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We study the behavior of two-dimensional electron gas in the fractional quantum Hall regime in the presence
of finite layer thickness and correlated disordered potential. Generalizing the Chern number calculation to
many-body systems, we determine the mobility gaps of fractional quantum Hall states based on the distribution
of Chern numbers in a microscopic model. We find excellent agreement between experimentally measured
activation gaps and our calculated mobility gaps, when combining the effects of both disordered potential and
layer thickness. We clarify the difference between mobility gap and spectral gap of fractional quantum Hall
states and explain the disorder-driven collapse of the gap and the subsequent transitions from the fractional
quantum Hall states to the insulator.
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I. INTRODUCTION

One of the most remarkable properties of two-
dimensional electron gas �2DEG� is the amazing precision of
the Hall resistivity quantization �xy =h / �ie2� in a perpendicu-
lar high magnetic field at low temperatures, regardless of
materials, geometries, impurities, and carrier concentrations
of experimental systems. This phenomenon is known as the
integer quantum Hall effect1 �IQHE� for integer i, or as the
fractional quantum Hall effect2 �FQHE� for certain fractional
values of i. At the Hall resistivity plateaus, the longitudinal
resistivity �xx vanishes at zero temperatures, but has an
Arrehenius-type temperature T dependence,

�xx � exp�− �/2kBT� , �1�

where kB is the Boltzmann’s constant.3–5 The thermally acti-
vated behavior suggests that there is an activation gap � /2 in
the excitation spectrum of each quantum Hall state. The gap
has an origin of Landau level spacing in the IQHE,6 and a
more profound origin of electron-electron interaction in the
FQHE;7 in fact, the existence of the activation gap leads
directly to the Hall resistivity quantization and the conse-
quent incompressibility of the corresponding Hall liquid at
low temperature.

Theoretically, � in the FQHE is expected to be the cre-
ation energy of a pair of free quasielectron and quasihole. In
a pure system, this is the asymptotic value of the excitation
spectrum in the large momentum limit, found to be as large
as 0.1e2 /�lB,8,9 where � is the dielectric constant and lB
= ��c /eB�1/2 the magnetic length. However, experiments3–5

found much smaller excitation gaps, presumably due to the
reduction caused by the presence of disorder, the thickness of
the 2DEG layer, and the mixing of Landau levels. Yoshioka10

combined the effects of layer thickness11 and Landau level

mixing,12 and obtained reasonable agreement with experi-
mental results in high-mobility systems at large enough mag-
netic fields.5

However, without taking into account the effects of disor-
der, theoretical considerations cannot explain the vanishing
activation energy below finite magnetic field �about 5 T�.4,5

Qualitatively, disorder broadens the quasielectron-quasihole
excitation band, leading to a reduction of the energy gap
between the ground state and excited states.3 MacDonald et
al.13 and Gold14,15 considered the effects of disorder. Both
theoretical approaches contain adjustable parameters, and
more importantly, fail to answer the following crucial ques-
tions: Which quasielectron-quasihole excitations are contrib-
uting to the activated longitudinal resistivity? What is the
nature of the activation gap?

To answer these questions, let us look at the single-
particle picture of the IQHE first. In a clean system with
exactly n �labeled from 0 to n−1� Landau levels filled, the
activation gap is obviously the Landau level spacing ��c,
where �c=eB /m*c is the cyclotron frequency. This involves
the excitation of an electron in the �n−1�th Landau level to
the nth Landau level, or equivalently, the excitation of a pair
of electron in the nth Landau level and hole in the �n−1�th
Landau level. In the presense of disorder, each Landau level
is broadened into a Landau band �with bandwidth 2�, say�.
Due to Anderson localization, localized states exist in the
tails of each band, and delocalized states only exist in the
center of the band �where the mobility edge is�. The excita-
tion of an electron from a localized level to another does not
contribute to the longitudinal resistivity; only excitations in-
volving delocalized levels matter. Therefore although the
spectral gap in this case is reduced to ���c−2��, the energy
to excite a pair of free electron and free hole is still
��c—related to the mobility gap rather than the spectral gap
of the system. In the FQHE, on the other hand, we have
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quasielectron and quasihole excitations. Similar to electrons
in the integer case, these quasiparticles can be trapped in
their potential valleys and become localized, thus do not con-
tribute to the longitudinal resistivity. Therefore we need to
find, for the FQHE, the mobility edge—the energy beyond
which quasiparticle excitations are delocalized.

In the noninteracting IQHE, the calculation of topologi-
cally invariant Chern numbers has been established16–23 as a
reliable way to obtain the Hall conductance, to measure the
localization length critical exponent, and to determine
whether a single-particle state is localized or conducting—
thus where the mobility edge is. Physically, the Chern num-
ber of a state is the �dimensionless� Hall conductance, which
can be derived from the Kubo formular, averaged over
boundary conditions of a finite system on a torus.17 In addi-
tion, it has an elegant geometric interpretation as the integral
of the curvature of the quantum state in the parameter space
spanned by two angular parameters �twisted boundary
conditions�—the first Chern class of a U�1� principal fiber
bundle on the torus.24–26 Chern numbers are topologically
invariant under small perturbations of Hamiltonian, such as
weak disorder, which allows the mobility gap to open for a
finite range of magnetic field, leading to the plateau structure
of the IQHE as long as the Fermi level lies in the mobility
gap.

