs + v↑,↓

R,Fe − 2U↑,↓
R �t/i


2

, �23�

where v↑,↓
L�R�Fe=k↑,↓

1�4� /mFe
* and v↑,↓

L�R�GaAs=k↑,↓
2�3� /mGaAs

* . We
have used velocities instead of k vectors in the expressions
for T↑,↓

L,R to simplify the expressions. �t is the thickness of the
tunnel barrier which is taken to be thin �1 nm� in order to
achieve good spin-tunneling properties.18–20 The prefactors
v↑,↓

L,GaAs/v↑,↓
L,Fe and v↑,↓

R,Fe /v↑,↓
R,GaAs of Eqs. �22� and �23�, respec-

tively, ensure flux continuity across the two FM–SC inter-
faces. The interfacial resistance R↑,↓ is then given by

1

R↑,↓
L,R = G↑,↓

L,R =
e2

h
T↑,↓

L,Rnm. �24�

The above is obtained from Landauer’s formula, where nm is
the number of transverse modes. To simplify self-consistent
determination of interface resistance, we restrict our analysis
to one transverse conductance mode only �nm=1�. This may
be achieved, e.g., by constricting the FM–SC interface to a
narrow channel, so that it acts as a mode filter, and allows
only one transverse mode to pass through.

A self-consistency loop linking G↑,↓
L,R on ��↑,↓

L,R can be
formed by considering the DD results of Eqs. �14�–�17�, and
the ballistic model results of Eqs. �18�–�24�. The self-
consistency loop is terminated when the values of G↑,↓

L,R has
converged to better than 0.1% accuracy. Table I lists all the
parameter values assumed in the numerical calculations.

III. RESULTS AND DISCUSSION

A. Interfacial resistance and analysis of tunnel barrier

Interfacial resistance is a vital requirement for efficient
spin injection and magnetoresistive effect in hybrid trilayer
structures.21 We first analyzed the interfacial resistance at the
left and right interface in our structure and found that the two
are asymmetric with respect to each other. To explain this,
we note that from Eqs. �22� and �23�, the transmission prob-
ability T depends on the respective k-vectors at the FM and
SC sides of the interface. These are given by Eqs. �18�–�21�,
from which we infer that the asymmetry in T is due to �i� the
interfacial discontinuity in potential ��↑�↓�

L,R , and �ii� the non-
linear part of electrochemical potentials ��↑,↓

n.l. which corre-
sponds to spin accumulation. Both these effects arise when a
finite current flows across the structure �i.e., when a finite
bias voltage is applied�. The discontinuity in electrochemical
potentials at the two interfaces ��↑,↓

L,R is caused by the pres-
ence of interfacial resistances and has been obtained self-
consistently in our model. We define the percentage asym-
metry As, in interfacial resistances as:

As = �1 −
RL

RR
� � 100, �25�

RL and RR are the mean values of interfacial resistances ex-
perienced by up and down spin electrons, and are expressed

FIG. 1. �a� Schematic �E ,k� band-diagram of FM-2DEG-FM
trilayer. In the FM contacts, the conduction band edge is shifted by
h0 �molecular field� for the minority spin carriers. Also shown are
k1,2 and k3,4 which are the wavevectors at x=0± and x=w± respec-
tively. �b� Position dependence of �↑ for the three parts of the
structure. Also shown are the discontinuities in �↑ due to interfacial
resistance. The hatched regions indicate the regions where we have
considered ballistic transport i.e. only in the vicinity of interface. A
similar diagram can also be drawn for �↓. Note that for simplicity
we have not drawn the slope of the electrochemical potential in the
figure.

AGRAWAL et al. PHYSICAL REVIEW B 72, 075352 �2005�

075352-4



as resistance-area products �i.e., in terms of 1/Geq.�. In Fig.
2, we plot the asymmetry As as a function of bias current
density. As the bias current increases from 1 to 103 A/cm2,
the asymmetry in interfacial resistances increases from al-
most 0 to over 30%. This figure illustrates that the degree of
asymmetry As is determined by the applied bias voltage and
hence current density across the tunneling barriers, which in
turn determines the size of the discontinuity in the electro-
chemical potential and spin accumulation at the two inter-
faces. Both of these contribute to the observed asymmetry. It
can also be inferred that As changes sign �i.e., with RL being
larger than RR� when the current direction is reversed.

