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The influence of Rashba spin-orbit coupling on zero conductance resonances appearing in one-dimensional
conducting rings asymmetrically coupled to two leads is investigated. For this purpose, the transmission
function of the corresponding one-electron scattering problem is derived analytically and analyzed in the
complex energy plane with focus on the zero-pole structure characteristic of transmission �anti�resonances. The
lifting of real conductance zeros due to spin-orbit coupling in the asymmetric Aharonov-Casher ring is related
to the breaking of spin reversal symmetry in analogy to the time-reversal symmetry breaking in the asymmetric
Aharonov-Bohm ring.
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I. INTRODUCTION

An important feature of one-dimensional ring shaped con-
ductors or electronic devices is the appearance of quantum
interference effects under the influence of electromagnetic
potentials, known as Aharonov-Bohm1 �AB� and
Aharonov-Casher2 �AC� effect. In numerous investigations,
the transmission properties of mesoscopic AB and AC rings
coupled to current leads were studied under various aspects
such as AB flux and coupling dependence of resonances,3

geometric �Berry� phases4–8 and spin flip, precession, and
interference effects.9–13 Most of the investigated models use
symmetrically coupled rings. There are, however, mesos-
copic systems such as nanographite ribbons showing conduc-
tance properties that are based on asymmetric
configurations,14 giving rise to a specific dip structure of an-
tiresonances �zero-conductance resonances� in the model
transmission. The effects of asymmetry on the transmission
were considered mainly in quantum network models.15–17 In
quasi-one-dimensional �1D� systems, real conductance zeros
appear under the condition of conserved time reversal
symmetry18,19 �TRS�. The �anti�resonances in the transmis-
sion due to local quasibound states correspond to a specific
zero-pole structure in the complex energy plane.20–23 The
application of an external magnetic field modifies this zero-
pole structure, shifting the transmission zeros away from the
real axis, with the shift as a function of the AB phase.24 Thus,
the lifting of conductance zeros is related to the breaking of
TRS.

In this paper, the influence of spin-orbit coupling �SOC�
on zero-conductance resonances in asymmetrically coupled
rings is investigated by means of an AC ring, where an ef-
fective in-plane magnetic field results from the Rashba
effect25 of moving electrons in the presence of an electric
field perpendicular to the ring plane, as considered in Refs.
12 and 13. This means that the role of time reversal symme-
try is now transfered to inversion symmetry �parity�. We will
show that parity connected with the Rashba spin orbit cou-

pling can be viewed in an analogous way as the case of time
reversal symmetry for spinless particles.

This paper is organized as follows. In Sec. II, a single-
particle description of the one-dimensional ring subject to
Rashba-SOC in terms of Hamiltonian, eigenstates and
eigenenergies is given, following Refs. 12 and 13. The sec-
tion concludes with the results for the transmission of the
asymmetric AC ring in the one-electron scattering picture
which is derived in the Appendix. The analytic expression
for the transmission function is analyzed in Sec. III with
focus on geometry and SOC dependence of the transmission
zeros. Section IV contains a symmetry argument which es-
tablishes an analogy between formation and lifting of the
zeros due to Rashba SOC in the AC ring and the correspond-
ing effects on spinless electrons due to the magnetic field in
the AB ring. The main results are summarized in the conclu-
sions of Sec. V.

II. AC RING IN SINGLE PARTICLE PICTURE

The coupling of electron spin and orbital degrees of free-
dom is due to the magnetic field generated in the reference
frame of a moving electron by an electric field in the refer-
ence frame of the laboratory. In two-dimensional systems
�e.g., due to the presence of a confinement potential along a
specific direction�, an important contribution of electric
fields is the Rashba effect, a consequence of lack of inver-
sion symmetry, that causes a spin band splitting proportional
to the momentum. In the ring system under consideration,
the Rashba field results from the asymmetric confinement
along the direction perpendicular to the ring plane.

