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Realization of a Laughlin quasiparticle interferometer: Observation of fractional statistics
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In two dimensions, the laws of physics permit the existence of anyons, particles with fractional statistics
which are neither Fermi nor Bose. That is, upon exchange of two such particles, the quantum state of a system
acquires a phase which is neither 0 nor r, but can be any value. The elementary excitations (Laughlin
quasiparticles) of a fractional quantum Hall fluid have a fractional electric charge and are expected to obey
fractional statistics. In this paper we report experimental realization of a Laughlin quasiparticle interferometer,
where quasiparticles of the 1/3 fluid execute a closed path around an island of the 2/5 fluid and thus acquire
statistical phase. Interference fringes are observed as conductance oscillations as a function of magnetic flux,
similar to the Aharonov-Bohm effect. We observe the interference shift by one fringe upon introduction of five
magnetic flux quanta (5h/e) into the island. The corresponding 2e charge period is confirmed directly in
calibrated gate experiments. These results constitute direct observation of fractional statistics of Laughlin

quasiparticles.
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I. INTRODUCTION

It has been long understood theoretically that in two spa-
tial dimensions the laws of physics do not prohibit the exis-
tence of particles with fractional exchange statistics, dubbed
anyons." This is because in two dimensions (2D) a closed
loop executed by a particle around another particle is topo-
logically distinct from a loop which encloses no particles,
unlike the three-dimensional case. The particles are said to
have statistics ® if upon exchange the two-particle wave
function acquires a phase factor of exp(i7®), and, upon a
closed loop, a factor of exp(i27®). An exchange of two
particles is equivalent to one particle executing a half loop
around the other, so that a closed loop is equivalent to the
exchange squared. The integer values ®z=2; and Op=2j
+1, where j=0,+1,+2, describe the familiar boson and fer-
mion exchange statistics: exp(i2mj)=(-1)¥=+1 and
explim(2j+1)]=(=1)¥*'=—1, respectively. Upon execution
of a closed loop both bosons and fermions produce a phase
factor of +1, which is unobservable, so usually the statistical
contribution can be safely neglected when describing an in-
terference experiment, such as the Aharonov-Bohm effect.’

The fundamental “elementary” particles exist in three spa-
tial dimensions, and thus all have either bosonic or fermionic
integer statistics. Any particles having a fractional statistics
must be elementary collective excitations of a nontrivial sys-
tem of many integer statistics particles confined to move in
2D. Thinking in terms of a few of such weakly interacting,
fractional effective particles instead of in terms of very com-
plex collective motions of all the underlying strongly inter-
acting, integer statistics particles greatly simplifies descrip-
tion of relevant physics. In particular, the elementary charged
excitations (Laughlin quasiparticles*) of a fractional quantum
Hall (FQH) electron fluid>* have a fractional electric
charge*® and therefore are expected to obey fractional
statistics.”8

Arovas, Schrieffer, and Wilczek® have used the adiabatic
theorem to calculate the Berry phase’ y of a charge e/3
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Laughlin quasiparticle at position R encircling a closed path
C containing another e/3 quasiparticle at 2R’ in the filling
f=1/3 FQH condensate,

J
=i® dR{ P(RR)| VRN ), 1
Y tjgc < (R0 )> (1)

where W is the many-electron Laughlin wave function.*
They found the difference,

A'}/=27T®1/3=47T/3, (2)

identified as the statistical contribution, between an “empty”
loop and a loop containing another quasiparticle. It is pos-
sible to assign definite fractional statistics (mod 1) to quasi-
particles of certain simple FQH fluids based only on the
knowledge of their charge.'® For example, for the one-
electron layer FQH fluids corresponding to the main com-
posite fermion sequence!"'? f=p/(2jp+1), with p and j
positive integers, the charge g=e¢/(2jp+ 1) quasiparticle sta-
tistics is expected to be

O,2jp+1) = 2j/(2jp + 1)(mod 1). (3)

It is instructive to consider a simple example. A quantum
antidot electrometer has been used in the direct observation
of the charge ¢/3 and e/5 quasiparticles,!>!* subsequently
confirmed in shot noise measurements.'>!% A quantum anti-
dot is a potential hill lithographically defined in a 2D elec-
tron layer in the quantum Hall regime. The wave functions of
a charge ¢ particle encircling the antidot are quantized by the
Aharonov-Bohm condition (explicitly including the statisti-
cal contribution),