However, the geometric interpretation of the Hall conduc-
tance leads to an apparent controversy17,27 in the FQHE. On
the one hand, if a system exhibits the FQHE, the many-body
ground state of the system must be degenerate on a toroidal
geometry; otherwise, gauge-invariance arguments produce
only integral Hall conductance.28 For a pure system at filling
fraction �= p /q �p and q relatively prime to each other�, the
ground-state manifold is q-fold degenerate. Generically,
these q degenerate states share a total Chern number p, re-
gardless of the Chern number carried by each state. Thus the
Hall conductance of the pure system is the average Chern
number of these q states, fractionally quantized at 	H
= pe2 /qh. However, numerical calculations show that impu-
rities lift the degeneracy in a finite system,29 implying that
the Hall conductance would only be quantized to fractional
values under superfluous conditions.30

Wen and Niu31 proposed that states of a system exhibiting
the FQHE are topologically degenerate on a torus �in gen-
eral, on high-genus Riemann surfaces� in the thermodynamic
limit. The ground-state degeneracy is, in fact, a signature of
the topological order of the bulk, invariant against weak but
otherwise arbitrary perturbations �including symmetry-
breaking impurity potential�.32 In a finite system, the
quasidegeneracy of the states replaces the exact degeneracy,
which can be recovered in the thermodynamic limit. The
topological degeneracy thus guarantees the Hall conductance
to be quantized at fractional values in the fractional regime
even in dirty systems, in which the topological Chern num-
ber for each many-body state is well defined. Based on these
ideas, we performed a numerical study of topological Chern
numbers for the �=1/3 FQHE in finite systems.33 The mo-
bility gap for the FQHE can be determined from the distri-
bution of the Chern numbers of the quasidegenerate many-
body states. The results quantitatively explain the absence of
the activation gap of the FQHE due to disorder at small

magnetic fields, as well as the disorder-driven collapse of the
gap and the subsequent transition from the FQHE to insula-
tor at higher fields, observed by various experiments.3–5

In this paper, we further apply the method of Chern num-
ber calculation to study the effects of layer thickness of
2DEG and correlated potential on mobility gaps of FQHE
systems. In Sec. II, we introduce our microscopic model for
2DEG with disordered potential and finite layer thickness,
and explain the Chern number calculation for FQHE sys-
tems. In Sec. III, we discuss the effects of layer thickness on
the properties of 2DEG, in particular on mobility gaps,
which we compare to the activation gaps measured by ex-
periments. We then discuss the effects of correlated impurity
potential on mobility gaps in Sec. IV before we summarize
our results in Sec. V.

II. MODEL AND METHOD

We consider a two-dimensional �2D� polarized interacting
electron system on an L1
L2 rectangular area with general-
ized periodic boundary conditions �PBCs�

T�L j���r� = ei�j��r� , �2�

where T�L j� is the magnetic translation operator and j=1, 2,
representing x and y directions, respectively. In the presence
of a strong magnetic field, one can project the Hamiltonian
of the system onto the partially filled, lowest Landau level.
Therefore we consider the following projected Hamiltonian
in the presence of both Coulomb interaction and disorder:33

H =
1

A
�
ij

�
q

e−q2/2V�q�eiq·�Ri−Rj� + �
i

�
q

e−q2/4Uqeiq·Ri,

�3�

where Ri is the guiding center coordinate of the ith electron,
Uq is the impurity potential with wave vector q, and

V�q� =
2�e2

�q
F�q� �4�

is the Fourier transform of the electron-elctron interaction.
The factor F�q� generalizes the Coulomb interaction to the
case with finite electron layer thickness �to be explained in
the next paragraph�. We use the Gaussian white-noise poten-
tial generated according to the following correlation relation
in q space:

�UqUq�� =
W2

A
�q,−q�, �5�

which corresponds, in real space, to

�U�r�U�r��� = W2��r − r�� , �6�

where W is the strength of the disorder �in units of e2 /�� and
A=2�NslB

2 is the area of the system. To study the effects of
correlated potential, we also generate the Gaussian correlated
random potential U�r� according to

�UqUq�� =
W2

A
�q,−q�e

−q2�2/2, �7�

which leads to
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�U�r�U�r��� =
W2

2��2e−�r − r��2/2�2
, �8�

where � is the characteristic correlation length. Note that in
the limit of �→0, we recover the Gaussian white-noise po-
tential.

To describe the thickness of a quasi-two-dimensional
electron system, we employ the Fang-Howard variational
wave function

��z� = �b3/2�1/2ze−bz/2, �9�

where b depends on the material properties and the carrier
density of the system. The parameter b−1 has the physical
meaning of electron layer thickness, thus we will use, unless
otherwise specified, the dimensionless layer thickness �
= �blB�−1 hereafter. The experimentally interesting range of
parameter is ��1. For the Fang-Howard wave function, the
reduced Coulomb interaction in two dimensions becomes11

V�r� = �e2/���
0

�

dqF�q�J0�qr� , �10�

where

F�q� = 	1 +
9

8

q

b
+

3

8

q2

b2
	1 +
q

b

−3

�11�

and J0 is the Bessel function of zeroth order. This factor
F�q�, the same as in Eq. �4�, softens the bare Coulomb inter-
action between electrons, especially at short distances.

We diagonalize the Hamiltonian with Lanczos algorithm
and compute the Hall conductance 	H through the Chern
number calculation, which offers an unambiguous criterion
to distinguish between insulating and current carrying states
in an interacting system.18,33 With a unitary transformation

�k = exp�− i�
i=1

Ne 	 �1

L1
xi +

�2

L2
yi
��k, �12�

we can write the boundary-condition averaged Hall conduc-
tance for the kth many-body eigenstate �k as 	H�k�
=C�k�e2 /h, where the Chern number C�k� for the state is

C�k� =
i

4�


�

d����k�
��k

��
� − � ��k

��
��k�� . �13�

Here, the closed path integral is carried out along the bound-
ary � of the boundary condition space �the magnetic Bril-
louin zone� 0��1 ,�2�2�. C�k� is exactly the Berry phase
�in units of 2�� accumulated for the state when the boundary
conditions evolve along �. We separate the magnetic Bril-
louin zone into at least 25 meshes depending on the system
size and calculate the sum of the Berry phase from each
mesh. For the mesh sizes we choose, we find converged in-
teger Chern numbers. We emphasize that throughout the pa-
per we use the rectangular geometry, which facilitates the
calculation of Chern numbers. A heuristic but qualitative dis-
cussion on the ground-state splitting and localized quasipar-
ticle excitations also exists for a spherical geomotry.34

