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Transverse spin-orbit force in the spin Hall effect in ballistic semiconductor wires
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We introduce the spin- and momentum-dependent force operator, which is defined by the Hamiltonian of a
clean semiconductor quantum wire with homogeneous Rashba spin-orbit (SO) coupling attached to two ideal
(i.e., free of spin and charge interactions) leads. Its expectation value in the spin-polarized electronic wave
packet injected through the leads explains why the center of the packet gets deflected in the transverse
direction. Moreover, the corresponding spin density will be dragged along the transverse direction to generate
an out-of-plane spin accumulation of opposite signs on the lateral edges of the wire, as expected in the
phenomenology of the spin Hall effect, when spin-7 and spin-| polarized packets (mimicking the injection of
conventional unpolarized charge current) propagate simultaneously through the wire. We also demonstrate that
spin coherence of the injected spin-polarized wave packet will gradually diminish (thereby diminishing the
“force”) along the SO coupled wire due to the entanglement of spin and orbital degrees of freedom of a single

electron, even in the absence of any impurity scattering.
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The classical Hall effect! is one of the most widely known
phenomena of condensed matter physics because it repre-
sents manifestation of the fundamental concepts of classical
electrodynamics—such as the Lorentz force—in a compli-
cated solid-state environment. A perpendicular magnetic field
B exerts the Lorentz force F=¢gv X B on current I flowing
longitudinally through metallic or semiconductor wire,
thereby separating charges in the transverse direction. The
charges then accumulate on the lateral edges of the wire to
produce a transverse “Hall voltage” in the direction gI X B.
Thus, Hall-effect measurements reveal the nature of the cur-
rent carriers.

Recent optical detection>? of the accumulation of spin-T
and spin-| electrons on the opposite lateral edges of current
carrying semiconductor wires opens new realm of the spin
Hall effect. This phenomenon occurs in the absence of any
external magnetic fields. Instead, it requires the presence of
spin-orbit (SO) couplings, which are tiny relativistic correc-
tions that can, nevertheless, be much stronger in semicon-
ductors than in vacuum.* Besides deepening our fundamental
understanding of the role of SO couplings in solids,*> the
spin Hall effect offers new opportunities in the design of
all-electrical semiconductor spintronic devices that do not
require ferromagnetic elements or cumbersome-to-control
external magnetic fields.?

While experimental detection of the strong signatures of
the spin Hall effect brings to an end decades of theoretical
speculation for its existence, it is still unclear what spin-
dependent forces are responsible for the observed spin sepa-
ration in different semiconductor systems. One potential
mechanism—asymmetric scattering of spin-T and spin-|
electrons off impurities with SO interaction—was invoked in
the 1970’s to predict the emergence of pure (i.e., not accom-
panied by charge transport) spin current, in the transverse
direction to the flow of longitudinal unpolarized charge cur-
rent, which would deposit spins of opposite signs on the two
lateral edges of the sample.® However, it has been argued’
that in systems with weak SO coupling and, therefore, no
spin splitting of the energy bands such spin Hall effect of the
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extrinsic type (which vanishes in the absence of impurities)
is too small to be observed in present experiments? (unless it
is enhanced by particular mechanisms involving intrinsic SO
coupling of the bulk crystal®).

Much of the recent revival of interest in the spin Hall
effect has been ignited by the predictions®!? for substantially
larger transverse pure spin Hall current as a response to the
longitudinal electric field in semiconductors with strong SO
coupling that spin splits energy bands and induces Berry
phase correction to the group velocity of Bloch wave
packets.!! However, unusual properties of such intrinsic spin
Hall current in infinite homogeneous systems, which de-
pends on the whole Fermi sea (i.e., it is determined solely by
the equilibrium Fermi-Dirac distribution function and spin-
split Bloch band structure) and it is not conserved in the bulk
due to the presence of SO coupling,”!'? have led to arguments
that its nonzero value does not correspond to any real trans-
port of spins'>!3 so that no spin accumulation near the
boundaries and interfaces could be induced by any intrinsic
mechanism (i.e., in the absence of impurities'3).

On the other hand, quantum transport analysis of spin-
charge spatial propagation through clean semiconductor
wires, which is formulated in terms of genuine nonequilib-
rium and Fermi surface quantities (i.e., conserved spin
currents'41® and spin densities'”), predicts that spin Hall
accumulation??® of opposite signs on its lateral edges will
emerge due to strong SO coupling within the wire region.!”
Such mesoscopic spin Hall effect is determined by the pro-
cesses on the mesoscale set by the spin precession
length,'>!” and depends on the whole measuring geometry
(i.e., boundaries, interfaces, and the attached electrodes) due
to the effects of confinement on the dynamics of transported
spin in the presence of SO couplings in finite-size semicon-
ductor structures.'®1?