A. Hamiltonian

In the following investigation of one-dimensional rings, z
is chosen as the direction of confinement, perpendicular to
the plane of motion. The various SO-coupling mechanisms
are accounted for using the following model Hamiltonian:
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where �� /2���̂ is the spin operator in terms of the Pauli spin

matrices, ��̂ = ��x ,�y ,�z�, and � is the Rashba parameter
characterizing the strength of the SOC corresponding to an

electric field E� R= �0,0 ,Ez� in the z direction, arising from a
potential V�z� due to structural or confinement asymmetry. In
polar coordinates x=r cos � and y=r sin � the total Hamil-
tonian in effective mass approximation reads26

Ĥ�r,�� = −
�2

2m*��r
2 +

1

r

�

�r
+

1

r2��
2� −

i�

r
�cos ��x + sin ��y�

�
�

��
+ i��cos ��y − sin ��x�

�

�r
, �2�

with the effective mass m*. In the case of a one-dimensional
ring, a confining potential V�r� needs to be added in order to
force the electron wave functions to be localized on the ring
in the radial direction. It is shown in Ref. 26 that the exact
form of the confining potential is not essential. A simple
possibility is the harmonic potential centered around r=�,
V�r�= 1

2K�r−��2, where � is the radius of the ring. Consid-
ering only the lowest radial mode, the resulting one-
dimensional Hamiltonian for fixed radius � is �see Ref. 26
for a complete derivation�
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−
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The last term in the above expression for the 1D Hamiltonian
encodes the correction due to the radial confinement. The
Hamiltonian in Eq. �3� can be written in a dimensionless
form13

H =
2m*�2

�2 Ĥ1D = �− i
�

��
+

�

2
�r�2

, �4�

where �=2�m*� /�2 is the dimensionless SOC constant, �r
=cos ��x+sin ��y, and the additive constant −�2 /4 was
neglected.34

B. Eigenstates and energy spectrum

The eigenstates of Hamiltonian �4� follow as the solution
of the time-independent Schrödinger equation and have the
general form12,13

�n
���� = ein�	���� , �5�

where n is the orbital quantum number and �= ↑ , ↓ 
 ±1
labels the spin. For the isolated ring, n�Z, but when coupled
to leads, n can adopt any real number allowed by energy,
depending on spin and direction of motion. The spinors
	���� are generally not aligned with the momentum depen-

dent and spatially varying Rashba field B� R�r�=2��ẑ� p�� /�,

but make a tilt angle 
̃=� /2−
 given by tan 
=−� relative

to the direction of the electric field E� R �see Fig. 1�. The
energy eigenvalues of the states in Eq. �5� are13

En
� = �n − �AC

� /2��2 �6�

with the Aharonov-Casher phase12

�AC
� = − ��1 − ���2 + 1� . �7�

At fixed energy E, the dispersion relation yields the quantum
numbers n

��E� through

n
��E� = �E + �AC

� /2�,  = ± . �8�

For a plane wave arriving from lead I with wave vector k we
get

n
��k� = k� + �AC

� /2� . �9�

The sense of propagation is determined by the sign of the
group velocity, which in the latter case is given by

vg,
� =

�

2m*�

dEn

�

�

dn
� =

�

2m*�
�n

� − �AC
� /2�� = k� , �10�

 thus encoding the traveling direction. The quantum num-
bers for different spin and sense of propagation are related by

n
� = − �n−

−� + 1� . �11�

The corresponding eigenstates of the closed ring are

FIG. 1. �a� Momentum-dependent in-plane Rashba field B� R, and
�b� up and down spin eigenstates do not generally align with the

Rashba field B� R, but make a tilt angle 
 with the electric field E� R

perpendicular to the ring plane �E� R, B� R, and v�g form an orthogonal
coordinate system�.
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These eigenstates differ from the solutions of the free system
by the phase factors in the spin part.

C. Current

In order to investigate transport in our quantum mechani-
cal system, an expression for the probability current density
is requested. The probability current density j is determined
by inserting the Schrödinger equation

i�
��

�t
= H� , �13�

with H from Eq. �4�, and its adjoint into the continuity equa-
tion imposed by probability conservation

