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We investigate the full counting statistics of an electrical Mach-Zehnder interferometer penetrated by an
Aharonov-Bohm flux, and in the presence of a classical fluctuating potential. Of interest is the suppression of
the Aharonov-Bohm oscillations in the distribution function of the transmitted charge. For a Gaussian fluctu-
ating field we calculate the first three cumulants. The fluctuating potential causes a modulation of the conduc-
tance leading in the third cumulant to a term cubic in voltage and to a contribution correlating modulation of
current and noise. In the high voltage regime we present an approximation of the generating function.
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I. INTRODUCTION

For two decades theoretical and experimental investiga-
tions of the noise properties of small electrical conductors
have been an important frontier of mesoscopic physics.1

Nonequilibrium noise, in particular shot noise2–5 can provide
information on physical properties which are not accessible
from conductance measurements. Recently there has been
considerable interest in characterizing transport in mesos-
copic systems not only via conductance and noise but also
with all higher order current correlations. This is achieved by
deriving a generating functional from which the quantities of
interest can be obtained simply by taking derivatives. To
construct the generating functional, it is useful to imagine
that electrons passing the sample in a given time are counted,
and the approach is thus known as full counting statistics.6,7.
While initial work was based on the scattering approach to
electrical transport, subsequently a number of different meth-
ods have been developed. These include an approach based
on Keldysh Green’s functions,8–11 the nonlinear sigma
model,12 an approach based on a cascade of Boltzmann-
Langevin equations13 and a formulation in terms of a sto-
chastic path integral.14–23 These later methods are principally
useful if the quasiclassical part of the transport coefficients is
dominant. A first experiment24 has given additional impetus
for this research. It has stimulated work which treats the
effect of the measurement circuit on the counting statistics25

and led to proposals for novel detection schemes.26–29 A re-
cent experiment investigates the third cummulant of current
noise of a high resistance tunnel junction.30

In this work we are interested in the full counting statis-
tics �FCS� of transport problems in which quantum effects
are important. For instance, in single channel mesoscopic
conductors quantum interference is essential. In such a situ-
ation, transport becomes classical only due to dephasing. It is
thus interesting to examine the effect of inelastic processes
on the counting statistics of a single channel problem and to
investigate the transition from quantum mechanical transport
to fully classical transport.

The central aim of our work is thus the derivation of the
generating functional in the presence of inelastic scattering.
We investigate an interferometer penetrated by an Aharonov-
Bohm flux and subject to a random classical fluctuating po-

tential. For simplicity we assume that the interferometer is of
the Mach-Zehnder �MZI� type �Fig. 1�, an interferometer
without backscattering. In such a system there are no closed
orbits and thus only a finite number of possible trajectories.

Despite these simplifying assumptions the derivation of
the generating functional is a nontrivial problem. To investi-
gate the effect of the fluctuating potential, a time-dependent
treatment of transport is needed together with a technique of
statistical averaging. In fact, in the present work we are able
to give the generating functional only in the limiting case of
the high voltage regime. In the general case, we present re-
sults for the first three cumulants.

The model we investigate is closely related to earlier
work by Seelig and Büttiker on the effect of dephasing on
the conductance31 and by Seelig et al. on four-terminal resis-
tances in ballistic interferometers.32 In few channel structures
dephasing might be sample specific.32 Experimental investi-
gations on dephasing in ballistic interferometers is provided
by Hansen et al.33 and Kobayashi et al.34 Recently an elec-
tronic MZI has been experimentally realized by Ji et al.,35

using edge states in the quantum Hall regime. This experi-
ment also raised interesting questions on the shot noise of the
interferometer and dephasing. The effect of dephasing on

FIG. 1. �Color online� The Mach-Zehnder interferometer, a four-
terminal AB ring, threaded by a magnetic flux. The interferometer
arms are coupled to classical fluctuating potentials modeling the
effect of dephasing. The influence of dephasing on current fluctua-
tions in lead 3 is investigated.
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shot noise in such an interferometer has been discussed by
Marquardt and Bruder based on classical36 and quantum37

fluctuating field models.
Still another motivation for the work presented here de-

rives from recent proposals to implement orbital
entanglement38 based on electron-hole generation39 in two-
particle intensity-interferometers.40 In these proposals quan-
tum interference effects play an important role in noise and
higher order correlations.41

