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A model of transport is proposed to explain power-law current transients and memory phenomena observed
in partially ordered arrays of semiconducting nanocrystals. The model describes electron transport by a sta-
tionary Lévy process of transmission events and thereby requires no time dependence of system properties. The
waiting time distribution with a characteristic long tail gives rise to a nonstationary response in the presence of
a voltage pulse. We report on noise measurements that agree well with the predicted non-Poissonian fluctua-
tions in current, and discuss possible mechanisms leading to this behavior.
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I. INTRODUCTION

Arrays of semiconductor nanocrystals1 �quantum-dot ar-
rays, or QDAs� are of great interest for both fundamental
solid-state physics and applications. Self-assembled QDAs
are one of the simplest examples of macroscopic complex
systems built from “artificial atoms” with predesigned prop-
erties at the nanoscale. From the basic research perspective,
these arrays are compelling since one can control the Hamil-
tonian by design. In particular, they open new possibilities to
create systems with desirable unconventional transport prop-
erties. Charge and spin transport in QDAs could lead to ap-
plications in spintronics and quantum computation.2

Despite the progress in synthesis and fabrication of nano-
crystal arrays, the nature of electronic transport in them is
still poorly understood. Like other problems involving long-
range Coulomb interactions in disordered systems, this prob-
lem appears to be challenging. Proposed theoretical models
include mapping onto the problem of interface dynamics,3

onto a frustrated antiferromagnetic spin model with long-
range interactions,4 and generalizations5 of the variable range
hopping scenario.6

In the present work we attempt to explain the recently
observed7,8 transient power-law decay of current

I�t� = I0t−�, 0 � � � 1 �1�

as a response to a step in large bias voltage applied across the
array. The exponent � depends on temperature, dot size, cap-
ping layer, bias voltage, and gate oxide thickness in a sys-
tematic way.7,8 It is interesting that the observed � is less
than one in all samples. The condition ��1 ensures that �1�
is a true current from source to drain, rather than a displace-
ment current, since the net charge corresponding to �1� di-
verges with time, Q=�I�t�dt→�. At the same time, remark-
ably, the transient transport also possesses memory. Namely,
if the bias is turned off for t1� t� t2, then the current mea-
sured as a function of the time t̃= t− t2, after reapplying the
voltage, follows the dependence �1�, albeit with a reduced

amplitude Ĩ0� I0 : I�t�= Ĩ0�t− t2�−�. The amplitude is restored

to its initial value, Ĩ0→ I0, by increasing the off interval t2
− t1, by annealing at an elevated temperature, or by applying
a reverse-bias or band-gap light between t1 and t2.7–9

The behavior �1� is observed in partially ordered multilay-
ered arrays of II-VI semiconductor nanocrystals. Each nano-
crystal is capped with �1-nm coating so that electrons must
tunnel to move between neighboring sites. Although tran-
sient response �1� has been recorded by a number of
groups,7–11 its origin remains a mystery. In many systems the
transient �1� comprises the dominant contribution to trans-
port, while the ohmic conductivity is quite small.12 Under-
standing the nature of time-dependent response �1� may shed
light on the dynamics of carriers in such systems.

It has been suggested earlier that the observed time-
dependent current could be a result of time dependence of
the state of the system. The latter could arise either because
of charge flow jamming, due to trapping of electrons block-
ing further charge injection from the contact,9 or because of
the Coulomb glass behavior of the electrons distributed over
QDAs.7 However, it seems that such a scenario would re-
quire an unlikely fine tuning as a function of time. Namely,
the system’s properties would have to adjust in a coherent
fashion over many hours to yield well-reproducible power
laws in current, observed over at least five orders of magni-
tude in time in a broad variety of samples.

The purpose of this work is to suggest an alternative point
of view on transport in QDAs, which does not require time-
varying system’s properties. We propose a model, based on
the Lévy statistics of waiting times between charge transmis-
sion events, in which the system remains stationary in a sta-
tistical sense, but nonetheless exhibits a transient response.
The model is corroborated by the measurements of the spec-
trum of time-dependent current fluctuations in CdSe QDAs,
and a good agreement is demonstrated.

This paper is organized as follows. We begin with intro-
ducing a phenomenological model of transport which yields
response �1�. We consider manifestations of this transport
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mechanism in the noise spectrum, and report the results of
noise measurements. Finally, we briefly discuss possible mi-
croscopic mechanisms that could be consistent with our
transport model.