In Fig. 3, we have plotted RL as the resistance-area prod-
uct taking different values of 2DEG GaAs Fermi levels at
U↑�↓�=500 �250� meV. This figure shows that when we in-
crease the doping density in the SC layer, i.e., increase the
Fermi level within the conduction band, the interface resis-
tance decreases. This trend may be explained by examining
Eq. �22� that as EF of 2DEG increases TL increases and
hence RL decreases �n.b. EF

Fe�EF
GaAs�. A similar trend also

applies to RR. The value of interfacial resistance RL at EF of
2DEG GaAs=3.5 meV as obtained from our model is 5.66
�10−5 � cm2. This value is about 2 orders of magnitude
higher than the value of interfacial resistance assumed by Yu
and Flatte11 and thus should improve the low ��0.01� spin-
injection efficiency of their structure.

It should also be noted that spin-dependent tunnel barriers
U at two interfaces helps in maintaining the “spin-
asymmetry” in RL as well as RR and thus contributes to spin
polarization and magnetoresistance. At barrier heights of
U↑,↓=500 �250� meV, the spin polarization of RI at left and
right interfaces ��R /R�L,R= �R↓

L,R−R↑
L,R� / �R↓

L,R+R↑
L,R� is

found to vary in a short range from 10% to 15%, and thus
remains fairly constant with 2DEG Fermi level. To enhance
this ratio and hence the spin injection efficiency, we need to
study the effect of different barrier heights U↑,↓ on the spin-
asymmetry of RI. In Fig. 4, R↑,↓

L at left interface and the ratio
�R↓

L /R↑
L� are plotted for different U↑ and U↓, while keeping

their relative ratio �U↑ /U↓� constant at 0.5, and EF of the
2DEG fixed at 3.5 meV. The magnitude of both R↑

L and R↓
L

increase with barrier height U, and more significantly, so
does the spin asymmetry in RL. The latter trend is due to the
spin asymmetry of U adding to that of the k-wave vectors
�see Eqs. �22� and �23��, resulting in an increase in the over-
all spin asymmetry of the transmission probability T and thus
RL. The spin asymmetry of RL translates into a large increase
in the spin-injection efficiency from 
1% at U↓=0.1 eV to
about 25% at U↓=1 eV, keeping U↑=0.5U↓ �Fig. 5�. As ex-
pected, the spin-injection efficiency can be further enhanced

FIG. 2. Plot of asymmetry As �as defined in Eq. �25�� in inter-
facial resistance as a function of current density j.

FIG. 3. Plot of the interfacial resistance RL vs 2DEG Fermi
level.

FIG. 4. RL for both spins vs increasing tunnel barrier strengths
of U↓ barrier keeping U↑ /U↓ fixed at 0.5. Dotted curve shows the
spin-ratio RL

↓ /RL
↑.

FIG. 5. Spin-injection vs tunnel barrier strengths of U↓ barrier
for different ratios of U↑ /U↓ thus showing the effect of varying
height and spin asymmetry of tunnel barriers on the spin-injection
efficiency.

SELF-CONSISTENT BALLISTIC AND DIFFUSIVE… PHYSICAL REVIEW B 72, 075352 �2005�

075352-5



to 40% by increasing the spin asymmetry in U as can be seen
from Fig. 5.

B. Magnetoresistance

Finally, we consider the magnetoresistance �MR� ratio of
the trilayer structure, i.e., the resistance change when the
magnetization of the FM contacts switches from parallel �P�
to antiparallel �AP� alignment. In calculating the MR ratio,
the thickness of the FM contacts are taken to be equal to
their spin-diffusion length �sd, since the spin dependence of
current in the FM contacts primarily occurs within �sd from
the FM–SC interface. Note, that the two-current model, e.g.,
of Schmidt et al.9 is not applicable to our case, since by
assuming a finite spin diffusion length, we have introduced a
coupling between the two spin currents within the SC.

In our analysis, we have assumed a constant current
across the device, so that the MR can be expressed as

�R

R
=

RAP − RP

RAP
=

��0
AP − ��0

P

��0
AP , �26�

where

��0
P,AP = �0

P,AP�x = − �FM� − �0
P,AP�x = w + �FM� , �27�

where, �0 is the linear spin-independent component of the
electrochemical potential �↑,↓�x�, which is solely due to the
applied voltage drop across the device.

We first discuss the MR ratio in FM/SC/FM structures,
i.e., without the U barriers at the interface. In the absence of
any tunnel barrier at the interface, i.e., zero interfacial resis-
tance, a negligible MR effect is obtained. It has been shown
by Schmidt et al.9 in their diffusive calculations that �R /R is
less than 10−7 without any interfacial tunnel barrier. It is only
at FM contact polarization �c close to 0.99 that MR ap-
proaches 0.1%, but this is still far too low for any practical
realization of spintronics devices. Schmidt et al. have attrib-
uted such small MR values to the conductivity mismatch
between FM and SC. Hence, to achieve high MR ratio in a
FM–SC–FM trilayer, we require either a highly spin-
asymmetric RI with a large magnitude so that its resistive
contribution far exceeds that of the SC layer, or a very high
contact spin polarization which approaches ideal half-
metallic value of 100%. Experimentally also, Motsnyi et
al.18 have achieved large values of MR of about 28% only
when they consider very large interfacial resistance of the
order of 10−3 � cm2.