��

�t
+

�j

��
= 0, �14�

where �= ���2 denotes the probability density. The probabil-
ity current density can be expressed in terms of velocity op-
erators

j =
1

2
��†�v̂�� + ��v̂��†� . �15�

The velocity operators are derived from the Hamiltonian by27

v̂ =
�Ĥ

�p̂
, �16�

where p̂ is the momentum operator, whose explicit form de-
pends on the coordinate system35

p̂� = − i
�

��
�ring� and p̂x = − i�

�

�x
�leads� . �17�

In absence of SOC, only the kinetic energy term of the
Hamiltonian contributes to the velocity operators, which in
this case are

v̂0��� = − 2i
�

��
and v̂0�x� = − 2i�

�

�x
. �18�

For finite SOC, HSO yields an additional term for the ring
�assuming zero SOC in the leads�

v̂SO��� = ��r��� and v�̂SO���� = ��r����� , �19�

where �r�������r�−���=cos ���x−sin ���y.
The total velocity operator to consider in the expression

of the probability current density given by Eq. �15� is

v̂ = v̂0 + v̂SO. �20�

The above results will be used when investigating the lead
and ring currents in the Appendix.

D. Transmission amplitude from the one-electron scattering
formalism

Conductance in mesoscopic structures can be expressed
by means of the Landauer conductance formula,28,29 which in
our case reads

G =
e2

h
�

�=↑,↓
�T��2, �21�

where T� is the �spin dependent� transmission amplitude.36

The previously obtained expressions for wave function and
current are now used to calculate the transmission amplitude
for the ring system from the proper requirements on wave
function continuity and probability current conservation.30

The calculation is performed in the Appendix and follows
Refs. 13 and 12. It yields the transmission amplitude

T���,�,�� =

4i�ei��AC
� /2��1−�� sin��

2
�1 + ��� + e−i��AC

� /2��1+�� sin��

2
�1 − ����

cos �� − 5 cos � + 4 cos �AC
� + 4i sin �

�22�

as a function of energy ��=2�k��, SOC ��AC
� ���� and

asymmetry ��= �1−R� / �1+R��, where R stands for the ratio
of lower and upper ring arm lengths �see Fig. 1�. In the
following discussion of transmission and conductance, spin
index � refers to the spinors in the ring eigenstates in Eq.
�12�, whereas the standard spinor basis �eigenvectors of �z�
are labeled by s.

III. GEOMETRY AND SOC DEPENDENCE OF
TRANSMISSION ZEROS

A. Free system „�=0…

The transmission function in Eq. �22� displays a peculiar
resonant behavior characterized by a set of zeros and poles.

EFFECT OF SPIN-ORBIT COUPLING ON ZERO-… PHYSICAL REVIEW B 72, 075328 �2005�

075328-3



The transmission zeros are obtained from Eq. �22� as the
solution of

sin��

2
�� − 1�� = e−i�AC

�
sin��

2
�� + 1�� . �23�

For �=0, the phase factor equals unity, and Eq. �23� simpli-
fies to

cos��

2
��sin��

2
� = 0, �24�

which yields zeros at

�0,1 = 2m� and �0,2 = �2m + 1��/�, m � Z . �25�

Obviously, there are two types of zeros. The zeros of the first
kind at �0,1 correspond to the eigenstates of the closed ring,
whereas the zeros of second type at �0,2 are given by the
geometry-dependent interference condition for nodes at the
right junction16 and appear only in an asymmetric configura-
tion ���0�. The poles related to transmission resonances are
determined by

cos �� − 5 cos � + 4 cos �AC
� + 4i sin � = 0. �26�

Figure 2 shows the conductance in absence of SOC ��=0�
for symmetry �R=1� and asymmetry parameters R=1/2 and
R= �2�3−1� / �2�3+1��0.55. The oscillation in the conduc-
tance for the symmetric configuration is due to the coupling
of lead and ring, which does not correspond to perfect trans-
mission and therefore leads to resonances as a consequence
of backscattering effects.3 These resonances however do not
give rise to conductance zeros: from Eq. �22� follows that
zeros and poles of the conductance compensate each other
and yield a finite value. In the asymmetric ring �R=1/2 ,R
�0.55�, both types of zeros appear.

By examination of the transmission amplitude in the com-
plex energy plane we find a certain connection between the
conductance zeros and transmission resonances. Zeros on the
real axis are accompanied by nearby poles in complex plane
�Figs. 3 and 4�. Figure 4 shows zeros �a� and poles �b� at
R=1/2 separately. A similar feature is known from the quan-
tum waveguide systems with an attached resonator.21 In the
present case a pair of poles is associated with each zero of

the first kind at �0,1. The real part of the energies of the zeros
and poles are not exactly identical, which results in an asym-
metric shape of the resonance �Fano type�.31 These charac-
teristic features can be clearly observed in Fig. 2, e.g., at
�0,1=2�. Note that at �=0 and �=6� both numerator and
denominator of the transmission amplitude vanish simulta-
neously for R=1/2, such that they annihilate at these places,
as can be easily observed in Fig. 2.