7m=;1—iCD+27T®N=27Tm, (4)
where m is an integer, ® is the enclosed flux, and N is the
number of antidot-bound quasiholes being encircled.!” When

the chemical potential «© moves between two successive qua-
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siparticle states, the change in the phase of the wave function
is 27T,

AY= Y1 = Y= %A(I) +27mOAN= + 2. (5)

When occupation of the antidot changes by one e¢/3 quasi-
particle, AN=1, the experiments®!'* give A®d=h/e, so that
Ay=27(gq/e+®,;;)=27 only if quasiparticles have a frac-
tional @,,;=2/3.

This experiment, however, is not entirely satisfactory as a
direct demonstration of the fractional statistics of Laughlin
quasiparticles because in a quantum antidot the tunneling
quasiparticle encircles the electron vacuum. Thus, the most
important ingredient, the experimental fact that in quantum
antidots the period A®=h/e, and not A®=h/q, even for
fractionally charged particles, is ensured by the gauge invari-
ance argument of the Byers-Yang theorem.'® Several theoret-
ical studies pointed out that fractional statistics of Laughlin
quasiparticles can be observed experimentally in variations
of the Aharonov-Bohm effect,'*?! but the experimental evi-
dence has been lacking.

Our present experiment utilizes a Laughlin quasiparticle
interferometer, where a quasiparticle with a charge e/3 of the
f=1/3 FQH fluid executes a closed path around an island of
the f=2/5 fluid (see Fig. 1). The interference fringes are
observed as peaks in conductance as a function of the mag-
netic flux through the f=2/5 island, in a kind of Aharonov-
Bohm effect. We observe the Aharonov-Bohm period of five
magnetic flux quanta through the f=2/5 island, i.e., AD
=5h/e, corresponding to excitation of ten g=e/5 quasiparti-
cles of the f=2/5 fluid. Such “superperiod” of A® > h/e has
not been reported in the literature. The corresponding AQ
=10(e/5)=2e charge period is directly confirmed in cali-
brated back gate experiments. These observations imply
relative statistics of ®}3=~1/15, when a charge ¢/3 Laugh-
lin quasiparticle encircles one e/5 quasiparticle of the f
=2/5 fluid.

II. EXPERIMENTAL TECHNIQUE

The quantum electron interferometer samples were fabri-
cated from a low disorder GaAs/AlGaAs heterojunction ma-
terial where 2D electrons (285 nm below the surface) are
prepared by exposure to red light at 4.2 K. The four indepen-
dently contacted front gates were defined by electron beam
lithography on a pre-etched mesa with Ohmic contacts. After
a shallow 140-nm wet chemical etching, Au/Ti gate metal
was deposited in etch trenches, followed by lift-off [see Figs.
2(a) and 2(b)]. Samples were mounted on sapphire substrates
with In metal, which serves as a global back gate. Samples
were cooled to 10.2 mK in the mixing chamber tail of a
top-loading into mixture SHe—“*He dilution refrigerator.
Four-terminal resistance Ryy= Vy/Iy was measured by pass-
ing a 100 pA, 5.4 Hz ac current through contacts 1 and 4,
and detecting the voltage between contacts 2 and 3 by a
lock-in-phase technique. An extensive cold filtering cuts the
integrated electromagnetic “noise” environment incident on
the sample to ~5 X 10717 W, which allows us to achieve a
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FIG. 1. (Color online) Conceptual schematic of the Laughlin
quasiparticle interferometer. (a) A quantum Hall sample with two
fillings: an island of 2/5 FQH fluid is surrounded by the 1/3 fluid.
The current-carrying chiral edge channels (shown by arrowed lines)
follow equipotentials at the periphery of the confined 2D electrons;
tunneling paths are shown by dots. The circles are the Ohmic con-
tacts used to inject current / and to measure the resulting voltage V.
The central island is encircled by two counterpropagating edge
channels. The current-carrying e¢/3 quasiparticles can tunnel be-
tween the outer and the inner 1/3 edges, dotted lines. When there is
no tunneling, V=0; tunneling produces V>0. The closed path of
the inner 1/3 edge channel gives rise to Aharonov-Bohm-like os-
cillations in conductance as a function of the enclosed flux ®. No
current flows through the 2/5 island, but any e/5 quasiparticles
affect the Berry phase of the encircling e/3 quasiparticles through a
statistical interaction, thus changing the interference pattern. (b)
FQH liquids can be understood via composite fermion representa-
tion. A composite fermion energy profile of the interferometer
shows the three lowest “Landau levels” separated by FQH energy
gaps. Several e/3 and e/5 quasiparticles are shown as composite
fermions in otherwise empty “Landau levels.”

low electron temperature of 18 mK in a mesoscopic
sample.?