Thus, to resolve the discrepancy between different theo-
retical answers to such a fundamental question as—Are in-
trinsic SO interaction terms in the effective Hamiltonian of a
clean spin-split semiconductor wire capable of generating
the spin-Hall-like accumulation on its edges?—it is highly
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desirable to develop a picture of the transverse motion of
spin density that would be as transparent as the familiar pic-
ture of the transverse drift of charges due to the Lorentz
force in the classical Hall effect. Here we offer such a picture
by analyzing the spin-dependent “force,” which can be asso-
ciated with any SO coupled quantum Hamiltonian, and its
effect on the semiclassical dynamics of spin density of indi-
vidual electrons that are injected as spin-polarized wave
packets into the Rashba SO coupled clean semiconductor
quantum wire attached to two ideal (i.e., interaction- and
disorder-free) leads.

The effective mass Hamiltonian of the ballistic Rashba
quantum wire is given by

a2

P
2m

A o
H= *+%(&Xf’)'z+vconf(y)v (1)
where p is the momentum operator in two—dimensional (2D)
space, o=(5",6”,6%) is the vector of the Pauli spin opera-
tors, and V_,(y) is the transverse potential confining elec-
trons to a wire of finite width. We assume that the wire of
dimensions L, XL, is realized using the 2D electron gas
(2DEG), with z being the unit vector orthogonal to its plane.
Within the 2DEG, carriers are subjected to the Rashba SO
coupling of strength «, which arises due to the structure in-
version asymmetry* (of the confining potential and differing
band discontinuities at the heterostructure quantum well
interface?%).

This Hamiltonian generates a spin-dependent force opera-
tor which can be extracted’’?> within the Heisenberg
picture?® as

A ARy omt .
Fy=m' =5t =51, [f H]
2°m” . o AVeoniFn)
=" Py X 2) ® 67— =y, (2)
dyy

Here the Heisenberg picture operators carry the time depen-

dence of quantum evolution, i.e., py(t) =e™ " pe=H 5% (1)

=eiH[/h6'Ze_th/ﬁ’, and ﬁH(I)=eth/ﬁ’)7e_th/ﬁ', where é.z, 13, and )A}
are in the Schrodinger picture and, therefore, time indepen-
dent.

Since the force operator?? depends on spin through &%,
which is an internal quantum degree of freedom,?® it does not
have any classical analog. Its physical meaning (i.e., measur-
able predictions) is contained in the quantum-mechanical ex-

pectation values, such as (ﬁy)(t)=(‘I’(t=0)|13¥,(t)|\1’(t=0))
obtained by acting with the transverse component l:"L of the

vector of the force operator (I:"}‘_I,}:";J) on the quantum state
|W(t=0)) of an electron. While such force can always be
associated with a given quantum Hamiltonian, its usefulness
in understanding the evolution of quantum systems is
limited—the local nature of the force equation cannot be
reconciled with inherent nonlocality of quantum mechanics.
For example, if the force “pushes” the volume of a wave
function locally, one has to find a new global wave function
in accord with the boundary conditions at infinity (the same
problem remains well hidden in the Heisenberg picture,
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FIG. 1. (Color online) The expectation value of the transverse
component of the SO force operator (upper panel) in the quantum
state of propagating spin-wave packet along the two-probe nano-
wire. The middle panel shows the corresponding transverse position
of the center of the wave packet as a function of its longitudinal
coordinate. The initial state in the left lead is fully spin-polarized
wave packet Eq. (3), which is injected into the SO region of the size
L, XL,=100a X 31a (a=3 nm) with strong Rashba coupling 7gg
=al 2&:0.1[0 and the corresponding spin precession length Lgo
=tyal2tgo=~15.7a<L, (middle panel) or weak SO coupling 7gq
=0.01¢, and Lgo=157a> L, (lower panel).

where time dependence is carried by the operators while
wave functions are time independent). Nevertheless, analyz-
ing the dynamics of spin and probability densities in terms of
the action of local forces can be insightful for particles de-
scribed by wave packets (whose probability distribution is
small compared to the typical length scale over which the
force varies).!!?3

Therefore, we examine in Fig. 1 the transverse SO force

(F ,) in the spin wave packet state, which at 1=0 resides in

the left lead as a fully spin-polarized (along the z axis) and
spatially localized wave function®*%

075335-2



TRANSVERSE SPIN-ORBIT FORCE IN THE SPIN...