B. Finite Rashba SOC „�Å0…

There are two remarkable features in the transmission
characteristics arising as effects of SOC. The first is the finite
transmission probability in the spin channel opposite to the
incident spin orientation. This is the result of spin precession
along the ring branches due to SOC as considered in Ref. 32.
The conductance zeros in the opposite channel correspond to
a frequency of precession which reproduces the incident spin
orientation at the right junction. The second aspect, and the
one on which we will concentrate in the following, is the
lifting of certain conductance zeros in the incident channel.
These features can be observed in Fig. 5 where the transmis-
sion for finite SOC is displayed. It is instructive to analyze
the modification of the transmission amplitude in the com-
plex energy plane. Figure 6 shows the lifting of the zeros of

FIG. 2. Conductance for �=0 in symmetric �R=1� and asym-
metric system �R=1/2 and R= �2�3−1� / �2�3+1��0.55. For the
lead-ring coupling assumed in the present model ��=4/9�, trans-
mission is not perfect even in case of equal branch length. In the
asymmetric system, periodical transmission zeros appear.

FIG. 3. Zero-pole structure of G in the complex plane for �
=0 and �a� R=1, �b� R=1/2, �c� R�0.55. The zeros lie on the real
axis, whereas the poles have a finite imaginary part.

FIG. 4. �a� Zeros and �b� poles of G in the asymmetric case
�R=1/2� for �=0.
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the first kind as well as the emergence of zeros that were
canceled by poles in the free system. The shifting of zeros
and poles away from the real axis is displayed in Fig. 7. In
the conductance, the zeros of the first kind appear no longer.
They are still present in the up- and down-transmission am-
plitudes, but different spin components are shifted in oppo-
site directions, as it is shown in Fig. 8.

To study the behavior of the transmission zeros under the
influence of SOC, an expansion around the zeros in the AC
phase �AC

� �mod2�� of the transmission probability J�

= �T��2 is performed:

J���AC
� � = 8 csc��m����AC

� �2 + O���AC
� �3� at �0,1 = 2m� ,

�27�

J���AC
� � =

16�1 + cos��2m + 1��/���
�5 − 3 cos��2m + 1��/���2 ��AC

� �2

+ O���AC
� �3� at �0,2 = �2m + 1��/� . �28�

Equation �27� shows that the zeros of the first type are re-
moved by the action of SOC for all values of �. For the zeros
of the second type however there are geometries where the
zeros persist even in presence of the interaction. From Eq.
�28� follows the geometry condition for persistent zeros:

�per =
2m + 1

2n + 1
⇔ Rper =

m + n + 1

n − m
,

n,m � Z, n � m . �29�

IV. ANALOGY TO AB RING AND SYMMETRY
ARGUMENT

It was shown14,33 for the AB ring that zero conductance
energies belong to states of vanishing vorticity, i.e., the cir-
cular currents in the loop system change sign at these ener-
gies. The zero conductance resonances can therefore be re-
garded as the signatures of destructive interference resulting
from the superposition of circular currents of opposite chiral-
ity corresponding to degenerate resonant states of the loop
system. The possibility of superposition is due to the degen-

FIG. 5. Transmission probability for nonzero SOC �=0.6 from
s=↑ into s=↑ and s=↓ spin channels for symmetric ��a� R=1� and
asymmetric system ��b� R=1/2, �c� R�0.55�. In the symmetric AC
ring, spin-orbit interaction causes the appearance of transmission
zeros, in the asymmetric configuration however, the latter are par-
tially lifted. For particular asymmetry ratios R, the geometry depen-
dent zeros persist.

FIG. 6. Zero-pole structure of G in the complex plane for �
=0.6 and �a� R=1, �b� R=1/2, �c� R�0.55.

FIG. 7. �a� Zeros and �b� poles of G in the asymmetric case
�R=1/2� for �=0.6.