The four front gates are deposited into etch trenches. In
this work, the voltages applied to the four front gates Vg
(with respect to the 2D electron layer) are small, and are used
to fine tune for symmetry of the two constrictions. Even
when front gate voltages V=0, the GaAs surface depletion
potential of the etch trenches defines two wide constrictions,
which separate an approximately circular 2D electron island
with lithographic radius R=1050 nm from the 2D “bulk.”
The electron density profile n(r) in a circular island resulting
from the etch trench depletion can be evaluated following the
model of Gelfand and Halperin® (see Fig. 3). For the 2D
bulk electron density nz=1.2X10'"" cm™, there are ~2000
electrons in the island. Under such conditions (Vz;5=0), the
depletion potential has a saddle point in the constriction re-
gion, and so has the resulting electron density profile. From
the magnetotransport measurements (see Fig. 4 and the text)
we estimate the saddle point density value nc=0.75np,
which varies somewhat due to the self-consistent electrostat-

075342-2



REALIZATION OF A LAUGHLIN QUASIPARTICLE...

oD O

O
B

4 3
FIG. 2. (Color online) The Laughlin quasiparticle interferometer
samples. (a) and (b) are atomic force and scanning electron micro-
graphs of a typical device. Four Au/Ti front gates in shallow etch
trenches define the central island of 2D electrons of lithographic
radius R~ 1050 nm. The 2D electrons are completely depleted un-
der the etched trenches; the front gates are used for fine tuning the
two wide constrictions. The chiral edge channels (blue) follow equi-
potentials at the periphery of the undepleted 2D electrons; tunneling
paths are shown by dots. Four Ohmic contacts are shown schemati-
cally by the numbered circles, Ryy=V,_3/1,_4. The back gate (not
shown) extends over the entire sample on the opposite side of the
insulating GaAs substrate.

ics of the 2D electrons in the presence of a quantizing mag-
netic field. Note that the island center density is slightly (sev-
eral percent) lower than the 2D bulk density.

II1. INTEGER QH REGIME

Here the relevant quasiparticles are electrons of charge e
and integer statistics; therefore, we can obtain an absolute
calibration of the ring area and the backgate action of the
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FIG. 3. (Color online) The electron density n, normalized to the
2D density, as a function of radius 7 in an electron island defined by
an etched annulus of inner radius R=~1050 nm. The calculation
follows model of Ref. 23. W=250 nm is the depletion length pa-
rameter obtained in the same calculation. The blue circle gives the
radius of the outer edge ring, rp,,~685 nm, obtained from the
Aharonov-Bohm period data for fz=1 and 2, shown in Fig. 6. The
magenta circle gives the radius of the inner edge ring, ry,
~570 nm for fz=2/5 from the data of Figs. 9 and 10, taking the
same ro,; for fc=1/3 and the ratio of densities n(ry,)/n(rp.)
=(2/5)/(1/3)=1.20.
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FIG. 4. (Color online) Magnetoresistance of the quasiparticle
interferometer sample at temperature 10.2 mK. The horizontal ar-
rows show approximate ranges of filling factor v-=f plateaus in
the constrictions. Note the quantized plateaus Ryy(B)=h/4e* at
~3.7 Tesla (fc=1, fzg=4/3) and Ryy(B)=h/2e> at ~12.4 Tesla
(fc=1/3, fg=2/5). The overlap of the f-=1 and fz=1 plateaus for
42 T<B<4.8 T likewise results in Ryy(B)=0 in this range. The
data were obtained with front gate voltage Vp;=0, and the front
gates were not tuned for symmetry. The fine structure is due to
quantum interference effects; some peaks can be identified as due to
impurity-assisted tunneling.