II. MODEL OF TRANSPORT

The main idea of our approach is that current �1� can arise
as a result of a stationary stochastic process. Our model in-
volves N�1 identical independent conducting channels ar-
ranged in parallel. �This accounts for the typical sample’s
aspect ratio �103 �m:1 �m.�7,8 Each channel is almost al-
ways closed, and opens up at random for a short interval �0
to conduct a current pulse that corresponds to a unit trans-
mitted charge, as schematically shown in the lower inset of
Fig. 1. We further assume that the intervals between subse-
quent transmissions are uncorrelated, making the process
completely characterized by the waiting time distribution
�WTD� of intervals between successive pulses.

In particular, we will be interested in WTD p��� with a
broad tail at long times. In order to model the power-law
decay of the current transient, here we consider a special
form of WTD with a long tail of the Lévy type:

p�� � �0� �
a

�1+� , 0 � � � 1, �2�

with �0 a microscopic time scale. Note that all moments of
p��� diverge. The behavior of the WTD at short times, p��
��0�, is not of interest, since it does not affect the long-time
dynamics.

As shown in the Appendix, WTD of form �2� indeed
yields power-law decay �1� for the mean value of the current
in a single channel with �=1−� and I0=� sin �� /�a.
Qualitatively, the decrease in current with time can be under-
stood as follows. The mean value of the waiting time for the
process with WTD �2� is infinite. Thus, for a stochastic pro-
cess governed by WTD �2�, which started infinitely early in
the past, the observed value of the current would be zero.
Turning the bias on at t=0 sets the clock for the process. In
this case, for the measurement interval t, only the waiting
times �� t can occur, as illustrated by the simulation shown
in Fig. 1 �note the double log scale�. Observing the current
over a larger time period effectively increases the chances for
a channel to be closed for a longer time interval, which re-
sults in the decay in the average current, the latter approach-
ing zero at t→�. We note that in this transport model the
system’s parameters characterizing distribution �2� are time
independent. Hence the process is stationary, i.e., each
charge transmission event occurs after a delay time � de-
scribed by the distribution p��� independent of the total time
t passed after the beginning of the measurement.

Continuous-time random walks with the Lévy WTDs
often arise in the systems characterized by wide distributions
of time scales.13 In semiconductor physics the Lévy pro-
cesses have been extensively studied in the context of
the dispersive transport, e.g. in amorphous semi-
conductors.14 A simple example is a system of electrons
moving between charge traps. Its dynamics depends on en-

ergy 	 via an activation exponential, �=�0e
	, where 
 is the
inverse temperature. For the distribution of energies 	 de-
scribed by the density of states of exponential form ��	�
=�0e−b	, one obtains p��� of power-law form �2� with the
exponent �=b /
 and a=�0�0

� /
.
Probability distribution �2� leads to an unusual behavior,

which is the subject of the theory of Lévy flights.15 The main
characteristic of the Lévy statistics13,15 is the violation of the
central limit theorem. To illustrate this unconventional be-
havior, let us recall what happens in a Poissonian channel
characterized by the finite mean waiting time �̄. The mean
value of the transmitted charge Q grows linearly with time,
�Q�= t / �̄, corresponding to a constant current. The variance
of the charge is proportional to the mean, ��Q2��= �Q�, in
other words, the relative charge fluctuation decreases,

FIG. 1. �Color online� �a� Time dependence of the net transmit-
ted charge Q�t� in a single channel �red line� and charge �Q�t��
averaged over N=100 channels �blue line� simulated using WTD of
form �2� with �=0.5 �double log scale�. The dashed line is a power
law Q� t�. �b� The same plot in the linear scale. The large charge
noise in a single channel is due to the lack of self-averaging for a
wide-tail WTD. �c� Current in a single channel with a wide distri-
bution of waiting times �schematic�. Short packets of current pulses
are separated by very long waiting times ���0.
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��Q2��1/2 / �Q�� t−1/2, in accord with the central limit theorem.
In contrast, in the case of the distribution �2�, the mean trans-
mitted charge increases sublinearly as �Q�� t�, whereas its
variance is proportional to the square of the mean, ��Q2��
� �Q�2 �see the Appendix�. Since the relative charge fluctua-
tion does not decrease with time, transport in a single chan-
nel is dominated by large fluctuations of waiting times �see
Fig. 1�.