FIG. 8. Zeros of �a� T↑ and �b� T↓ for �=0.6 and R=1/2. SOC
shifts the zeros away from the real axis, the direction of the shift
depending on the spin.
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eracy of the two chiral states as a consequence of time re-
versal symmetry in absence of external fields. A magnetic
field, respectively the resulting flux � through the loop, de-
stroys this degeneracy as a consequence of broken TRS �Fig.
9�.

In the present case of a one-dimensional ring subject to
Rashba SOC, the role of the magnetic flux � is played by the
Rashba term depending on the coupling �. In fact, the trans-
mission function in Eq. �22� equals the expression obtained
in Ref. 14 for the asymmetric AB ring, except that the AB
phase �AB=2�� /�0 is replaced by the �spin dependent� AC
phase �AC

� . In analogy to the AB ring, there are conductance
zeros due to resonant states of different chirality for the free
system at �=0. At finite SOC, configurations of opposite
spin and chirality are still degenerate as a consequence of
time reversal symmetry: with the time reversal operator

given by T̂=−i�yK̂, where K̂ is the operator for complex
conjugation, and using the relations in Eq. �11�, we find

T̂�n,
� = − ��n,−

−� . �30�

For a fixed spin orientation, however, states of opposite
chirality are no longer degenerate as parity is broken for �
�0. The situation with SOC is illustrated in Fig. 10. The
vanishing of circular currents corresponding to time reversed
degenerate states is easily derived: from Eqs. �18� and �19�
follow the currents

j
� = 2�n

� + sin2�


2
+

�

4
�1 − ���� + �� sin 
 ,

� = ± 1,  = ± . �31�

The total circular current of time reversed states has to van-
ish such that

jtot��
�,�−

−�� = 2�n
� + 1 + n−

−�� � 0 ∀ � , �32�

whereas the total circular current for states of a equal spin
disappear only for �→0,

jtot��+
↑,�−

↑� = 2�n+
↑ + n−

↑ + 2 sin2 


2
+ � sin 
� , �33�

jtot��+
↓,�−

↓� = 2�n+
↓ + n−

↓ + 2 cos2 


2
− � sin 
� . �34�

The symmetry breaking analogy between AB rings and rings
subject to Rashba-SOC appears already in the corresponding
Hamiltonians and their symmetries. For Rashba SOC, the
normalized magnetic flux � /�0 breaking time reversal sym-
metry in the AB ring is replaced by the spin-dependent vec-

tor potential A��� which respects the TRS of Ĥ, i.e.,

�Ĥ,T̂��n,
� = �n + 1 + �AC

−� �2 − �n − �AC
� �2 � 0 ∀ � , �35�

but changes under spin reversal, and which is related to the
Aharonov-Casher phase by Eq. �6� for the eigenenergies. The
main results of this analysis are summarized in Table I.

In Ref. 24, a relation was established between the break-
ing of TRS by a magnetic field in an AB ring and the loca-
tion of the transmission zeros in the complex plane. It was
shown that real zeros appear if the flux is an integer or half
integer multiple of the flux quantum �0, and are shifted off
the real axis for other flux values. Due to the analogy to the
AB ring, the behavior of the transmission zeros of the ring
subject to Rashba SOC follows the same rules, now depend-
ing on the value of the AC phase. This implies the periodical
dependence of transmission properties on the value of the
SOC constant �: real transmission zeros demand a �half�
integer AC phase, �AC

� /2�= �2m+1� /2, m�Z, which is sat-
isfied by12 �=�4�m+1�2−1.

It was shown by Lee and co-workers that conductance
zeros occur generically in quasi-1D systems if time reversal
is a symmetry.18,19 In the proof, they used the constraints laid
upon the elements of the scattering matrix describing the
system of spinless particles by the symmetry and unitarity
requirement. In the case of particles with spin, these condi-
tions are reproduced only in the presence of time reversal
symmetry and parity, apart from special situations �geom-
etries�.

FIG. 9. Resonant states and broken symmetry for the AB ring
�E=energy�.

FIG. 10. Resonant states and broken parity for ring subject to
Rashba SOC.

TABLE I. Symmetry breaking analogy between AB and Rashba
rings.