interferometer device. Figure 4 shows the directly measured
four-terminal Ryy as a function of applied normal magnetic
field B. The local Landau level filling factor v=hn/eB is
proportional to n(r) and the electron density in the constric-
tions n-<ng. Consequently the constriction v is lower than
the bulk vz by some 20 to 30% in a given B. While v
«n(r)/B is a variable, the quantum Hall exact filling f, de-
fined as the inverse of the value of the quantized Hall resis-
tance Ryy in units of /2/e? (that is, f=h/e’Ryy), is a quantum
number. The 2D electron system on a quantum Hall plateau f
opens an energy gap. Variation of B from the exact v=f is
accommodated by creation of quasiparticles (v> f) or quasi-
holes (¥<<f). Note that the 2D electronic charge —en is only
redistributed: e(f—v)B/h is the charge density of the quasi-
particles and —efB/h of the condensate, the total system (2D
electrons and donors) remains neutral. Analogous consider-
ations apply when a global back gate is biased at a fixed B.

Thus there are two quantum Hall regimes possible: one
when the whole sample has one and the same quantum Hall
filling f, and another when there are two quantum Hall fill-
ings: f¢ in the constrictions, and f5 in the center of the island
and in the 2D bulk. For example, there is a range of B such
that both f-=1 and fz=1, as seen for 4.2 T<B<4.8 T in
Fig. 4, illustrated schematically in Fig. 5(a). The second pos-
sibility is illustrated in Figs. 5(b) and 5(c). For example, f
=1 and fz=4/3, resulting in a quantized value’*>-%1% of
Ryx=(h/e*)(1/fc—1/fp), is seen in the range 3.75 T<B
<3.85 T in Fig. 4. However, f-=1, fp=2, which would re-
quire ne==(1/2)ng, is not possible in this sample. Thus an
observation of a quantized plateau in Ryy(B) implies quan-
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FIG. 5. (Color online) (a) Schematic of the sample when mag-
netic field is such that there is only one quantum Hall filling f
throughout the sample: f in the constrictions is equal to fp in the
2D bulk and in the island. The numbered rectangles are Ohmic
contacts, FG are the front gates. The chiral edge channels follow
equipotentials at the periphery of the undepleted 2D electrons; tun-
neling paths are shown by dots. A closed edge channel path gives
rise to Aharonov-Bohm oscillations in the conductance. (b) A
sample with two quantum Hall fillings exhibits quantized diagonal
resistance Ryy=(h/e*)(1/fc—1/fp), where Ryy=V,_3/I,_4. Obser-
vation of a quantized plateau in Ryy(B) provides definitive values
for both f and f3. (c) Schematic of the sample when magnetic field
is such that f-<fp. The sample exhibits a quantized Ryx(B) pla-
teau, and, upon fine tuning of front gates, exhibits Aharonov-Bohm
oscillations in conductance as a function of the flux enclosed by the
inner island edge ring.

tum Hall plateaus for both the constriction region and the
bulk, and in practice provides definitive values for both f
and f, since the number of well-defined quantum Hall states
fp observed in a given sample is usually rather finite.

In the integer quantum Hall regime we observe Aharonov-
Bohm-type conductance oscillations for fo=fz=1 and 2 (see
Fig. 6). The oscillatory conductance variation &G
=5RXX/R§Y is obtained®!* from the directly measured Ryy
data after subtracting a smooth background. The Aharonov-
Bohm ring is formed here by the edge channel circling the
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FIG. 6. (Color online) Interference of electrons in the outer ring
of the device in the integer quantum Hall regime. Aharonov-Bohm-
type oscillations in conductance are observed when one (f=1) and
two (f=2) Landau levels are filled. The corresponding flux period
Ad=h/e gives the outer ring radius rp,,~ 685 nm.
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FIG. 7. (Color online) Interference of electrons in the outer ring
of the device in the integer quantum Hall regime. Application of a
positive back gate voltage Vg attracts the 2D electrons one by one
to the area of the outer ring, resulting in modulation of the interfer-
ence amplitude. This calibrates the back gate voltage increment
AV necessary to increase the charge contained within the ring by
AQ=e. Note that AV is independent of Landau-level filling.

island, and includes two quantum tunneling links [see Fig.
5(a)]. The f=1 Aharonov-Bohm period AB; =~2.81 mT gives
the area of the island “outer” edge ring Sy,,=h/eAB,
~1.47 um?, and the outer ring radius ry,=\h/meAB,
~ 685 nm. The f=2 period is very close: 2AB,=~2.85 mT,
and gives the area S,,~1.45 um? and the radius r,,
~680 nm. The f=2 Aharonov-Bohm period contains two
conductance oscillations, A®,=2AB,S,,,, because there are
two filled (spin-polarized) Landau levels, as reported previ-
ously for a constricted Coulomb island®® and for a quantum
antidot in the integer quantum Hall regime.?’