Although in our model any given channel lacks self-
averaging, the charge summed over N�1 independent par-
allel channels averages to a smooth power law, Fig. 1, with
fluctuations reduced by a factor of N−1/2. For the typical
sample geometry used in our experiments, consisting of �50
layers, each layer of 1.6105 dots wide and 200 dots across,
one expects large effective N and small current fluctuations,
as in Refs. 7 and 8.

Also, as a check of robustness of this scenario with re-
spect to spatially varying system properties, we considered
parallel nonidentical channels, characterized by nonequal
values of �. We found that the average current obtained from
such a model is approximately described by a power law of
the form �1�. We performed a simulation with N
=100 channels, with the exponents of different channels
drawn from a flat distribution, 0.45���0.55. In this case,
the transmitted charge time dependence was found to be nu-
merically very close to that given in Fig. 1 with �=0.5.

III. MEMORY EFFECTS

Memory effects originate in our transport model in the
manner analogous to aging in the Lévy systems.16 Because
of large typical waiting times ���0, any given channel is
most likely found in a nonconducting state when the voltage
is turned off at t= t1. In addition, we assume that, due to
gradual time variation of channel parameters, taken to be
very slow in this discussion, the channel state is likely to
remain unchanged by the time the voltage is turned back on
at t= t2� t1. In this case the channel conducts current as if the
voltage has been on all the time. However, due to the afore-
mentioned time variation of system parameters, there is a
chance that the channel changes its state �resets� while the
voltage is turned off during t1� t� t2. This reset probability
w12�w�t2− t1�, as a function of the off time t2− t1, is growing
monotonically: w��0�	0, w���=1. As a simple model of
this behavior, one can consider a Poisson process,

w��� = 1 − e−�t,

with the rate parameter � characterizing the reset probability.
The current at t= t2 as a function of the shifted time t̃= t

− t2, obtained by averaging over N�1 channels, is given by

I�t̃� = �1 − w12�I0�t̃ + t2�−� + w12I0t̃−�. �3�

Here we assume the reset of different channels to be inde-
pendent and uncorrelated. The function I�t̃� has a singular
part at t̃	0 
the second term of Eq. �3�� with the amplitude

Ĩ0=w12I0 reduced compared to I0 by the reset probability
w12�1. Thus at t̃� t2− t1 the first �regular� term in Eq. �3� is
negligible compared to the second term. Current �3� is domi-

nated by the latter, resulting in suppression of the measured
transient current part, which is singular at t	 t2.

We note that the described reset process, while leading to
suppression of the singular part of the current, is accompa-
nied by an overall enhancement of total current �3�, as com-
pared to the current �1� at time t in the absence of resetting.
This prediction indeed agrees with our observations. We

have verified that the reset probability w12= Ĩ0 / I0 is indeed a
monotonic function of the time interval when the voltage is
turned off. For waiting times from 10 to 104 s in between
100-s-long transients, we measure 0.65�w12�0.85; w12
→1 when applying a reverse bias, exposing the dots to the
band-gap light, or waiting for longer times.

IV. NOISE FREQUENCY SPECTRUM

The model described above, which is consistent with pre-
viously reported transport measurements, can be indepen-
dently verified with the help of noise measurements. Here we
consider the statistics of current fluctuations and formulate a
prediction of the model based on the Lévy process �2�.

The unconventional fluctuations exhibited by the Lévy
process, discussed in Sec. II, manifest themselves in noise as
follows. Consider the time-dependent current in a single
channel, described in Sec. II, recorded during a long time
interval T��0:

I�t� = �
n=1,2,…

��t − tn�, 0 � t � T . �4�

The intervals �n= tn− tn−1, n=1,2 ,… , t0�0, are independent
random variables distributed according to the WTD of the
form �2�. The fluctuations of current are defined in terms of
the Fourier harmonics,

I� = 
0

T

ei�tI�t�dt . �5�

Here we consider the noise power spectrum,

S��� = ��I−�I��� = �I−�I�� − �I−���I�� . �6�

In the Appendix we show that distribution �2� leads to the
non-Poissonian spectrum,

S��� � �T2�, �T � 1,

T��−�, �T � 1.
� �7�

Here the low-frequency part of �7� with �T�1 corresponds
to the fluctuation ��Q2�� of the net transmitted charge. Due to
the relation ��Q2��� �Q�T��2 
Eq. �A14�� between the first
two moments of the Lévy process, which violates the central
limit theorem, the quantity S��T�1� is proportional to the
square of the mean transmitted charge Q�T��T�.