III. EFFECTS OF LAYER THICKNESS

In this section, we discuss the effects due to the finite
thickness of the 2DEG for �=1/3. We use the Fang-Howard
variational wave function, introduced in Sec. II, to describe
the electronic wave function in the perpendicular direction.
We consider the Gaussian white-noise potential, and com-
pare the disorder effects to the ideal two-dimensional case.33

In the following subsections, we present results on density of
state, energy, and energy split of ground states, spectral gap,
distribution of Chern numbers, and mobility gap. These re-
sults are qualitatively similar for cases with and without fi-
nite layer thickness.

A. Density of states

We diagonalize the system to obtain up to 30 lowest states
for each sample for Ne=3–8. Figure 1�a� shows the evolution
of the many-body density of the 15 states as the layer thick-
ness changes in the upper panel for weak disorder W=0.05
and system size Ne=6. For W=0.05 and �=0.0, a spectral
gap is visible in the density of states with the low-energy
peak consisting of three nearly degenerate states. As � in-
creases, the energies of states becomes closer to zero while
the spectral gap narrows, reflecting the softening of the Cou-
lomb interaction. For �=2.0, even a weak W=0.05 is suffi-
cient to destroy the spectral gap completely. For comparison,
Fig. 1�b� shows the evolution of the density of the 15 states
as W increases for zero layer thickness �=0.0 in the lower
panel. Disorder broadens the density of states and the low-
energy peak merges with other states at W�0.11 for Ne=6.

FIG. 1. �Color online� Density of the lowest 15 many-body
states for Ne=6 at �=1/3. �a� W=0.05 with �=0.0, 0.5, 1.0, 1.5,
and 2.0. �b� �=0.0 with W=0.05, 0.11, 0.16, 0.22, and 0.27.
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B. Ground-state energy

The effects of the finite layer thickness on the ground-
state energy of the fractional quantum Hall effect has been
considered by MacDonald and Aers.35 In the absense of dis-
order, they found that the the Laughlin state energy at �
=1/3 for �=1.0 reduces to 0.576 of its value for �=0.0.
Chakraborty36 found a similar reduction ratio of 0.579 using
the hypernetted-chain method.

In the presence of disorder, we find a similar reduction in
magnitude of the many-body ground-state energy E0 in finite
systems. Figure 2�a� shows the reduction of the ground-state
energy as a function of � for Ne=6 at �=1/3. Here, we
defined the ground-state energy as the average energy of the
lowest three levels, which are topologically degenerate in the
thermodynamic limit. To compare our results with earlier
works,35,36 we first add, to the many-body ground-state en-
ergy, a single-particle contribution from interactions of an
electron and its images due to periodic boundary conditions.
This energy can be related to the Coulomb energy of the
classical square Wigner crystal with finite layer thickness.45

We then extrapolate our data for Ne=3–7 electrons to the
thermodynamic limit according to

E0�Ne� = E0�Ne → �� + a0/Ne. �14�

The results for ground-state energy per electron are shown in
Fig. 2�b�. By extrapolating the results to the clean limit by a
quadratic fit, we obtain a reduction ratio of 0.572 for the
ground-state energy from �=0.0 to �=1.0. The value is in
good agreement with known results in the clean case.35,36 In

the presence of the impurity potential, disorder shifts the
ground-energy state down, leading to a slightly larger ratio
�e.g., 0.596 for W=0.11�.

In the current and earlier works,35,36 the ground-state en-
ergy is negative, due to the assumption of a uniform neutral-
izing background charge, which cancels out the singular con-
tribution of the Coulomb interaction among electrons.
Mathematically, we substract the singular q=0 contribution
from the electron-electron interaction, as illustrated in Ap-
pendix A. Therefore a reduction of E0 in magnitude is, in
fact, an increase of the ground-state energy, as layer thick-
ness increases. This is mainly because the corresponding re-
duction of the attractive interaction between electrons and
the background charge negates the contribution from the
softening of the electron-electron repulsion. Meanwhile, E0
decreases with increasing W because electrons take advan-
tage of the negative potential region in the ground state as
shown in Fig. 2.

C. Energy split of the ground states of finite systems

Wen and Niu31 pointed out that the ground states of the
fractional quantum Hall state are degenerate on a torus even
in the presence of disorder. However, this is strictly valid
only in the thermodynamic limit. For a finite system on a
torus of length L, the ground states have an energy split, or a
bandwidth Eb, of order

Eb � e−L�m*��1/2
, �15�

where � is the quasiparticle-quasihole pair creation energy
and m* is the effective mass of the quasiparticle. The energy
split comes from the tunneling process that a virtually cre-
ated pair of quasiparticle and quasihole propagate in opposite
directions and annihilate on the other side of the torus.

In Fig. 3, we plot the bandwidth Eb of the lowest three
states, which are well separated from all higher levels at �
=1/3 and W=0.05, as a function of �Ne, proportional to the
linear system size. For various �, the decrease of Eb with
�Ne�L is consistent with the exponential decrease in Eq.
�15� expected by the theory,31 as found in Ref. 33 for zero
layer thickness, though we cannot completely rule out a
power-law decrease of Eb based on these finite-size values.
We find Eb increases with the layer thickness, again consis-

FIG. 2. �Color online� �a� Ground-state energy �excluding inter-
action between electrons and their images� as a function of � for
Ne=6 at �=1/3. �b� Ground-state energy per electron, extrapolated
to the thermodynamic limit, as a function of � for �=1/3.