II. THE MACH-ZEHNDER INTERFEROMETER

The conceptually simplest system displaying electron in-
terference is the electronic Mach-Zehnder interferometer.
The setup is shown in Fig. 1, it consists of two beam splitters
connected by two interferometer arms enclosing a magnetic
flux. Each beam splitter is characterized by a transmission
amplitude �T for an electron going straight through, and a
reflection amplitude i�R, with R+T=1. The simplicity of
the interferometer originates from the exclusion of back-
scattering which discards closed orbits and separates com-
pletely the processes of left and right moving particles.

Experimentally the exclusion of backscattering has been
realized using edge states in the quantum Hall regime as
transport channels.35

Interference occurs, because the different vector potentials
in the two arms lead to a phase difference between the paths
A and B. This difference creates a characteristic flux period-
icity in the interference pattern, the Aharonov-Bohm effect.

In our work, dephasing is introduced with the help of
classical fluctuating potentials, UA�t� and UB�t�. The correla-
tion function of these fluctuating potentials can be self-
consistently determined treating electron-electron interac-
tions in a random phase approximation.31 Here we take this
correlation function to be given. The potentials cause the
particles to pick up an additional time-dependent phase
�i�t�=�t

t+�dt�Ui�t��, i=A or B �here and in the following we
set e=�=1�. We assume, that the traversal time � of the
particles is not affected by the potentials. The transmission
amplitudes of particles entering the interferometer at time t
in lead � and leaving it at time t� in lead � are collected in
the time-dependent scattering matrix42 S���t , t��. For a one-
channel MZI this scattering matrix is four dimensional and
has special properties, as backscattering is excluded, the scat-
tering matrix has nonvanishing elements only in the off-
diagonal 2�2 blocks. Because the motion is purely ballistic,
the scattering matrix depends effectively on one single time
S�t , t��=	�t�− t−��S�t�, where

S31�t� = i�RT�ei
+i��t� + 1� ,

S32�t� = Tei
+i��t� − R ,

S41�t� = − Rei
+i��t� + T ,

S42�t� = i�RT�ei
+i��t� + 1� . �1�

Here we assumed equal arm lengths and introduced the
phase difference ��t�=�A�t�−�B�t� and the magnetic flux 


in units of the flux quantum. The remaining four elements
are found from the magnetic field symmetry of the scattering
matrix S���
�=S���−
�.

Without the fluctuating potentials the system is coherent,
��t�=0. The transmission probability becomes T31= �S31�2
=2RT�1+cos 
� and shows cosine oscillations in flux. Such
AB oscillations are visible in conductance experiments.

When we include dephasing by the fluctuating potentials,
the scattering matrix becomes time dependent and the quan-
tities of interest must be averaged over the statistically dis-
tributed potential. This average suppresses the AB oscilla-
tions. For the case of conductance and noise, these effects
have been studied in detail.31,36 In this work we will gener-
alize this discussion to higher order current correlations �full
counting statistics�.

III. FCS OF THE COHERENT SYSTEM

The full counting statistics7 �FCS� is the distribution func-
tion P�Q� giving the probability that a certain charge Q
=�0

t0dtI�t� flows through a system during the observation
time t0. Its Fourier transform is called its generating function
����, the conjugated variable � is named the counting field,

���� = �
Q

P�Q�ei�Q, �2�

P�Q� =
1

2
�

−



d�����e−i�Q. �3�

The expansion of ln ���� in � yields all irreducible cumu-
lants, ln ����=�k��i��k /k!	
Qk�. For large t0 the first cumu-
lant gives the mean current 
I�= 
Q� / t0, the second cumulant
is the zero frequency noise �= 
Q2� / t0, the third cumulant
C3= 
Q3� / t0 describes the asymmetry �skewness� of the dis-
tribution, and so on. The generating function provides in
principle a complete description of the zero-frequency cur-
rent fluctuations.