In the integer quantum Hall regime, where elementary
excitations are electrons in partially filled Landau levels, we
calibrate the global back gate. Applying positive Vp; attracts
electrons to the 2D layer, Vzs=1 V increases ng by ong
~2.4x10% cm™2. The ratio dng/ng=~2.0x10"3 is small
since the back gate is separated from the 2D layer by a rather
thick insulating GaAs substrate. Unlike the case of a quan-
tum antidot,®!'* where the antidot is completely surrounded
by a quantum Hall condensate, we do not expect the density
in the interferometer island to increase by exactly the same
amount as in the 2D bulk. Therefore we must calibrate the
dQ/dVyg ratio, where Q is the charge of electrons within the
island edge ring. Figure 7 shows the conductance oscillations
observed as a function of Vs in the integer QH regime, f-
=fp=1 and 2. The period of these oscillations AVps; corre-
sponds to a change in the number of electrons N within the
island edge ring by one. AVp is expected to be the same for
all spin-polarized integer quantum Hall states, provided the
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radius of the edge ring does not change; indeed, we obtain
AVp;=332 mV for f=1 and 342 mV for f=2.

IV. FRACTIONAL QH REGIME

Setting the applied B such that the 2D bulk is on the f3
=2/5 FQH plateau, we focus on the situation when an f.
=1/3 annulus surrounds an island of the fz=2/5 FQH fluid,
shown schematically in Figs. 1 and 5(c). We can be confident
that an f-=1/3 region separates the two 2D bulk fz=2/5
regions with Ohmic contacts because the diagonal resistance
is quantized to Ryy=(h/e*)(3/1-5/2)=(1/2)(h/e*) (see
Fig. 8). Note that the Ryy(B) gross structure (the peaks be-
tween the FQH plateaus) comes from the 2D bulk, not from
the island. The island center electron density is slightly (sev-
eral percent, see Fig. 3) less than the 2D bulk density; thus,
in a given applied magnetic field, the island center filling
factor is several percent lower than the 2D filling factor.

Here, as in the integer regime, we also observe Aharonov-
Bohm-type conductance oscillations as a function of B, with
period AB~20.1 mT [see Figs. 9 and 10(a)]. The corre-
sponding flux period is A®=5h/e. The oscillation period in
this regime gives the inner edge ring area S;,=5h/eAB
~1.03 um?, and the inner ring radius r;,,=\5h/meAB
~570 nm. Figure 10(b) shows the analogous conductance
oscillations observed as a function of Vjg with period
AVp5=937 mV. The corresponding charge period is AQ
=2e.