FIG. 3. �Color online� Energy split of ground states as a function
of the square root of electron number �linear system size� on a
semilog scale for various � at W=0.05 and �=1/3.
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tent with Eq. �15� assuming that the quasiparticle-quasihole
pair creation energy decreases with increasing �, as the Cou-
lomb repulsion between electrons reduces. From �
=0.0–1.0, the slope in the semilog plot of Fig. 3 reduces by
roughly 30%. The reduction is, however, smaller than that of
either the spectral gap or the mobility gap which we will
discuss in the following sections.

We also note that a weak periodic potential, instead of
disorder, gives rise to a similar exponential dependence of
the splitting on system size,37 implying, again, a degenerate
ground-state manifold in the thermodynamic limit. The non-
trivial ground-state degeneracy, existing on Riemann sur-
faces with genus 1 �torus� or greater,31 is a signature of to-
pological order32 possessed by these states. The basic physics
of the topological degeneracy and the finite-size splitting of
the ground-state manifold in FQHE is the same as in chiral
spin liquid, which is also a prototype for studying topologi-
cal order and quantum error-correcting code.38

D. Spectral gap

Since the ground-state manifold on a torus consists of
three quasidegenerate levels for �=1/3, we define the spec-
tral gap as the energy difference between the third and the
fourth lowest energy states

Es = E�4� − E�3� . �16�

At large disorder, Es simply becomes the energy level spac-
ing, when the lowest three levels no longer form a separate
band from higher levels.

We extrapolate Es to the thermodynamic limit by fitting Es
to

Es�Ne� = Es�Ne → �� + as/Ne. �17�

Figure 4�a� shows Es�Ne→�� as a function of � for various
W at �=1/3. For small W, Es decreases as � increases, or as
the electron layer becomes thicker. For large W, Es remains
smaller than or close to 0.003, reflecting the closure of the
spectral gap of the quantum Hall liquid. This finite but small
residual value comes from the energy-level spacing of the
insulating phase, which may disappear with a more sophisti-
cate definition of the spectral gap. In fact, for fixed layer
thickness, Es first decreases with increasing disorder, then
increases weakly with disorder after reaching its minimum.
This minimum signals the critical disorder at which the spec-
tral gap closes in the thermodynamic limit.

E. Groups of Chern numbers and their statistics

Due to the topological threefold degeneracy of the each
energy level in the thermodynamic limit for �=1/3 quantum
Hall liquids on a torus, we define the Ngth group of states as
the �3Ng−2�th, �3Ng−1�th, and �3Ng�th states, and calculate
the Chern number of such a group C�Ng� as the sum of the
Chern numbers of the three states within the group. While
for small enough disorder, the states within each group are
degenerate in the thermodynamic limit, this no longer holds
for disorder strength large enough to distroy the fractional
quantum Hall phase and the accompanying topological order.

In earliar work,33 we found the following properties for
the statistics of the group Chern numbers for two-
dimensional electrons at �=1/3 with zero layer thickness.

�i� For weak disorder, the Chern number of the lowest
group is always unity, carried by the three lowest states. This
together with the fact that the three states become degenerate
in the thermodynamic limit, as well as the fact that there is a
finite spectral gap separating the three states to the rest, is the
manifestation of the �=1/3 fractional quantum Hall state on
a torus. In the thermodynamic limit, each degenerate ground
state carries a Hall conductance of e2 /3h. This also holds for
the Chern numbers of upper groups for small enough disor-
der.

�ii� Large enough disorder destroys the quantization of
the Chern number of each group in individual samples from
upper groups down to the lowest one. For certain disorder,
the probability of the group Chern number being unity de-
creases sharply around one group, the energy of which we
can define as the mobility edge. We will discuss the proce-
dure in greater detail later in Sec. III F.

�iii� The Chern number calculation is robust for small
systems with as few as five electrons. The fluctuation of the
group Chern number has little size dependence, which there-
fore can be used as an robust indicator of the degree of
delocalization.

Figure 2 in Ref. 33 summarizes these properties, which
can be used to determine the mobility gap. We repeat the
calculation in the presence of finite layer thickness. Figure 5
shows, in analog to Fig. 2 in Ref. 33, the probability distri-
bution P�C� for group Chern number C of the lowest five
groups of states in systems of five to seven electrons for W

FIG. 4. �Color online� Spectral gap, extrapolated to the thermo-
dynamic limit, �a� as a function of � for various W, and �b� as a
function of W for various � at �=1/3.
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=0.05 and for �=1.0 and 2.0. We find that the above-
mentioned properties remain intact qualitatively in the pres-
ence of finite layer thickness. Quantitatively, the increasing
layer thickness shifts the mobility edge toward the ground
state. For example, for �=2.0, the probility P�C=1� of the
lowest group is close to unity, suggesting that fractional
quantum Hall phase survives at W=0.05. Meanwhile,
P�C=1� of the second lowest group drops sharply to about
0.6, and may drop further lower for larger systems. This
indicates the location of the mobility edge.

We compare, in Fig. 6, the distribution P�C� for larger
disorder W=0.16 and 0.11 for �=1.0 and 2.0, respectively,
again for the lowest five groups in five- to seven-electron
systems. For the strong disorder, even the quantization of the
lowest group no longer holds, which becomes much smaller
than 1, indicating an insulating ground state in the thermo-
dynamic limit.