We consider a four-terminal conductor, thus Q and � are
four-dimensional vectors. Since in the MZI current conser-
vation relates current fluctuation of all leads, it is in most
cases sufficient to concentrate on the charge distribution in
one lead. In the following we will choose lead 3 and call Q
its charge and � the corresponding counting variable.

In the coherent regime ���t�=0�, the scattering matrix is
time independent, and the calculation of the generating func-
tion is straightforward. Following the work of Levitov and
Lesovik,7 one defines an energy-dependent 4�4 matrix A

= f · �S†S̃−1�, where the diagonal matrix f = f�E� contains the

Fermi functions of the four terminals. S̃ incorporates the

counting fields by phase shifts S̃��=ei���−���S�� �remember
that ��=�	�3�. The generating function is

ln ���� =
t0

2
� dE tr ln�1 + A� . �4�

Because backscattering is excluded, the matrix A is block
diagonal, and ln � separates into two independent contribu-
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tions. This fact expresses the statistical independence of left
and right going particles.

For a two-terminal conductor, the FCS can always be in-
terpreted as a classical binomial distribution. For a four-
terminal conductor like the MZI this is in general no longer
the case. There exists however a special configuration, at
zero temperature a voltage V is applied on terminal 1 and
zero voltage on the other terminals. In this case only two
processes exist, transmission from terminal 1 into lead 3 with
probability T31 or into lead 4 with probability 1−T31. The
number of incident particles during the time t0 is given by
N=Vt0 /2. We then recover the binomial distribution of the
two-terminal conductor

���� = �ei�T31 + �1 − T31�	N, �5�

P�Q� = �N

Q
T31

Q �1 − T31�N−Q �6�

with the only difference, that the transmission probability
T31=2RT�1+cos 
� depends on the magnetic flux. Conse-
quently the distribution function P�Q� contains all harmonics
up to cos N
. The flux periodicity of P�Q� is shown in Fig.
2�a�. For symmetric beam splitters and certain values of 
,
all particles end up in one lead, due to complete constructive

interference. The distribution is then singular and noiseless,
P�Q�=	Q,N for 
=2k, and P�Q�=	Q,0 for 
= �2k+1�
with k�N0.

At finite temperature this simple binomial picture is modi-
fied and does not coincide with the two-terminal conductor
statistics.6 We obtain

���� = exp� t0kBT

2
�arcosh2 u��� − v2 + iv� −

3

4
�2� �7�

with v=V /2kBT and the complex function u���=T31 cosh�v
+ i�� /2�	+ �1−T31�cosh�v− i�� /2�	.

Figure 2�b� shows plots of the logarithm of the distribu-
tion function for finite temperature. At high temperatures the
flux dependence is strongly reduced, as is to be expected for
a general interferometer. But the MZI with arms of equal
lengths investigated here has the special property that it is
described by energy-independent transmission probabilities.
Thus the conductance does not suffer from energy averaging
and exhibits full Aharonov-Bohm oscillations even at high
temperatures. However, the distribution function becomes
classical, because the high-temperature fluctuations of trans-
mitted charge are dominated by two-particle processes,
whose probability is flux independent and equal to 1.

FIG. 2. �Color online� �a� The
distribution function at zero tem-
perature �logarithmic scale,
Vt0 /2=40�. Left, 3D plot of the
binomial distribution, which is pe-
riodic in flux. Right, the same in
contour representation, dark areas
correspond to low probability. �b�
The distribution function at high
temperature kBT=10 V �for a long
observation time t0kBT=100�. The
flux dependence is washed out,
and the distribution tends towards
a Gaussian.

DECOHERENCE AND FULL COUNTING STATISTICS IN… PHYSICAL REVIEW B 72, 075301 �2005�

075301-3



At very high temperatures kBT�V, we find a Gaussian
function P�Q��e−�Q − 
Q��2/�Q2

with �Q2= /2t0kBT, centered
around the mean charge 
Q�= �t0 /2�T31V.