Next, we analyze the case of a NM/SC/NM structure
�where NM is a nonmagnetic metal contact� with spin-
dependent tunnel barrier U at the NM–SC interface. The nu-
merical results for this configuration are virtually identical to
that of a FM/SC/FM structure, which will be presented later.
This is because the overall spin transport is largely deter-
mined by the spin-filtering effects of the tunnel barriers and
not the spin polarization of the contacts. Thus, there is very
little difference in the spin injection efficiency and MR when
we exchange the ferromagnetic contacts with nonmagnetic
ones. Numerically, we calculate the MR ratio for the case of
nonmagnetic contacts ��c=50% � and compare it with the

case of FM contacts ��c=70% �, with a small tunnel barrier
spin asymmetry of U↑=0.9U↓. We find a difference in MR of
the order of 0.1% when U↓=100 meV. The difference is fur-
ther reduced when �i� a larger barrier height is used �e.g., for
U↓=1 eV, the difference is a negligible 10−4%� and �ii� when
the spin asymmetry of U is increased. This is because both
these factors will increase the dominance of the interfacial
tunnel barriers over the contact polarization, in determining
the overall spin transport.

Finally, we analyze the MR effect in a FM/SC/FM struc-
ture with spin-dependent tunnel barriers at the interface. As
can be seen from Fig. 6, taking the EF of 2DEG GaAs to be
3.5 meV, and the barrier height U↓�↑�=500 �250� meV, the
MR ratio is found to be close to 1% which is much lower
than the spin polarization of U. But increasing the barrier
height to 1 eV, considering the largest spin-asymmetry �i.e.,
U↑=0.1U↓� in Fig. 6, the MR ratio can go up to about 15%.
To explain this, we note that the resistance RL of 8.78
�10−5 � cm2 at U↓=1 eV with U↑=0.1U↓, i.e., highest spin-
asymmetry considered, is higher than 1.81�10−6 � cm2

which is the resistance of 2DEG layer �taking the 2DEG
resistivity to be 0.18 � cm, corresponding to the doping of
1016 cm−3�. To increase the MR ratio, we require the spin-
dependent interfacial resistances to be comparable to the
spin-independent resistance of the SC �2DEG� layer, as sug-
gested in Ref. 10. Earlier, we showed that the resistance RR
associated with transmission from SC to FM layer, is larger
than RL due to the asymmetry �As�. Our finding indicates that
to enhance the MR ratio, it is more effective to focus on the
magnitude and spin asymmetry of the SC to FM interfacial
resistance of the trilayer.

IV. CONCLUSION

We have presented a self-consistent transport model to
calculate the interfacial resistance �RI� values in a FM–
SC–FM trilayer structure in which the SC layer is modeled
as a highly doped n++ AlGaAsuGaAs 2DEG while the in-
terfacial resistance at the FM–SC junction is modeled as
delta potential ��� barriers. The self-consistent scheme con-

FIG. 6. MR vs tunnel barrier strengths of U↓ barrier for different
ratios of U↑ /U↓ thus showing the effect of varying height and spin
asymmetry of tunnel barriers on the MR ratio.
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nects the drift-diffusion model used for evaluating the spin–
split and interfacial discontinuity in the electrochemical po-
tential, and the ballistic model to determine the transmission
coefficient and hence interfacial resistance at the two FM–SC
interfaces. The self-consistent values of RI are then used to
calculate spin injection and MR ratio of the trilayer structure.
We observed that the values of RI at left and right interfaces
are asymmetric with respect to each other, and this asymme-
try increases with the applied bias voltage. A high RI and a
high spin asymmetry in the interfacial barrier are required to
achieve high spin injection efficiency, which is a principal
requirement in a semiconductor spintronics device. This may
be achieved in practice by introducing tunnel barriers at the
FM–SC interface, which are naturally spin asymmetric due
to the different band structures in the FM layers for minority

and majority spins. The requirements are even more stringent
for achieving significant MR effect. One requires an even
larger RI �which provides a resistance comparable to that of
the SC layer� and an almost 100% spin polarized tunnel bar-
rier to achieve appreciable magnetoresistive effect.
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