F. Mobility gap

As discussed above, the fluctuation of the total Chern
numbers in each group of states is an indication of the degree
of delocalization, which we can used to determine the mo-
bility edge. Similar as in Ref. 33, we define Pext=1− P�C
=1�. The value of Pext is the probability of the breakdown of
the Hall-conductance quantization and thus a measure of the
delocalization of the charge excitations. This is analogous to
the noninteracting IQHE case, where particle excitations
from localized states to delocalized states lead to fluctuation

of the total Chern number, or Hall conductance.
For small disorder, Pext remains close to 0 for groups of

states beyond the ground-state manifold. This reflects that
the mobility gap �which separates localized states from de-
localized states� is different from the spectral gap �which
separates the ground-state manifold to higher-energy states�,
as excitations across spectral gap may not lead to the fluc-
tuations of the Hall conductance or contribute to the longi-
tudinal conductance. Although the two gaps likely disappear
simultaneously when disorder is large enough to destroy the
quantum Hall state. Therefore we expect that Pext rises
sharply �probably abruptly� at the mobility gap in the ther-
modynamic limit, a signature imprinted in finite systems as
well. Here, we find the sharpest jump of Pext between one
group and its lower neighboring group, and define the energy
of the higher group as the mobility edge. We measure the
mobility gap Em�Ne� from the ground-state energy to the mo-
bility edge for the system of Ne electrons. Since the states in
each group are degenerate in the thermodynamic limit, we
use the average energy in each group to calculate Em�Ne� to
reduce finite-size fluctuations. We then extrapolate Em to the
thermodynamic limit from Ne=4–8 electrons. We plot the
resulting Em as a function of W for various � in Fig. 7�a�.
The plot clearly demonstrates that finite layer thickness re-
duces the mobility gap as expected. In order to show the
overall trend in the disorder dependence of the gap, particu-
larly for weak disorder for various 2D layer thicknesses, we
include the gaps for pure systems on y axes �for W=0 and
1/�=0�. The calculations of the pure gaps, which differ
from the Chern number calculations in disordered systems,

FIG. 5. �Color online� Probability distribution P�C� of total
Chern number C for the lowest five groups of states in systems of
five to seven electrons for W=0.05 and for �=1.0 and 2.0. Energy
increases from left to right. The arrow in each panel marks the
group of states located at the mobility edge.

FIG. 6. �Color online� Probability distribution P�C� of total
Chern number C for the lowest five groups of states in systems of
five to seven electrons for W=0.16 and 0.11 for �=1.0 and 2.0,
respectively. Energy increases from left to right.
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are illustrated in detail in Appendix B. Comparing Fig. 7�a�
with Fig. 4�b�, we find that the mobility gap and the spectral
gap differ significantly for small disorder and small layer
thickness, although they both decrease with increasing disor-
der, as well as with increasing layer thickness. The two gaps
appear to disappear at roughly the same disorder strength.

In experiments, an energy gap � in the excitation spec-
trum of the correlated many-body ground state can be ex-
tracted from the temperature dependence of the magnetore-
sistivity, �xx�exp�−� /2kBT�, where kB is the Boltzmann’s
constant and � /2 is often referred as the activation energy.3–5

This activation energy is related to the mobility gap we cal-
culated, which separates the ground state from its delocalized
quasiparticle excitations. Boebinger et al.4 systematically
studied the activation energy for �=1/3 ,2 /3 ,4 /3, and 5/3
and its dependence on sample mobility � �an indication of
disorder� in a series of GaAs-AlxGa1−xAs samples. For a
class of high-mobility �at that time—with mobility up to
106 cm2/V s� samples, they found that ��0.049e2 /�l−6 K,
consistent with a simple phenomenological model3 that as-
sumes a disorder-broadened excitation energy level with half
width �=6 K. Willett et al. studied a then ultrahigh-mobility
sample and compared the activation energy to theoretical re-
sults incorporating finite layer thickness11 and Landau level
mixing.10,12 While the agreement between experimental re-
sults and theoretical caculations �in the absence of disorder�
is satisfactory for magnetic field stronger than 10 T, they
diverge significantly at smaller magnetic field, presumably
due to disorder. Simple theories13,14 with ad hoc treatment of
disorder fail to account for all the discrepancies.

With our numerical calculations which treat disorder and
layer thickness on an equal footing, we can now attempt
to compare our results to experimental ones quantitatively.
In experiments, the mobility � dependence of � can
then be extracted from the known dependence of � on the
electron density n of these samples, since n determines
the magnetic field B �or lB� at the 1/3 family of fillings.
For semiquantitative comparison, we use a typical depen-

dence, �=�0�n /n0�1.5, where �0=600 000 cm2/V s and n0

=1.5
1011 cm−2, as extracted from Fig. 1 of Ref. 4. For
comparison, we assume that in our simple disordered model
both the �zero field� mobility and the �high field� mobility
gap are dominated by short-range scatterers �appropriate for
these then high-mobility samples�. In the Born approxima-
tion �as derived in Appendix C�, we have

�0 = e�3/�m*2W2� . �18�

Figure 7�b� compares this empirical formula of ���0� with
the mobility gap we obtained in our calculation for various
�. We find that the experimental data fall nicely into the
range of 0.5�1. This is fully expected in typical experi-
ments: the variational parameter b−1 for a typical GaAs-
AlGaAs sample with an electron density of N0=1011 cm−2 is
close to the magnetic length lB,11 which scales with B−1/2

�e.g., lB=57 Å for B=20 T�. In particular, Willett et al. ob-
tained b−1=39±1 Å for their sample, giving �= �blB�−1

�0.68 at B=20 T. We do not include, however, the effects
of Landau level mixing, which leads only to a small reduc-
tion of the mobility gap for clean samples.5,10

IV. EFFECTS OF CORRELATED POTENTIAL

In this section, we briefly discuss the effects of impurity
potential with finite correlation length for �=1/3. The corre-
lated potential is, in particular, relevant to ultrahigh-mobility
2DEG, such as GaAs based systems in which impurities are
introduced remotely above the 2DEG. The mobility of these
systems is generally believed to be limited by remote impu-
rity scattering, rather than by short-range interface defects.
To consider the correlated potential effects, we introduce the
Gaussian correlated random potential

�UqUq�� =
W2

A
�q,−q�e

−q2�2/2, �19�

as described in detail in Sec. II. Here, we restrict ourselves,
for simplicity, to bare Coulomb interaction without consider-
ing finite layer thickness. We are mostly interested in the
case of small correlation length ��1, in units of lB, where
quantitative results can be reached.