IV. INFLUENCE OF DEPHASING

We now start to consider the influence of the fluctuating
potential on the FCS. The scattering matrix becomes time
dependent, and the electrons can be scattered between differ-
ent energies. Following the idea of Ivanov and Levitov,43 the
different energies can be viewed as an infinite number of
independent scattering channels. Switching to time-
representation S�t , t��=	�t�− t−��S�t�, this leads to a gener-
alization of formula �4� for the generating function, where
we extend the usual trace �tr� to a trace in time-space �Tr�
including time integration,

ln ���� = Tr ln�1 + A� . �8�

All matrices are defined in analogy to Sec. III. The matrix A

depends on two time variables A�t� , t�=n�t�− t��S†�t�S̃�t�
−1	; the diagonal matrix n contains the Fourier transforms of
the Fermi functions in the four terminals n�=n��t− t��
=��dE /2�f��E�eiE�t−t��. It can easily be checked, that Eq.
�8� reduces to Eq. �4�, when A depends only on time differ-
ences �elastic scattering�.

To study the influence of dephasing on the generating
function, it must be averaged statistically over all possible
realizations of the fluctuating potential, 
�����U

= 
eTr ln�1+A��U. For a Gaussian distribution, this average is
expressed by a functional integral


�����U =� DU���,�U��e−1/2�0
t0dt�dt�U�t�K�t−t��U�t��. �9�

The kernel K is defined via K�t�=��d� /2��U
−1���e−i�t, with

the spectral function of the potential �U���
=�dt
U�t�U�0��ei�t. Only potential differences matter, U�t�
=UA�t�−UB�t�.

In general the averaging cannot be performed analytically.
Therefore, in a first step, we expand ���� in the counting
field � and calculate the average of single cumulants, cross-
checking known results31,36 and presenting results for the
third cumulant. In a second step, we will derive directly an
expression for ���� in the case of a slowly fluctuating poten-
tial.

V. CUMULANTS, EXACT AND LIMITING CASES

The effect of the averaging on the cumulants is deter-
mined by three quantities, the correlation time �RC of the
fluctuating potential U�t�, the traversal time �, and a deco-
herence parameter z.

�RC is typically the RC time, with C the coupling capaci-
tance, and R the charge relaxation resistance;44 it provides a
cutoff frequency for energy exchanges between particles and
fluctuating potential. The traversal time � is the correlation
time of the phase ��t�, because the electrons integrate the
fluctuating potential U�t� during time �. For �RC�� the cor-

relation function of the phase is a triangle in time45


��t���0��=�U · ��− �t�����− �t�� with �U the spectral func-
tion of the potential at zero frequency. This spectral function

is given by �U=�Ũ2�RC, where �Ũ is the mean fluctuation
amplitude of the potential. Because the relevant quantity in
the MZI is the accumulated phase ��t�, it is convenient to
introduce the reduced mean fluctuation amplitude �U

=��RC /��Ũ. The spectral function �U defines—for a Gauss-
ian fluctuating field U�t�—the decoherence parameter z
via31,36,46

z = exp�−
�U�

2
 . �10�

The parameter z indicates the dephasing strength; it varies
between 0 for complete dephasing and 1 in the absence of
dephasing.

We consider the configuration with V applied on terminal
1, and current fluctuations observed in lead 3. The cumulant
of kth order is given by


Qk� = � 1

ik

dk ln
�����U

d�k �
�=0

. �11�

The calculation for the first cumulants is sketched in the
appendix, here we will give only the main results and discuss
the figures.

The mean current in lead 3 is linear in voltage, and pro-
portional to the transmission probability, averaged over the
potential, 
I3�= �1/2�2RT�1+z cos 
�V. In comparison to
the coherent system, the AB oscillations in the conductance
are suppressed by the decoherence parameter z, in agreement
with the work of Seelig and Büttiker.31

The noise has been studied in detail by Marquardt and
Bruder.36 The expression for the noise is separated into a
Nyquist part �nyq, a modulation part �I and a two-particle
exchange contribution �ex. The V-independent Nyquist noise
�nyq describes thermal noise47 as well as energy exchange
between particles and the classical potential U�t� up to the
cutoff frequency 1/�RC. It is finite even for zero temperature
and voltage. �I is a consequence of the variation of the con-
ductance in time, it grows with V2 and is temperature inde-
pendent. The exchange term �ex describes shot noise and is a
function of voltage and temperature, vanishing for V=0 and
linear for high voltage. �ex is a consequence of the indistin-
guishability of identical particles. Thus the total noise is

� = �nyq�T� + �I�V2� + �ex�V,T� . �12�

For symmetric beam splitters, the fundamental AB period is
absent in the noise and the AB oscillations are proportional to
cos 2
. They are suppressed for z→0, compare Fig. 3�a�.