Experimentally, however, it is more convenient to deal
with S��� at finite frequency �T�1. Equation �7� predicts a
characteristic power-law spectrum for this quantity. We note
that for �T�1 the process �2� yields identical power laws
for noise spectrum �7� and for the average current, �I��
��−�. Moreover, the relationship
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��I−�I��� � �I�� � �−�, �T � 1, �8�

is robust with respect to averaging over N independent chan-
nels, since for such averaging the central limit theorem
holds. An experimental test of the proportionality relation-
ship �8� between the frequency spectra of current and noise
will be discussed below.

V. NOISE MEASUREMENTS

Here we briefly describe the experiments performed to
obtain the data on the noise frequency spectrum in QDAs.
The QDAs were produced as described in Ref. 7 by self-
assembly of nearly identical CdSe nanocrystals, 3 nm in di-
ameter, capped with trioctylphosphine oxide, an organic mol-
ecule about 1 nm long. A film of about 200-nm-thick
nanocrystals was deposited on oxidized, degenerately doped
Si wafers with an oxide thickness 	200 nm. The experimen-
tal setup was similar to that utilized in Ref. 7. Gold elec-
trodes, fabricated on the surface before deposition of the
QDA, consist of bars 800 �m long with a separation of
2 �m. The sample was annealed at 300 °C in vacuum inside
the cryostat prior to the electrical measurements. Annealing
reduces the distance between the nanocrystals and enhances
electron tunneling.7

To measure the noise, we have recorded 200 current tran-
sients each t=100 s long. Measurements have been made on
a single sample continuously stored in vacuum, inside of a
vacuum cryostat in the dark at 77 K. Each current transient
was recorded for 100 s with a negative bias of −90 V. These
periods of negative bias were separated from each other by a
sequence of zero bias for 10 s, reverse pulse of +90 V for
100 s, and zero bias for 10 s to eliminate the memory
effects.7 We checked that current fluctuations for a substrate
without the QDA were several orders of magnitude smaller
than with the QDA.

At the beginning of our measurement the current tran-
sients were changing from one to the next because of the
memory effect described above. Since an error in the average
current can yield an error of order �I��2��−2�, which may
affect the measured noise spectrum power law, we discarded
the first 150 transients. The noise �Fig. 2� was then deduced
from the remaining 50 transients. To further compensate for
residual memory effects, each transient was multiplied by a
factor 	1 to have the same net integrated charge. This elimi-
nated the zero-frequency contribution to the noise.

Figure 2 shows the measured noise spectrum and the av-
erage current measured simultaneously. Both quantities have
a power-law behavior with nearly identical exponent values
�	0.72 for �t�1, t=100 s. With relative �3–10 % devia-
tions of the noise from the �−� law, the measured noise
spectrum is clearly distinct from the 1/ f noise typically
found at low frequencies. For comparison, in Fig. 2 we draw
the 1/ f dependence, offset so that it coincides with the noise
data at the lowest frequency. The discrepancy with the mea-
sured noise at the highest frequency by more than a factor of
2 indicates that the observations are not explained by the 1/ f
noise model.

One may question whether the observed colored noise,
instead of being a consequence of the Lévy process, could

result from interplay of the intrinsic 1 / f noise and the time-
dependent current decaying according to �1�. In this case the
fluctuations would be proportional to the current itself,

I�t� = �I�t���1 + s�t��, �s�t�s�t��� � ��t − t�� , �9�

where ����−�, ��1 for the 1/ f noise. This would yield the
current fluctuation spectrum of the form

��I−�I��� = ��I����
2���−�

d��

2�
. �10�

When ��1/2, the integral is dominated by the ����−2� sin-
gularity, which effectively sets ��=0, giving rise to the 1/�
behavior. Physically this happens because current �1� for �
�1/2 decays slowly enough so that all the harmonics of the
1/ f noise have time to fully play out.