The results we find, in particular for �=1, are qualitatively
similar to those with Gaussian white-noise potential.33 Figure
8�a� compares the mobility gap Em as a function of W for
Gaussian white-noise potential ��=0� and Gaussian corre-
lated potential with �=1. The trend that increasing disorder
strength destroys the mobility gap is generically the same for
impurity potential with or without correlation. However, Em
survives larger W �by a factor of roughly 50%� for �=1 than
for �=0. This is not surprising since impurity potential cor-
relation enhances the electron mobility, in particular for low-
electron densities. As shown in Appendix C, the mobility of
the 2DEG, in the Born approximation, is enhanced by a fac-
tor of

�

�0 =
ekF

2�2

I0�kF
2�2� − L0�kF

2�2�
, �20�

where I0�x� is the zeroth-order modified Bessel function of
the first kind and L0�x� the zeroth-order modified Struve

FIG. 7. �Color online� �a� Mobility gap Em as a function of W
for various layer thickness �. Em is extrapolated from systems of
Ne=4–8 electrons to the limit 1 /Ne→0. �b� Dependence of Em on
inverse mobility 1 /�0 for various �. The dashed line is converted
from a fit to experimental data �taken from Ref. 4�. Here, we use an
empirical mobility-density relation as well as a mobility-disorder
relation in the Born approximation �0=e�3 / �m*2W2�. The data
points on the y axes �for W=0 and 1/�=0� are the gaps for pure
systems, whose calculations are illustrated in detail in Appendix B.
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function. Here, kF=�4�n=�2� / lB is the Fermi vector of the
polarized 2DEG. For �=1, the factor is � /�0=2.556. In the
long-range limit, one obtains

�

�0 � �8��kF��3. �21�

Figure 8�b� shows the mobility gap Em as a function of
1/� for impurity potentials with and without correlation, as
we have done here and in an earlier paper.33 Interestingly, Em
for �=1 scales back and lies roughly on top of the data for
�=0. This suggests that as long as � is not too large, the
effect of the range of potential can be lumped into that of
sample mobility; this makes comparisons between samples
of different types, as well as between theory and experiment,
more meaningful, because the mobility is the directly mea-
sured character of a sample, while the details of disorder
potential in general vary from sample to sample.

We do not have, however, quantitative conclusion for vary
large �, which is believed to be responsible for those
ultrahigh-mobility samples. Our finite-size calculations pre-
vent us from considering large � close to or even larger than
the system size, at which stage the system properties satu-
rate. We would also need to calculate Chern numbers for a
lot more eigenstates to obtain the mobility gap for the
smooth potential, which is beyond our current computing
capabilities. Nonetheless, it is expected that for those
ultrahigh-mobility samples, disorder plays a less important
role, and thus the mobility gap depends less on the mobility
of a sample.5

V. CONCLUSIONS AND DISCUSSIONS

Semiconductor heterojunctions with modulation doping is
the de facto fabrication technique for high-mobility quasi-
two-dimensional samples commonly used for the study of
the fractional quantum Hall effects. The range and strength
of the impurity potential and the finite layer thickness of the
systems can significantly affect the transport properties of the
system, such as the activation gap of the fractional quantum
Hall liquids. In this paper, we have studied these issues using
a microscopic disordered model of the fractional quantum

Hall liquids in a toroidal geometry. With the help of the
Chern number calculation, which is capable of directly prob-
ing the localization properties of many-body states, we have
determined the mobility edge of the Hall liquids based on the
fluctuations of the Hall conductivity and studied the depen-
dence of mobility gap on disorder strength, layer thickness,
and potential correlation.

Finite 2D layer thickness has significant effects on the
properties of the 2DEG in experimental samples. The spread
of the electron wave function in the perpendicular direction
softens the Coulomb interaction between electrons, reflected
both in the density of states and in the ground-state energy of
the system. Consequently, the spectral gap, which separates
ground-state manifold from excited states, decreases with in-
creasing layer thickness, as well as with increasing disorder
strength. The mobility gap, associated with the fluctuation of
topological Chern numbers—signaling delocalized excita-
tions, also decreases with increasing layer thickness and dis-
order. However, the two gaps are different by definition and,
indeed, distinguishable in numerical calculations, in particu-
lar for small layer thickness and weak disorder. Putting rea-
sonable experimental parameters, we found our results of the
mobility gap are in excellent agreement with the activation
gap measured by experiments, suggesting that the mobility
gap is responsible for the activated behavior in longitudinal
resistivity. Disorder and 2D layer thickness are the two domi-
nant factors affecting the value of the gap.

We also investigate the effect of the correlated disordered
potential on the mobility gap. For small correlation length,
we found an enhancement in the mobility gap compared to
the case of uncorrelated potential for the same disorder
strength. Such enhancement is consistent with the enhance-
ment in mobility of the 2DEG in the presence of the corre-
lated potential. As long as the correlation length is small, the
effect of the correlated potential can be attributed to that of
the sample mobility, which demonstrates it meaningful to
compare the gap as a function of mobility among samples of
different types and between theory and experiment.

In this paper, we model the electron wave function in the
perpendicular direction by the variational Fang-Howard
wave function. This is appropriate for modulation-doped
GaAs-AlxGa1−xAs heterojunctions, in which the Fang-
Howard function is a very good approximation to the nu-
merical self-consistent ground-state wave function.39 For re-
alistic values of layer thickness, the qualitative nature of the
ground states and the low-energy excitations of the quasi-
two-dimensional systems remains unchanged, in particular in
the incompressible phases.