In Fig. 3�b� the noise is shown as a function of tempera-
ture and voltage, it is linear in temperature for high kBT�,
simply due to thermal noise. The quadratic dependence on
voltage does not change with temperature.

In the third cumulant we distinguish three contributions, a
modulation part CI

3, proportional to V3, a second term CI�
3 ,

that connects current modulation and noise, and a three-
particle contribution C3p

3 :
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C3 = CI
3�V3� + CI�

3 �V,T� + C3p
3 �V,T� . �13�

The processes leading to these three contributions can be
visualized as shown in Fig. 4. Figure 4�a� corresponds to the
modulation contribution CI

3. Each circle contains the one-
particle process creating current in the corresponding lead. In
the left half of the first circle an electron, entering the scat-
terer at time t in lead � is transmitted into lead � at time t
+� with the amplitude S��, it is moving forward in time.
Correspondingly in the right half circle a hole is transmitted
from lead � into lead � with amplitude S��

† , moving back-
ward in time. We sum over all channels at the points � and
measure the current at the points �. As we investigate the
third cumulant of charge transmitted into lead 3, we have
here �=�=�=3.

The radial direction can be interpreted as the energy of the
particles. Due to the fluctuating potential, we allow energy
exchange and average over all excitations during the tra-
versal time � under the condition, that the energy takes the
value E at point �.

The modulation part CI
3 consists of three one-particle pro-

cesses, that are connected via the correlation of the fluctuat-
ing potential only.

In the second term CI�
3 a modulated current and the noise

are correlated also via the fluctuating potential. In the shot
noise �the right ring in Fig. 4�b�	 we have two points � �time
t� and � �time t+��, because we deal with a two-particle
process, an electron propagates from channel � to �, a hole
from � to �, an electron from � to �, and a hole from � to �.
In addition there is—even at zero temperature—a correlation

between the modulated current and the Nyquist noise, which
is not represented in Fig. 4.

C3p
3 then is the actual three-particle exchange contribu-

tion, connecting the leads �, �, and � by six S matrices. Here
we again average over excitations between the points �.

The contributions to higher cumulants are constructed in a
similar way. Consequently the cumulant of order k contains k
one-particle processes, that are each proportional to V. Thus
the dominating part for high voltage of the kth cumulant
increases with Vk.

In Fig. 5 the three contributions and the total third cumu-
lant C3 are depicted as a function of V�. Note that C3 is
negative for 
=0 and z=0.3, this implies that the distribu-
tion in lead 3 is skewed to the right. For high voltage the
term C3p

3 is linear, CI�
3 is quadratic, and the cubic contribu-

tion CI
3 dominates. The full third cumulant is odd in voltage

and thus vanishes for V=0.
In the symmetric case, R=0.5, we find AB oscillations

proportional to cos 3
 and cos 
; with decreasing z the
terms in cos 3
 are stronger damped than those with cos 
,
as shown in Fig. 3�c�. Note also, that around 
=0, ± the
third cumulant changes sign with decreasing z. Figure 3�d�
shows the third cumulant as a function of temperature and
voltage. In contrast to the noise the third cumulant contains
no voltage independent �Nyquist� contribution whatsoever,
and therefore, changes little with temperature.48

We can distinguish two limiting regimes, high and low
voltage36 in comparison to 1/�. In the first case, many par-
ticles �V��1� pick up approximately the same phase ��t�,
since many wave packets fit at the same time into an inter-
ferometer arm. To the contrary for low voltage �V��1� ev-
ery wave packet acquires different phases ��t�, which are

FIG. 3. �Color online� Noise
�a�, �kBT=0� and third cumulant
�c�, �kBT=0.1� as a function of de-
coherence parameter z and flux 

�for V�=1�: the AB oscillations
are suppressed for decreasing z.
�b� and �d� display the dependence
on voltage and temperature for z
=0.3. The third cumulant changes
little with temperature, but the
noise shows linear thermal noise
for high temperature.
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uncorrelated. Therefore, for high and low voltage we can
make approximations of a slowly and a fast varying phase
��t�, respectively.