Y(=0)=C sin( )eikxx_‘y‘i"zl4 ® Xo- (3)

(Ly+ Da

This is a pure and separable quantum state |W(t=0))=|®)
®|o) in the tensor product of the orbital and spin Hilbert
spaces H,® H,. The orbital factor state (x,y|®) consists of
the lowest subband of the hard wall transverse confining po-
tential and a Gaussian wave packet along the x axis whose
parameters are chosen to be k«a=0.44 and ok.a=0.1
(C is the normalization constant determined from (®|®)=1).
The (%I;in factor state is an eigenstate of &%, i.e., )(Tz((l)) or
x1=\1).

! Ulilike the case?! of an infinite 2DEG, the exact solutions
of the Heisenberg equation of motion for 7,(¢), ¥4(¢) and
P(7) entering in Eq. (2) are not available for quantum wires
of finite width. Thus, we compute the expectation value

(P(1)|F,[¥(1) in the Schrodinger picture by applying the

evolution operators e "% present in Eq. (2) on the wave
functions |W(1))=3,e~En’*|E XE,[¥(r=0)). To obtain the
exact eigenstates”*?%?7 |E,) and eigenvalues E,, we employ
the discretized version of the Hamiltonian Eq. (1). That is,
we represent the Hamiltonian of the Rashba spin-split quan-
tum wire in the basis of states |m)® |o), where [m) are s
orbitals (r|m)=¢(r—m) located at sites m=(m,,m,) of the
L, XL, lattice with the lattice spacing a (typically!’ a
=3 nm). This representation extracts the two energy scales
from the Rashba Hamiltonian Eq. (1): t,=A%/(2m"a®) char-
acterizing hopping between the nearest-neighbor sites with-
out spin flip; and tgg=a/2a for the same hopping process
when it involves spin flip.!”!° The wave vector of the Gauss-
ian packet k,a=0.44 is chosen'’ to correspond to the Fermi
energy Ep=-3.8t, close to the bottom of the band where
tight-binding dispersion relation reduces to the parabolic one
of the Hamiltonian Eq. (1). In this representation one can
directly compute the commutators in the definition of the
force operator Eq. (2), thereby bypassing subtleties that arise
when evaluating the transverse component of the force op-
erator —dV . «(J5)y/dyy stemming from the hard wall
boundary conditions.”

Figure 1 shows that as soon as the front of the spin-
polarized wave packet enters the strongly SO coupled region,
its center ($)(£)=(W¥(1)[$|¥(r)) will be deflected along the y
axis in the same direction as is the direction of the transverse
SO force. However, due to its inertia the packet does not
follow fast oscillations of the SO force occurring on the scale
of the spin precession length!”!° Lqq=1t,a/2tso on which
spin precesses by an angle 7r (note that the spin splitting
generates a finite difference of the Fermi momenta, which is
the same for all subbands of the quantum wire in the case of
parabolic energy-momentum dispersion, so that Lgq is equal
for all channels®®). In contrast to an infinite 2DEG of the
intrinsic spin Hall effect,'®%!3 in quantum wires electron
motion is confined in the transverse direction and the effec-
tive momentum-dependent Rashba magnetic field Bg(k) is,
therefore, nearly parallel to this direction.'®?® Thus, the
change of the direction of the transverse SO force is due to
the fact that the z-axis polarized spin will start precessing
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FIG. 2. (Color online) The dynamics of spin density S(r)
=[S,(r),S,(r),S.(r)] induced by simultaneous propagation of two
electrons through quantum wire 100a X 31a with the Rashba SO
coupling t55=0.1¢,. Both electrons are injected at =0 from the left
lead, one as spin-T and the other one as spin-| polarized (along the
z axis) wave packet Eq. (3). The different snapshots of the sum of
their spin densities are taken at the points (a), (b), (c), where the
transverse SO force and the y coordinate of the center of these wave
packets have values shown in the middle panel of Fig. 1.

within the SO region since it is not an eigenstate of the
Zeeman term & -Bg(K) [i.e., of the Rashba term in Eq. (1)].