Conversely, in a system with ��1/2, the noise ��−2�

may be indistinguishable from the errors in determining av-
erage current described above. As a consistency check of our
model it is important that for our sample the observed cur-
rent transient power-law exponent fulfills ��0.5. The obser-
vation of the �−� noise indicates that transport is not domi-
nated by the intrinsic 1 / f noise. Instead, we conclude that the
noise measurement agrees with the proposed transport model
based on Lévy statistics of transmission events.

VI. DISCUSSION

Based on the noise measurements we can estimate the
effective number N of conduction channels introduced in
Sec. II. Since both the measured current �I�� and noise S���
are proportional to N, the noise-to-current ratio r���
�S��� / �I�� is a characteristic of a single channel. The
model calculation for the latter �see the Appendix� shows
that at large frequency �t�1 the noise-to-current ratio is

FIG. 2. �Color online� Measured mean current and noise spec-
trum, with averaging performed over 50 current transients on the
same sample. The current Fourier harmonic mean �I�� 
Eq. �5�� and
variance ��I−�I��� 
Eq. �6�� are shown. Both the current and the
noise are described by power law �−� with the same �	0.72. The
1/ f dependence is shown for comparison �see text�.
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frequency independent and proportional to the net charge
Q�t� transmitted through the channel during the time t of
measurement, r��t�1��Q�t� 
Eq. �A15��. From Fig. 2 we
find that the measured r��� is indeed frequency independent
for �t�1, and is of the order r	10−10 A/Hz. 
Averaging
over 50 transients does not affect r���.� The effective num-
ber of channels is then estimated as the ratio of the measured
net transmitted charge to that in a single channel, N
��I�=0� /r�104. This large number of independent channels
is consistent with the sample geometry �aspect ratio �103

and �50 layers of dots�.
How can the long waiting times with a distribution of

Lévy form �2� arise microscopically? While presently there
is no fully satisfactory answer to this question, one can make
several observations. First, to rationalize a wide distribution
of time scales such as �2�, we suppose that the charge hops
between neighboring dots are strongly constrained. The sim-
plest constraint to imagine is the lack of energy relaxation
�possibly due to a small number of available phonon states�
that arises if the on-site energies of electrons on different
dots are widely distributed. This is consistent with the ab-
sence of ohmic contribution to the conductivity in our QDA.
The energy relaxation constraint then allows charge hops
only between the aligned energy levels of the dots.

Next, the WTD �2� with a long tail can be explained if the
energy levels strongly fluctuate in time, with �=1/2 corre-
sponding to the Gaussian diffusion in energy. One can think
of at least two reasons for the level fluctuations. First, the
voltage bias energy �0.1 eV dissipated per hop may provide
the necessary energy reservoir. Second, current-induced fluc-
tuations in the electrostatic environment in the absence of
screening may result in a random time-dependent chemical
potential for each dot. In particular, misalignment of the en-
ergy levels can arise due to the Coulomb field of an electron
trapped in the vicinity, e.g., in the coatings. The “conduction
channel” then opens up when the trapped electron escapes.
Due to large applied bias, filling of the traps can occur much
faster than escaping from them. With escape times exponen-
tially dependent on trap parameters, distribution �2� follows
naturally.14

We note that this picture differs somewhat from the ca-
nonical dispersive transport mechanism,14 in which a con-
stant supply of carriers makes the current grow with time.17

The growth of current occurs due to the increasing number
of trapped electrons leveling the potential landscape, thereby
enhancing conductivity. Contrarily, in the proposed picture
the presence of traps regulates the dynamics of conducting
channels.

We also note that the Lévy statistics was recently
observed in fluorescence intermittency of individual
nanocrystals.18 Possibly, a better understanding of the micro-
scopic mechanism of the anomalous transport can be
achieved by establishing a connection between the statistics
of fluorescence and of charge transmission in the same
sample. This could discriminate between transport due to the
properties of electron states in a single nanocrystal, and the
collective transport phenomena.