Meanwhile, Shayegan et al.40 studied the fractional quan-
tum Hall effects in thick parabolic quantum wells. Due to the
selective doping of Al and screening, electrons experience a
flat potential and therefore the electron density are roughly
uniform in the quantum well. This results in a significantly
larger layer thickness, which increases with electron areal
density. In such a system, Shayegan et al.40 observed a dra-
matic decrease in the activation gap with increasing layer
thickness and thus the collapse of the fractional quantum
Hall effect. He et al.41 studied the effects of layer thickness
using a phenomenological model potential �neglecting the
accompanying effects of Landau level mixing� and obtained

FIG. 8. �Color online� �a� Mobility gap Em as a function of W
for Gaussian correlated potential with �=1.0, in units of lB, com-
pared with Gaussian white-noise potential ��=0�. �b� Dependence
of Em on inverse mobility 1 /� for �=1.0 and 0.0.
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qualitatively consistent results to the experimental measure-
ments. Although we have not repeated our calculations with
a different wave function more suitable for a parabolic quan-
tum well, we expect a similar trend of decreasing mobility
gap with increasing layer thickness. We would like to point
out that Fig. 7 clearly demonstrates that increasing layer
thickness can trigger a transition from a �=1/3 fractional
quantum Hall liquid to an insulator for fixed disorder
strength. The transition becomes easier to occur in the pres-
ence of larger disorder.
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APPENDIX A: GROUND-STATE ENERGY OF A TWO-
DIMENSIONAL SQUARE WIGNER LATTICE

WITH FINITE LAYER THICKNESS

We calculate the ground-state energy of finite-size sys-
tems with periodic boundary conditions. To compare our re-
sults with earlier works,35,36 we must add, to our numerical
ground-state energy, a single-electron contribution from the
interaction of an electron and its images due to periodic
boundary conditions �see also Appendix B�. In an ideal two-
dimensional square system of linear size L=�2�NslB, this is
simply the Madelung energy of a square lattice with lattice
constant L and, for each electron, is42,43

�M = −
e2

L 	2 − �
l1,l2

��−1/2���l1
2 + l2

2��
 = −
3.9e2

2L
�A1�

calculated first in the context of the Coulomb energy of the
two-dimensional classical Wigner crystal.44 The summation
is performed over lattice sites l= l1a1+ l2a2 for the primitive
lattice vectors a1 and a2 except l=0 and the �n�x� are the
Misra functions

�n�x� = �
1

�

dt tne−xt. �A2�

The factor of 1 /2 in Eq. �A1� comes from the double count-
ing of the electron-electron interaction.

In the presence of finite layer thickness, the Coulomb en-
ergy of the quasi-two-dimensional classical Wigner crystal is
also known for generic lattices.45 The wave function ��z� in
the perpendicular direction enters through the following
function:

f�y,b� = �
0

�

dz�
0

�

dz��2�z��2�z��e−y�z − z��2 �A3�

and for the Fang-Howard wave function

��z� = �b3/2�1/2ze−bz/2, �A4�

one can obtain f�y ,b�= f̃�b2 /4y�, where

f̃�t� =
3t

4
−

t2

2
+ �tet	3

8
−

t

2
+

t2

2

�	1

2
,t
 . �A5�

Here, the incomplete gamma function ��a ,x� is given by

��a,x� � �
x

�

dt ta−1e−t = xa�a−1�x� . �A6�

For a=1/2, the incomplete gamma function is also related to
the complementary error function

erfc�z� =
2

��
�

z

�

dt e−t2 =
�� 1

2 ,z2�
��

, �A7�

for z�0.
With the help of an integral transform, one can replace the

slowly converging sum of Coulomb energy into two rapidly
converging sums: one for the short-range part and the other
the long-range part, in the same spirit as in the original
Ewald method.44 In the following, the parameter that sepa-
rates the two sums is denoted as y0, chosen to be � /L2 in our
calculation. For convenience, one introduces the Jacobi �
function

��z,X� = �
m=−�

�

e2�mze−�m2X, �A8�

which converges fast for not too small X. Here, we only
review the results for a square lattice with lattice constant L
for simplicity. To be specific, they are the q→0 limit of Eqs.
�16�–�21� in Ref. 45 for the square lattice. The Coulomb
energy per electron for the square lattice can be written as

Ne
−1Eee = Ne

−1Eee
� + Ne

−1Eee
 , �A9�

where

Eee
�

Ne
=

e2

2��
�

y0

�

dy y−1/2f�y,b���2	0;
L2y

�

 − 1�

�A10�

and

Eee


Ne
=

��e2

2L2 �
0

y0

dy y−3/2f�y,b���2	0;
�

L2y

 − 1�

−
��e2

2L2 �
y0

�

dy y−3/2f�y,b� −
e2

2��
�

0

y0

dy y−1/2f�y,b�

+ �Ne
−1Eee

hom�q��q=0, �A11�

where Eee
hom�q� is the Coulomb energy corresponding to a

homogeneous distribution,
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Ne
−1Eee

hom�q� =
��e2

2L2 �
0

y0

dy y−3/2f�y,b�e−q2/4y

=
�e2

L2 	�1

q
�

q=0
−

15

8b

 . �A12�

Here the singular 1 /q term has its origin in the lack of charge
neutrality considered here. In fact, only nonsingular terms
survive in the total Coulomb energy once neutralizing back-
ground charge �e.g., located uniformly at z=−bd� is present.
The second term, as well as additional nonsingular terms
introduced by the interactions between electrons and the
background charge, depends only on “external” parameters,
such as layer thickness b and location of the background
charge bd. We neglected these terms since they have no ef-
fects on the results of the finite-size scaling in the
1/Ne→0 limit.