The experimental ratio AB,;5/AB; ~7.10+0.07 is consis-
tent with formation of an r;,=~570 nm, f=2/5 island sur-
rounded by an rg,~685 nm, f=1/3 ring. Figure 3 shows
the B=0 2D electron density n(r) as a function of radius r in
the island, calculated following Ref. 23. Since electrostatic
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FIG. 8. (Color online) An enlargement of the data of Fig. 4. The
horizontal arrows show approximate range of the f-=1/3 plateau in
the constrictions. Note the quantized plateau Ryy(B)=(h/e?)
X[(1/3)7'=(2/5)"1]=h/2¢* at ~12.35 Tesla (fo=1/3, f=2/5).
The data were obtained with Vy;=0; the front gates were not tuned
for symmetry. The fine structure is due to quantum interference
effects; some peaks can be identified as due to impurity-assisted
tunneling.
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FIG. 9. (Color online) Aharonov-Bohm effect of the inner ring
e/3 Laughlin quasiparticles circling an island of the f=2/5 FQH
fluid. Magnetic flux through the island period of A®=5h/e corre-
sponds to creation of ten e/5 quasiparticles in the island (one fun-
damental flux quantum h/e induces two quasiparticles in the f
=2/5 FQH fluid).
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FIG. 10. (Color online) Interference of the inner ring e/3
Laughlin quasiparticles circling an island of the f=2/5 FQH fluid.
(a) Magnetic flux through the island period of A®=5h/e corre-
sponds to creation of ten e/5 quasiparticles in the island (one fun-
damental flux quantum /h/e induces two quasiparticles in the f
=2/5 FQH fluid). (b) The back gate voltage period of AQ
=10(e/5)=2e directly confirms that the e/3 quasiparticle consecu-
tive orbits around the island are quantized by the condition requir-
ing incremental addition of ten e/5 quasiparticles of the f=2/5
fluid. These observations imply relative fractional statistics, when a
charge e/3, statistics ©,3=2/3 quasiparticle encircles one e/5,
©,,5=2/5 quasiparticle of the f=2/5 fluid.
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FIG. 11. (Color online) The ratio of the conductance oscillations
periods AB/AVpgsoc1/f, which is independent of the edge ring area,
from the data shown in Figs. 6, 7, and 10. The fact that the ratios
fall on a straight line forced through (0,0) and the f=1 point con-
firms the island filling f=2/5. The magenta crosses give the neigh-
boring f=3/7 and f=1/3, which clearly do not fit the data.

energy of electrons in the confining potential is large, n(r) is
expected to follow closely even in quantizing B. The opening
of the quantum Hall gaps in the island leads to formation of
the “compressible” and “incompressible” rings, with small
density variations from the B=0 profile.?® The blue circle
gives the radius of the outer edge ring, rg,,~ 685 nm, ob-
tained from the Aharonov-Bohm period data for fz=1 and 2,
shown in Fig. 6. The magenta circle gives the radius of the
inner edge ring, r;,~570 nm for f=2/5 from the data of
Figs. 9 and 10(a). The ordinate of the magenta circle is ob-
tained from the ratio of densities n(r,)/n(ro,.)
=(2/5)/(1/3)=1.20, taking the same ry, for f=1/3 as
above. The fact that the magenta circle is very close to the
calculated n(r) profile illustrates the reasonableness of the
inner-outer ring edge assignment. The resulting width of the
f=1/3 ring, ry,—r;=~ 115 nm (15 magnetic lengths), is also
reasonable for edge channel separation.?>?8

The ratio of the conductance oscillations periods is deter-
mined by the quantum Hall filling, independent of the edge
ring area: AB/AVy;%Ng/N,=1/f, where Ng and N, are the
number of flux quanta and electrons, respectively, in the area
of the encircled path. The fact that the ratios fall on a straight
line forced through zero confirms the island filling as f
=2/5 (see Fig. 11). Note that island filling assignments of
either 1/3 or 3/7 (the neighbors of 2/5 in the FQH se-
quence) are ruled out by the data of Fig. 11. The island f
=2/5 assignment of the data is further supported by three
additional considerations. (i) We have observed similar inte-
ger and fractional Aharonov-Bohm data in another interfer-
ometer sample,” with a larger lithographic radius R
~ 1300 nm. The ratio AB,;;/AB,~6.4 is consistent, upon
the same depletion potential analysis, with the island filling
assignment of f=2/5; the fact that the ratio is less than 7
rules out the 3/7 assignment. (ii) We observe what we be-
lieve to be the oscillations when the center island filling is
f=3/7 at lower magnetic fields. The structure of these oscil-
lations is not sufficiently simple to be reported and/or ana-
lyzed at this time. (iii) The island f=2/5 surrounded by an
f=1/3 ring is the most simple possible configuration, and
involves the two strongest (largest gap) FQH fluids. It would
be odd to observe a more subtle and weaker effect, and (de-
spite numerous measurements under varying conditions) not
to observe the simpler and stronger one.
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V. FRACTIONAL STATISTICS OF QUASIPARTICLES

The striking feature of the conductance oscillations shown
in Fig. 10(a) is that the Aharonov-Bohm period is five fun-
damental flux quanta: A®=5h/e, a “superperiod” of AP
>h/e. The gauge invariance argument of the Byers-Yang
theorem'® requiring A® <h/e for the true Aharonov-Bohm
geometry is not applicable in the present sample because the
interior of the edge ring contains electrons.