We next compare these approximations with the exact ex-
pression. The modulation contribution CI

3 does not depend
on the phase dynamics, but is determined by the parameter z.
Therefore, it is independent of whether we consider a fast or
a slowly varying phase. As CI

3 decreases with V3�3, in the
low voltage regime it is small compared to the terms linear in
voltage. In both limiting cases the averaging of the contribu-
tions C3p

3 and CI�
3 simplifies; additional details of the averag-

ing and the approximations are discussed in the appendix.
The low voltage approximation fits only for very small

values of V�, and we will not discuss this limiting case here
further. A comparison of the high voltage approximation, de-
tailed in the appendix, with the exact result is shown in Fig.
5. This approximation matches the exact curve very well for
a wide range of V� and even in the case V��1.

VI. GENERATING FUNCTION IN THE HIGH VOLTAGE
REGIME

The discussion above showed that in principle we can
calculate any single cumulant with the only assumption of a
Gaussian fluctuating potential. However the calculational ef-
fort grows very fast with the order of the cumulant. For this
reason let us now concentrate on the limiting case of high
voltage �V��1�, when many particles pick up approximately
the same phase. In this limit the generating function, Eq. �8�

can be evaluated directly. To this end, we perform the aver-
aging, see Eq. �9� under the following two assumptions.

�i� When the accumulated phase ��t�=�t
t+�dt�U�t�� varies

slowly, the matrix A�t , t�� in Eq. �8� takes the form49

A�t , t��→n�t− t���S†���S̃���−1	. It depends on a time differ-
ence and on a parameter �, that itself is a function of a
�single� time variable. After Fourier transformation we are
left with one integral in time and another in energy. At zero
temperature, the energy integral is easily performed and one
obtains

Tr ln�1 + A� →
V

2
�

0

t0

dt ln�1 + T31„��t�…�ei� − 1�� .

�14�

Here T31(��t�) depends on the instantaneous phase ��t�.
�ii� To take into account the correlation time � of phase

fluctuations, we make an additional approximation beyond
the slow approximation discussed so far. We take the slowly
varying phase ��t� to be a steplike function, that has constant
values �=U� in time intervals �k� , �k+1��	 for k�N0. The
values � and consequently the values U obey a Gaussian
distribution. Note that the parameter U does not describe the
actual fluctuations of the potential U�t� since these are deter-
mined by the correlation time �RC which is here assumed to
be smaller than �.

The t0 /� time intervals of length � that can be treated
independently, with the number N�=V� /2 of incident par-
ticles. During each time interval the functional integral �9�
becomes a simple Gaussian integral in the variable U,


�����U = �� dUe−�U2/2�U2�

�2�U2
�1 + T31�U��ei� − 1�	N�t0/�

,

�15�

with T31�U�=2RT �1+cos�
+U��	. The integration in U
leads to the generating function

FIG. 4. �Color online� Processes contributing to the third cumu-
lant at zero temperature. The black points correspond to channels �,
�, � at time t+�, and the crosses to channels �, �, � at time t. In CI

3

�a� three one-particle processes are connected by correlations of the
fluctuating potential �circled in grey/green�. In �b� the correlation of
the modulated current and the shot noise are displayed, which con-
tributes to CI�

3 . C3p
3 �c� is the three particle contribution, averaged

over excitations.

FIG. 5. �Color online� The third cumulant and its three contri-
butions as a function of voltage. At high V� the cubic term domi-
nates. The dashed line Cslow

3 shows the approximation in the high
voltage regime.
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�����U = ��
m=0

N�

�
p=0

m �N�

m
�m

p
cN�−mapbm−pz�2p − m�2t0/�

�16�

with the constants c=1+2RT�ei�−1�, a=RTei
�ei�−1�, b
=RTe−i
�ei�−1�.