APPENDIX B: CALCULATIONS OF THE GAPS IN PURE
SYSTEMS WITH LAYER THICKNESS

In order to show the overall trend in the disorder depen-
dence of the gap, particularly for weak disorder for various
2D layer thicknesses, we presented the pure gaps �1/�=0,
W=0� in Fig. 7 for �=1/3. In this appendix we give the main
details. These types of calculations in PBC geometry have so
far been largely avoided for fear of strong finite-size effects.
These result from the interaction of the quasiparticles with
their images. Indeed such effects remain substantial �as large
as 30% in some cases� for even the largest sizes in exact
diagonalization studies. In order to remove these we follow
the practice of not neutralizing the quasiparticle �qp� and
quasihole �qh� excitations.8 This gives a positive contribution
of

e*2

2�A
� d2r�V�r� , �B1�

where e*=e /3 is the charge of the quasiparticle excitation, A
is the area of the system, and

V�r� =� d2q�
2�

q
exp�iq� · r�� , �B2�

where q� =n1G� 1+n2G� 2 is the wave vector appropriate for the

PBC unit cell, G� ’s are the corresponding reciprocal-lattice
vectors, and n’s are integers. We next subtract the repulsive
interaction energy of a single quasiparticle with its images:

e*2

2�
�

�1,�2=−�

�
1

�X� �����
, �B3�

where X� ����=�1L�1+�2L�2, �’s are integers and L� ’s are the di-
rect lattice vectors. These two terms together add to

�E = �e*/e�2�S� = �S�/9, �B4�

where S is the classical ground-state energy per electron
�Madelung energy� of a Wigner crystal of electrons.44,46 Note
that we are treating the quasiparticles as point objects. This

approximation only introduces another finite-size effect since
the size of the unit cell is several magnetic lengths whereas
the substantial density variation of the quasiparticle excita-
tions occurs over a magnetic length.

Starting from the usual expression of the gap in terms of
the ground-state energies:

� = E�� = 1/3 + qp� + E�� = 1/3 + qh� − 2E�� = 1/3� .

�B5�

With the above subtractions we obtain

�* = E*�� = 1/3 + qp� + E*�� = 1/3 + qh� − 2E*�� = 1/3�

+ �Eqp + �Eqh, �B6�

where E* is the finite part of the energy without the Made-
lung term �E*=E−NS� �note that S is negative�. This contri-
bution taken together for the three ground-state energies in
�* is a finite-size effect as are both �E energies so they will
disappear in the thermodynamic limit ���

* =���. Therefore
we need not correct any of these energies for finite layer
thickness. We then extrapolate �* to the thermodynamic
limit from its 1 /N dependence. We used the hexagonal unit
cell for this part as it has the highest degree of symmetry.
Table I gives the numerical values of the �� that we have
obtained from N=7–10 size systems. In the same table we
give the corresponding results for the finite layer systems.
We have shown all these on the y axis of Fig. 7 �for
1 /�=0 and W=0�.

APPENDIX C: MOBILITY OF TWO-DIMENSIONAL
NONINTERACTING ELECTRONS IN RANDOM

POTENTIAL

In this appendix, we review the results of the mobility of
a two-dimensional noninteracting electron system with a ran-
dom potential in standard perturbation theory47 and apply
them to our model system.

Consider spinless electrons in a quenched random poten-
tial U�r� with Gaussian correlation

�U�r�U�r��� =
W2

2��2e−�r − r��2/2�2
� W��r − r��� , �C1�

where � is the characteristic correlation length. Note that in
the limit of �→0, we recover

�U�r�U�r��� = W2��r − r�� �C2�

for a Gaussian white-noise potential. The total scattering rate
in the Born approximation is47

TABLE I. Gaps in pure FQHE systems at �=1/3 for various 2D
layer thickness.

� 0.0 0.5 1.0 1.5 2.0

� 0.1037 0.08410 0.06729 0.05656 0.04940
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1

�tr
=

2��

�
�

0

2� d�

2�
W̃	2kFsin

�

2

�1 − cos ��

=
4�2�

�
�

0

�

dr r�J0
2�kFr� − J1

2�kFr��W�r� , �C3�

where �=m* / �2��2� is the density of states of free electrons

and kF=�4�n=�2� / lB is the Fermi vector. W̃�k� is the Fou-
rier transformation of W�r�

W̃�k� =� d2rW�r�exp�− ik · r� . �C4�

For the Gaussian white-noise potential, W̃�k�=W2, thus

1

�tr
=

m*W2

�3 . �C5�

The mobility of the system with the short-range potential is
therefore

�0 =
e�tr

m* =
e�3

m*2W2 . �C6�

With simple algebras, we can rewrite the mobility � in terms
of the cyclotron energy ��c, the Coulomb energy e2 /�lB, and
the magnetic length lB as

�0 =
e

�
lB
2� ��c

e2/�lB
�2 1

W̄2
, �C7�

where W̄=�W /e2 is the dimensionless disorder strength.
For a long-range potential, kF��1, one finds47

1

�tr
= −

m

��kF�3�
0

�

dr
W��r�

r
. �C8�

In particular, for the Gaussian correlated potential,

W̃�k� = W2e−k2�2/2, �C9�

we can integrate Eq. �C3� and obtain

1

�tr
=

m*W2

�3 e−kF
2�2�I0�kF

2�2� − L0�kF
2�2�� , �C10�

where I0�x� is the zeroth-order modified Bessel function of
the first kind and L0�x� the zeroth-order modified Struve
function.48 The mobility of the system with the Gaussian
correlated potential is therefore

� = �0 ekF
2�2

I0�kF
2�2� − L0�kF

2�2�
. �C11�

In the long-range limit, we obtain

�

�0 � �8��kF��3. �C12�
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