The transverse SO force and the motion of the center of
the wave packets in Fig. 1 suggests that when two electrons
with opposite spin polarizations are injected simultaneously
into the SO coupled quantum wire with perfectly
homogeneous? Rashba coupling, the initially unpolarized
mixed spin state will evolve during propagation through the
wire to develop a nonzero spin density at its lateral edges.
This intuitive picture is confirmed by plotting in Fig. 2 the
spin density,

)= 5 OH(0]7 @ [my(m| (1)

e
=5 2 oo (Dem o (040|100, 4)

corresponding to the coherent evolution of two spin-wave
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FIG. 3. (Color online) Spin precession, as signified by oscilla-
tions of the spin polarization vector (P,,Py,P,), and spin decoher-
ence (as measured by decrease of the purity |P| below one) of the
spin state of a single electron propagating along the Rashba quan-
tum wire 100aX31la with the SO coupling strength fgo
=0.17, (Lgo=15.7a). The electron is injected from the left lead as a
spin-T polarized wave packet, whose spin subsystem is therefore
fully coherent [P|=1 at +=0. The bottom panel shows the z compo-
nent of the spin density S.(r) at different values of (%/2)P,
=[drS.(r) (selected in the upper panel) along the wire.

packets, |V(r=0))=|P)®|T) and
across the wire.

The mechanism underlying the decay of the transverse SO
force intensity is explained in Fig. 3, where we demonstrate
that (initially coherent) spin precession is also accompanied
by spin decoherence.!*3° These two processes are encoded in
the rotation of the spin polarization vector P and the reduc-
tion of its magnitude (|P|=1 for fully coherent pure states
[)f= p,), respectively. The spin polarization vector is ex-
tracted from the density matrix p,=(1+P-&)/2 of the spin
subsystem.”? The spin-density matrix p, is obtained as the
exact reduced density matrix at each instant of time by trac-
ing the pure state density matrix p(¢)=|W(¢)){W ()| over the
orbital degrees of freedom,

p(1) = Tr, [T ()P (1)] = 2 (m|W ()W (2)|m)

(W(=0))=|P)@]]).

= 2 o000 ey (1)

(5)

The dynamics of the spin polarization vector and the spin
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density shown in Fig. 3 are in one-to-one correspondence,
h h A
SP() = Tr[p, (6] = 2 Su(0). (6)
2 2 m

The incoming quantum state from the left lead in Fig. 3
is separable, |W(1=0))=2, ;Cmo(=0)m)®|0)=|P)®|1),
and therefore fully spin coherent, |P|=1. However, in the
course of propagation through SO coupled quantum wires it
will coherently evolve into a nonseparable?’ state where spin
and orbital subsystems of the same electron appear to be
entangled.!3! Note that Fig. 3 also shows that at the instant
when the center of the wave packet enters the wire region, its
quantum state is already highly entangled as quantified by
the nonzero von Neumann entropy (associated with the re-
duced density matrix of either the spin p, or the orbital sub-
system p,),

S(ps) = S(p,)

1+ |P| 1+ |P| 1-|P| 1-|P|
== log, - log, >

2 2 2 2

(7)

which is a unique measure®® of the degree of entanglement
for pure bipartite states (such as the full state |W()), which
remains pure due to the absence of inelastic processes along
the quantum wire).

While this loss of spin coherence (or polarization) is
analogous to the well-known DP spin relaxation in diffusive
SO coupled systems,>?° here the decay of the spin polariza-
tion vector takes place without any scattering off impurities
(or averaging over an ensemble of electrons propagating
through ballistic SO coupled quantum dot structures'®). In-
stead, it arises due to wave packet spreading (cf. lower panel
of Fig. 3), as well as due to the presence of interfaces!® (the
wave packet is partially reflected at the lead-SO region inter-
face for strong Rashba coupling) and boundaries'®!? of the
confined structure. Thus, the decoherence mechanism re-
vealed by Fig. 3 is also highly relevant for the interpretation
of experiments on the transport of spin coherence in high-
mobility  semiconductor’> and  molecular  spintronic
devices.®

The interplay of the oscillating and decaying (induced by
spin precession and spin decoherence, respectively) trans-
verse SO force and wave packet inertia leads to spin-T elec-
tron exiting the wire with its center deflected toward the left
lateral edge and the spin-| density appearing on the right
edge!” for strong SO coupling fgo=0.1¢, in Figs. 1 and 2.
This picture is only apparently counterintuitive to the naive
conclusion drawn from the form of the force operator itself
Eq. (2), which would suggest that spin-] electron is always
deflected to the right while moving along the Rashba SO
region. While such a situation appears in wires shorter than
Lgo (as shown in the lower panel of Fig. 1), in general, one
has to take into account the ratio L,/Lgq, as well as the
strength of the SO force «a?, to decipher the sign of the spin
accumulation on the lateral edges and the sign of the corre-
sponding spin currents that will be pushed into the transverse
leads attached at those edges.!”
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FIG. 4. (Color online) The spin accumulation
[Si(r),S,(r),S.(r)] induced by the ballistic flow of unpolarized
charge current, simulated by injecting one after another 600 pairs
of spin-T and spin-| polarized (along the z axis) wave packets from
the left lead, through quantum wire 100a X 31a with the Rashba
SO couplings: (a) t50=0.1¢, (Lso=15.7a) and (b) 150=0.01z,
(Lso=157a).