AB ring Ring with Rashba SOC

ext
field

B� = �0,0 ,Bz� E� = �0,0 ,Ez�

Hamil-
tonian

Ĥ=
1

2m�2 ��

i

�

��
+

�

�0
�2

Ĥ=
1

2m�2 ��

i

�

��
+A����2

�0=
hc

e
A���=

��2

2
�r���

broken
symm.

time reversal T̂ spin parity P̂s

�Ĥ , T̂�=
2�k

m

�

�0
=0⇔�=0

�Ĥ , P̂s�=−i� sin ��z

=0⇔�=0
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As in Ref. 13, it is possible to combine the AB and AC
effects by the inclusion of a finite magnetic flux in the
Hamiltonian �4�,

H = �− i
�

��
+

�

2
�r −

�

�0
�2

. �36�

Equation �9� becomes13

n
��k� = k� + ��AC

� + �AB�/2� . �37�

Thus, the AB effect contributes just a spin-independent ad-
ditive phase, i.e., in Eq. �22�, the AC phase has to be re-
placed by the sum of AB and AC phases.

V. CONCLUSIONS

In summary, we have shown that zero conductance reso-
nances appearing as a signature of interfering resonant states
of the loop system, and as a consequence of its asymmetry,
behave in a similar way under the influence of a magnetic
flux through the loop as in presence of a perpendicular elec-
tric field generating Rashba spin-orbit coupling. Real con-
ductance zeros are lifted by the influence of these external
fields, being shifted into the complex plane depending on the
value of the AB�AC� phase. In the case of the magnetic flux,
it is the breaking of time reversal symmetry which destroys
the energetic degeneracy of states with opposite chirality,
preventing the destructive interference leading to the zeros.
For Rashba SOC, time reversal symmetry is respected, but
not spin reversal symmetry, which again leads to a chiral
dependence in the energy of the loop wave function and
eventually to the lifting of the conductance zeros.
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APPENDIX: DERIVATION OF THE TRANSMISSION
AMPLITUDE IN THE SINGLE-ELECTRON SCATTERING

PICTURE

This derivation follows Refs. 13 and 12. System geometry
and coordinates are shown in Fig. 1. Asymmetry is intro-
duced by choosing different lengths lup and llow for upper and
lower branches of the ring in the figure, and is expressed by
means of the asymmetry factor R= llow/ lup. This leads to dif-
ferent phases at the left junction �A�:

��A� =
2�

R + 1
� �A, ���A� =

2�R

R + 1
� �A� . �A1�

The connection of leads and ring is described by the appli-
cation of spin-dependent Griffith’s boundary conditions,30

which demand �a� continuity of the wave function and �b�
probability current conservation at the junctions �A� and
�B�.37

To be able to apply the boundary conditions, we need the
wave functions of leads and branches. The wave functions
�I and �II for incoming and outgoing leads respectively, can

be expanded in terms of the spinors 	� at the junctions

�I�x� = �
�=↑,↓

�I
��x�	���A�, x � �− �,0� , �A2�

�II�x�� = �
�=↑,↓

�II
��x��	��0�, x� � �0,�� . �A3�

The expansion coefficients are the orbital wave functions

�I
��x� = i�eikx + r�e−ikx, �A4�

�II
��x�� = t�eikx�, �A5�

where we assume an incident plane wave from the left with
wave number k. The coefficients i� of the incoming wave are
chosen such that ���i��2=1. r� and t� are the spin-dependent
reflection and transmission coefficients, respectively. A simi-
lar expansion in terms of the ring eigenstates in Eq. �12�
yields the wave functions �up and �low of upper and lower
branches, respectively,

�up��� = �
�=↑,↓

�up
� ���	����, � � �0,�A� , �A6�

�low���� = �
�=↑,↓

�low
� ����	��− ���, �� � �0,�A�� ,

�A7�

with the corresponding orbital components

�up
� ��� = �

=+,−
a

�ein
��, �A8�

�low
� ���� = �

=+,−
b

�e−in
���, �A9�

where n
� is given by Eq. �9�.