Addition of magnetic flux i/e through an area occupied
by the f=1/3 FQH fluid creates a vortex in the many-
electron wave function, that is, a charge e/3 Laughlin
quasihole.*8 Similarly, addition of flux /e to the f=2/5
FQH fluid creates two vortices in the many-electron wave
function, that is, two charge e/5 quasiholes.?*!° These theo-
retical predictions have been verified at a microscopic level
in the quantum antidot experiments.%!>!% Thus, addition of a
flux Ad=5h/e to the f=2/5 island creates ten e/5 quasipar-
ticles with total charge AQ=2e. It should be noted that ad-
dition of flux into the island does not affect the total charge:
excitation of quasiparticles out of a condensate leaves the
total electronic charge constant. For example, increasing the
magnetic field so that there is one more flux quantum
through the island will excite two e/5 quasiholes and, at the
same time, reduce the electronic (negative) charge of the
exact filling condensate by precisely 2e/5, thus leaving the
total island charge unaffected.

In contrast, a gate voltage does repel or attract 2D elec-
trons. Here, the magnetic field is fixed, so that the condensate
charge is fixed too, and creation of quasiparticles does
change the total charge of the island. The remote back gate
produces relatively uniform electric field (compared to the
field of the front gates). As demonstrated by the integer QH
data of Fig. 7, a small variation of the back gate voltage can
change the charge of the island, while leaving the island on
the same QH plateau. In the fractional QH regime, the AQ
=2e charge periodicity, corresponding to creation of ten e/5
quasiparticles, is directly confirmed by the back gate data in
Fig. 10(b). In contrast, the charge periodicity observed in
quantum antidots corresponds to addition of one quasiparti-
cle only, both for the f=1/3 and f=2/5 cases. The principal
difference between the present interferometer and the quan-
tum antidots is that while in quantum antidots the FQH fluid
surrounds electron vacuum,!” in the present interferometer
the 1/3 fluid surrounds an island of the 2/5 fluid.

If we neglect the symmetry properties of the FQH con-
densates, in the absence of a Coulomb blockade, there is no
a priori requirement that the total charge of the FQH island
be quantized in units of e, much less in units of 2e. The
island charge could change in increments of one quasiparti-
cle charge, any small (less than e) charge imbalance supplied
from the contacts. This is so because the island is a part of a
larger electron system, the surrounding FQH fluid being con-
nected by Ohmic contacts and wires to the rest of the world.
As is well known, in an open system the chemical potential
is fixed, not the number of particles. Reference 20 considers
an isolated (channel+island) system, where the total number
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of electrons is fixed. Their model has an additional con-
straint, that no quasiparticles are created, thus leading to for-
mation of a charged ring at the 1/3-2/5 boundary and large
Coulomb energy. For example, for the tenth fringe from the
exact filling, the ring net charge would be 20e, and the charg-
ing energy ~1000 K for the ring radius of 600 nm. This
energy should be compared to ~1 K needed to excite an e/5
quasiparticle.3> Thus, inhibition of quasiparticle creation is
not energetically possible, and does not describe the FQH
ground state in the island away from the exact filling. Inhi-
bition of quasiparticle creation is an essential basis of their
derivation, thus their results are not directly applicable to this
experiment.

Therefore, the quantization periods of A®=5h/e and
AQ=2e must be imposed by the symmetry properties of the
two FQH fluids. The current used to measure conductance is
transported by the quasiparticles of the outside 1/3 fluid;
thus, we must construe that the conductance oscillations pe-
riodicity of ten e/5 quasiparticles results from the 27 peri-
odicity of the Berry phase of a charge g=e¢/3 Laughlin qua-
siparticle encircling ten e/5 quasiparticles of the f=2/5
fluid,

5h
Ay= %Afb +27OAN = (3%) (—) +2703(10) = 2.

(6)

Solving Eq. (6) gives the relative statistics @32=—1/15.

The elementary texts usually define exchange statistics of
identical particles. The notion of relative statistics of non-
identical anyons should not be surprising, though, specifi-
cally for Laughlin quasiparticles, since all elementary
charged excitations of various FQH fluids fundamentally are
collective excitations of strongly interacting 2D electrons.
Wilczek has considered “mutual” fractional statistics of qua-
siparticles in a two-layer FQH system with unequal fillings;>?
Su, Wu, and Yang have considered mutual exclusion statis-
tics between quasielectrons and quasiholes of the same FQH
condensate.>* Reference 20 derives statistics of quasiparti-
cles of the channel FQH fluid only; their result given in Eq.
(15) is equal (mod 2) to their Eq. (3), which is consistent
with our Eq. (3) for j=1. We are not aware of a theoretical
work containing an explicit evaluation of ©)73.