When we inject pairs of spin-T and spin-| polarized wave
packets one after another, thereby simulating the flow of un-
polarized ballistic current through the lead—wire—lead struc-
ture (where electron does not feel any electric field within the
clean quantum wire region),'” we find in Fig. 4 that the de-
flection of the spin densities of individual electrons in the
transverse direction will generate nonzero spin accumulation
components S,(r) and S,(r) of the opposite sign on the lateral
edges of the wire. While recent experiments find S.(r) with
such properties to be the strong signature of the spin Hall
effect,>? here we confirm the conjecture of Ref. 17 that S,(r)
can also emerge as a distinctive feature of the mesoscopic
spin Hall effect in confined Rashba spin-split structures—it
arises due to the precession (Fig. 3) of transversally deflected
spins. Note that S,(r) # 0 accumulations cannot be explained
by arguments based on the texturelike structure®® of the spin
density of the eigenstates in infinite Rashba quantum wires
where?627 S (r)=0.

In conclusion, the spin-dependent force operator, defined
by the SO coupling terms of the Hamiltonian of a ballistic
spin-split semiconductor quantum wire, will act on the in-
jected spin-polarized wave packets to deflect spin-T and
spin-| electrons in the opposite transverse directions. This
effect, combined with precession and decoherence of the de-
flected spin, will lead to nonzero z and x components of the
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spin density with opposite signs on the lateral edges of the
wire, which represents an example of the spin Hall effect
phenomenology®!” that has been observed in recent
experiments.”3 The intuitively appealing picture of the trans-
verse SO quantum-mechanical force operator (as a counter-
part of the classical Lorentz force), which depends on spin
through 6%, the strength of the Rashba SO coupling through
o?, and the momentum operator through the cross product
p X z, allows one to differentiate symmetry properties of the
two spin Hall accumulation components upon changing the
Rashba electric field (i.e., the sign of a) or the direction of
the packet propagation: S.(r)_,=S.(r), and S (r)_,==S(r),
vs S,(r)_,=-S,(r), (due to opposite spin precession for —a)
and S,(r)_p=S,(r),. These features are in full accord with
experimentally observed behavior of the S.(r) spin Hall ac-
cumulation under the inversion of the bias voltage,® as well
as with the formal quantitative quantum transport analysis'’
of the nonequilibrium spin accumulation induced by the flow
of unpolarized charge current through ballistic SO coupled
two-probe nanostructures.

Finally, we note that o> dependence of the transverse SO
force is incompatible with the a-independent (i.e., “univer-
sal”) intrinsic spin Hall conductivity o,y=e/87 (describing
the pure transverse spin Hall current jS=oyE, of the z-axis
polarized spin in response to the longitudinally applied elec-
tric field E,) of an infinite homogeneous Rashba spin-split
2DEG in the clean limit, which has been obtained within
various bulk transport approaches.!®-133* On the other hand,
it supports the picture of the SO-coupling-dependent spin
Hall accumulations'” S,(r), S,(r) and the corresponding spin
Hall conductances!? (describing the z and the x component of
the nonequilibrium spin Hall current in the transverse leads
attached at the lateral edges of the Rashba wire) of the me-
soscopic spin Hall effect in confined structures.'*-'® By the
same token, the sign of the spin accumulation on the edges
(i.e., whether the spin current flows to the right or to the left
in the transverse direction') cannot be determined from the
properties** of o,y. Instead one has to take into account the
strength of the SO coupling « and the size of the device in
the units of the characteristic mesoscale Lgq, as demonstrated
by Figs. 1 and 4. This requirement stems from the oscillatory
character of the transverse SO force brought about by the
spin precession of the deflected spins in the effective mag-
netic field of the Rashba SO coupled wires of finite width.

We are grateful to S. Souma, S. Murakami, Q. Niu, and J.
Sinova for insightful discussions and E. I. Rashba for en-
lightening criticism. Acknowledgment is made to the donors
of the American Chemical Society Petroleum Research Fund
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