VII. CONCLUSIONS

This article presents a mechanism for a nonohmic conduc-
tivity in a disordered system. In particular, we show that a

nonstationary current response can arise in a stationary sys-
tem with the Lévy statistics of waiting times. The model
agrees well with the current and noise measurements in ar-
rays of coated semiconducting nanocrystals. The non-
Poissonian character of the Lévy process manifests itself in
the nonohmic character of transport observed as the current
transients, in memory effects, and in the colored noise. Our
results suggest that one needs to be careful in interpreting
conductivity in such systems10 using simple ohmic models
implying Poissonian statistics of transmission. We also dem-
onstrate that the Lévy model can help to investigate the sys-
tem even without precise knowledge of microscopic trans-
port mechanism, by linking the power law observed in the
noise with that of current transient.
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APPENDIX: CURRENT AND NOISE IN A SINGLE
CHANNEL

Consider the current in a single channel,

I�t� = �
n=1

�

��t − tn�e−�t, �A1�

Here, instead of switching the current on and off at t=0, T as
in �4�, we introduced a soft cutoff �=T−1. This cutoff helps
to simplify calculations without qualitatively affecting the
results. The Fourier harmonic of �A1� is

I� = e−i�tI�t�dt = �
n=1

�

e−ztn, �A2�

where z=�− i� and tn=�i=1
n �i. Since waiting times �i are

independent random variables distributed according to p���,
the average current is given by the geometric series

�I�� =
pz

1 − pz
, �A3�

with pz the characteristic function,

pz � �e−z�� = e−z�p���d� . �A4�

The correlator �I−�I��=�n,n�=1
� �e−z̄tn�−ztn� can be evaluated as

�I−�I�� = �
n=1

�

�e−2��n��1 + �
m=1

�

�e−z��m + c . c.� . �A5�

The last formula is obtained by splitting the summation into
parts with n=n� and n�n� with m=n−n�. The variance
��I−�I���= �I−�I��− �I−���I�� is given by
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��I−�I��� =
p2� − pzpz̄

�1 − p2���1 − pz��1 − pz̄�
, �A6�

where p2�= pz=2�.
The expressions for current average �A3� and variance

�A6� are valid for any waiting time distribution. Consider
now the WTD of the form �2�. In this case the characteristic
function is

pz = 1 −
z�

A�

, A� =
�

a��1 − ��
, �A7�

where �z��0�1, corresponding to the long time tail. Equation
�A3� then yields

�I�� = A��� − i��−�, �A8�

resulting in the average current of form �1�:

�I�t�� = I0t−�, � = 1 − �, I0 =
� sin ��

�a
. �A9�

The Fourier harmonic variance, obtained from Eq. �A6�, is of
the form

��I−�I��� = A�
2 z� + z̄� − �2��� − A�

−1�z�2�

�2����z�2� . �A10�

We are interested in the noise spectrum on the time scale
much greater than the pulse width �0 : � ,���0

−1. Keeping
the leading terms in Eq. �A10�, we have

��I−�I��� = A�
2 z� + z̄� − �2���

�2����z�2� . �A11�

The limits of Eq. �A11� are �T=�−1�

��I−�I��� = ��21−� − 1�A�
2 T2�, �T � 1,

21−�A�
2 cos

��

2
T��−�, �T � 1. �

�A12�

Result �A9� corresponds to the net transmitted charge,

�Q� = A�T�. �A13�

For the exponent ��1, all the moments of �2�, including the
mean and the variance, diverge, and thus the central limit
theorem does not hold. Instead of �Q��T expected for a
stationary random process, here we have a power law. More-
over, the distribution of Q�T� is extremely broad, with dis-
persion proportional to the net charge,

varQ = ��Q2� − �Q�2�1/2 = �21−� − 1�1/2�Q� . �A14�

Hence the ratio varQ / �Q� does not decrease with time T,
violating the central limit theorem.

The large frequency asymptotic behavior of the current
and noise is given by the same characteristic power law.
According to Eq. �A12�, the noise-to-current ratio is con-
trolled by the net transmitted charge �A13� through the chan-
nel

r �
��I−�I���

��I���
= c Q�T�, c = 21−� cos

��

2
. �A15�

It is instructive to compare our results for WTD �2� with
those derived for the Poissonian statistics. In the Poissonian
case, p���= �̄−1e−�/�̄, pz= �1+z�̄�−1. Equation �A3� yields the
average current �I��= 
��− i���̄�−1, corresponding to �I�t��
=1/ �̄ for t�T=�−1. At the same time, Eq. �A6� yields the
white-noise spectrum ��I−�I���=T /2�̄= 1

2 �I�=0�, as expected.
The factor 1

2 , arising after integration of the exponential e−2�t

accounts for the effect of the soft cutoff at t��−1.
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