Thus, the microscopic mechanism leading to ADd=5h/e
and ©)2=—1/15 is not fully understood at present. It may be
tempting to explore the fact that f-—fp=1/3-2/5=-1/15
happens to be equal to the experimental value of ®;§§; like-
wise, O3+0,,5—1=2/3+2/5-1=1/15. Such arithmetic is
not transparent from the underlying physics. In particular, the
charge of the elementary excitations of f=2/5 is e/5, not
2e¢/5. Indeed, Egs. (3) and (5) require input of values of
quasiparticle charge g and quasiparticle degeneracy p, the
two properties that characterize a particular simple FQH con-
densate; filling factor alone does not a priori provide all the
necessary information. The arithmetic in Eq. (6) is different:
assuming the experimental A®=5h/e, then ®;g=(q2/5
—ql/g)/pzlsz(1/5-1/3)/22—1/15, where p2/5=2 is the e/5
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quasiparticle degeneracy, cf. Eq. (3). The principal experi-
mental results of AQ=2¢ and AP=5hi/e remain unex-
plained. In principle, A® can be evaluated theoretically ei-
ther in numerical work, or by an analytical calculation
similar to Ref. 8, using unprojected composite fermion wave
functions.

It is quite evident that Eq. (6) can be satisfied neither by
bosonic nor fermionic integer ©)3 statistics; therefore, an
exchange of charge between the island and the surrounding
FQH fluid in increments of one quasiparticle charge, AQ
=e/5, is not possible even in the absence of Coulomb block-
ade. A naive argument that charge transfer between the island
and the surrounding fluid may always proceed in increments
of one electron charge, AQ=e, does not take into account the
statistical phase contribution and is not in accord with the
experiment. It is also easy to see that no physically meaning-
ful singular gauge transformation would restore a Ad=h/e
flux periodicity in this system. The central experimental re-
sults obtained, that is, the oscillations periods of A®=5h/e
and AQ=2e, are robust and do not involve any adjustable-
parameter fitting to a theory. Thus we conclude that the ex-
periment reported here provides a direct and unambiguous
observation of fractional statistics of FQH quasiparticles.

VI. OUTLOOK: TOPOLOGICAL QUANTUM
COMPUTATION

We have realized a Laughlin quasiparticle interferometer
where the wave function of quasiparticles encircling a FQH
fluid island acquires a fractional statistical phase. This ex-
periment opens an experimentally accessible regime in the
many-body physics of interacting particles confined to move
in two dimensions. The fractional statistics quasiparticles,
the anyons, are of interest not only in a fundamental science,
but may also find a practical application in quantum infor-
mation processing. Environment-induced decoherence and
the unavoidable spread of qubit parameters present the two
most significant obstacles to practical implementation of
scalable solid-state quantum logic circuits. Topological quan-
tum computation with abelian and nonabelian anyons has
been suggested as a way of implementing intrinsically fault-
tolerant quantum computation.>>>” Intertwining of anyons
with nontrivial exchange statistics induces unitary transfor-
mations of the system wave function that depend only on the
topological order of the underlying FQH condensate.>* These
transformations can be used to perform quantum logic, the
topological nature of which is expected to make it more ro-
bust against environmental decoherence.

An experimentally feasible approach proposes adiabatic
transport of FQH quasiparticles in systems of quantum anti-
dots for implementation of the basic elements for anyonic
quantum computation.’® The basic qubit consists of a quan-
tum antidot “molecule” occupied by one “extra”
quasiparticle.3® In the experimentally realizable low tempera-
ture, low electromagnetic environment limit, modulation of
front gates’ potentials can be used to attract quasiparticles
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one by one to an antidot. Here, computation employs a frac-
tional Berry phase created by an adiabatic transfer of one
quasiparticle around another in systems of quantum antidots
to perform quantum logic. The key general question yet to be
answered in the future work is to what extent the topological
nature of the statistical phase of quasiparticles helps to alle-
viate the decoherence in quantum computation.
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