Imposing the boundary conditions mentioned above, it is
now possible to relate the transmission and reflection coeffi-
cients r� and t� to the input parameters i�. The continuity
conditions for the wave function demand �II

��0�=�up
� �0�

=�low
� �0� and �I

��0�=�up
� ��A�=�low

� ��A��, yielding the equa-
tions

�
=+,−

a
� = �

=+,−
b

� = t�, �A10�

�
=+,−

a
�ein

��A = �
=+,−

b
�e−in

��A� = r� + i�. �A11�

Probability current density conservation requires jup
� + jlow

�

+ jI�II�
� =0 at the junctions. The current densities follow evalu-

ating the expressions derived in Sec. II for the wave func-
tions above. The �dimensionless� ring currents read

jup
� ��� =

1

2
���up

� 	��†�v̂�up
� 	�� + �up

� 	��v̂�up
� 	��†���� ,

�A12�
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jlow
� ���� =

1

2
���low

� 	−
��†�v̂��low

� 	−
�� + �low

� 	−
��v̂��low

� 	−
��†�

����� , �A13�

where v̂���= v̂0���+ v̂SO���, v̂����= v̂0���− v̂SO���, and
	−

�����=	��−���. The currents in the leads are given by

jI
��x� =

1

2
���I

�	A
��†�v̂0�I

�	A
�� + �I

�	A
��v̂0�I

�	A
��†��x� ,

�A14�

jII
��x�� =

1

2
���II

�	B
��†�v̂0�II

�	B
�� + �II

�	B
��v̂0�II

�	B
��†��x�� ,

�A15�

where 	A�B�
� =	����A�B���. Using the equality of the wave

function at the junctions and noting that v̂SO���	����
=−v̂SO���	−

�����, the probability current density conserva-
tion condition simplifies to

�v̂0�up
� ��=0��A� + �v̂0�low

� ���=0��A�� + �v̂0�I�II�
� �x�x��=0 = 0.

�A16�

From that follows an additional pair of equations for the
coefficients:

�
=+,−

a
� n

�

k�
− �

=+,−
b

� n
�

k�
+ t� = 0, �A17�

�
=+,−

a
�ein

��A
n

�

k�
− �

=+,−
b

�e−in
��A�

n
�

k�
+ i� − r� = 0.

�A18�

Together with Eqs. �A10� and �A11�, we now have enough
equations to determine the coefficient set �r� , t� ,a

� ,b
��, 

=±, for both spin polarizations �= ↑ ,↓ as a function of the
input coefficients i�, the incident wave number k, ring radius
� and SOC constant �. For an incident current from the
right, an analogous calculation is performed with �i� ,r�� �left
lead� and �t� ,0� �right lead� replaced by �0, t��� and �r�� , i���,
respectively. This enables us to formulate the scattering ma-

trix of the ring system o� =S� i�, where o� stands for outgoing and

i� for incoming wave coefficients. The relations can be writ-

ten as t�
���=���T���

���
i
��
���, r�

���=���R���
���

i
��
���. A careful examina-

tion shows that no spin flip amplitudes for transmission or
reflection in this spinor basis are present, and a possible
modification of the spinor is only due to a difference between
propagating channels. Thus, the scattering matrix reads

S� =�
R↑ 0 T↑� 0

0 R↓ 0 T↓�

T↑ 0 R↑� 0

0 T↓ 0 R↓�
 . �A19�

The overall conductance then follows from the entries of the
scattering matrix by means of the Landauer conductance
formula28,29 shown in Eq. �21�, with the spin-dependent
transmission amplitude given by Eq. �22�. The corresponding
expression for the reflection amplitude is

R���,�,�� =
cos �� + 3 cos � − 4 cos �AC

�

cos �� − 5 cos � + 4 cos �AC
� + 4i sin �

.

�A20�

The �time reversed� functions for incident wave in the right
lead are related to those above by T����AC

� �=T��−�AC
� � and

R�� =R�.
The transmission and reflection coefficients with respect

to the standard �z basis ��s	� are obtained by the correspond-
ing spin rotation ����s	�→ ���	�� of the diagonal transmis-
sion and reflection blocks in the scattering matrix �A19�, e.g.,
for the transmission

Tss� = �s���−1�0� � �T���� � ���A��s	 , �A21�

where

���� =�cos



2
e−i� sin




2

sin



2
− e−i� cos




2
 �A22�

and

�T���� = �T↑ 0

0 T↓
� , �A23�

and analogously for the reflection coefficients.
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