This approximation for the generating function applies
also in the case �RC��, then the correlation time of the phase
��t� is the same as the one of the potential U�t�, �RC, and the
time � in Eq. �16� must be replaced by �RC.

Starting from this generating function �16� one finds im-
mediately the cumulants by simply taking derivatives in �.
These cumulants differ in their modulation contributions
from the high voltage limiting case of the cumulants pre-
sented in Sec. V, due to the treatment of ��t� as a steplike
function �corresponding to a discretization in time space�.

Each cumulant shows harmonic oscillations in 
 up to the
order of the derivative. As expected the terms containing
oscillations with higher periodicity are damped stronger.
Therefore, Eq. �16� is a convenient starting point to investi-
gate the strong dephasing limit. In this case we can restrict
the sum in Eq. �16� to small powers in z. Up to first order in
z the generating function consists of two hypergeometric
functions F,


�����U = �cN�F�−
N�

2
,−

N�

2
+

1

2
;1;

ab

4c2
+ cN�−1N��c − 1�z

�cos 
F�−
N�

2
+

1

2
,−

N�

2
+ 1;2;

ab

4c2�t0/�

.

�17�

The first term represents the purely classical part, it does not
depend on z and 
 but only on the beam splitter parameter
R, on �, and on N�. For R=0.5 it is symmetric in � and thus
yields a symmetric contribution to the distribution function.
The second part is the interference term proportional to
z cos 
; for R=0.5 it is asymmetric in �.

In the general case for arbitrary z, we perform the Fourier
transform of Eq. �15� numerically to find the distribution
function P�Q�. Figure 6 depicts the logarithm of the distri-
bution function for weak �Fig. 6�a�	 and strong dephasing
�Fig. 6�b�	 for a time interval t0=�. In the case of weak
dephasing, it still exhibits the form of a binomial distribution
with the periodicity in 
 �compare with the no-dephasing
case in Fig. 2�a�	. For increasing dephasing strength, the AB
effect is suppressed. In the case of symmetric beam splitters
the function P�Q� then tends towards a symmetric distribu-
tion around N� /2, and the third cumulant vanishes. However,
for asymmetric beam splitters the distribution function is not
symmetric.

To extract information about the tails of the distribution
function P�Q�, we use the stationary phase approximation
and solve the saddle point equation d ln
�� /d�= iQ for � in
the complex plane. For Q� 
Q�, i.e., when nearly no par-
ticles are transferred to lead 3, we find �−���1 for negative
�. Starting from Eq. �16� we obtain

ln P�Q� � − Q ln� �

t0
Q +

t0

�
ln v − Q ln

v
w

. �18�

The first term determines essentially the variation of the dis-
tribution function with Q. Only the parameters v and w are
functions of the magnetic flux and the decoherence param-
eter z,

v = �
m=0

N�

�
p,q=0

m

vmpq,

w = �
m=0

N�

�
p,q=0

m

vmpq
N� − m + q

1 − q

2RT
1 − 2RT �19�

with

FIG. 6. �Color online� The distribution function �logarithmic
scale� at zero temperature under influence of decoherence �N�

=10, t0=��. �a� Weak dephasing, z=e−0.32; �b� strong dephasing, z
=e−2. The flux dependence is suppressed, and the distribution tends
towards a symmetric function for R=0.5.
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vmpq = �N�

m
�m

p
�N� − m

− q
�m

q


�2−q�− RT�m−q�1 − 2RT�N�−m+qei
�2p−m�z�2p − m�2
.

�20�

Thus in Eq. �18� the dominating contribution of the Q de-
pendence of P�Q� is classical, and the last two terms repre-
sent the coherent part. For positive ��1, the large Q tail,
Q� 
Q�, of the distribution function is obtained in an analo-
gous procedure.

VII. CONCLUSION

We analyze the full counting statistics of a mesoscopic,
electrical Mach-Zehnder interferometer penetrated by an
Aharonov-Bohm flux, and in the presence of a classical fluc-
tuating potential. The Mach-Zehnder interferometer has the
advantage that there are no closed orbits. Interference is only
a consequence of superposition of amplitudes in the out-
going channels. Of interest is the generating function of
transfered charge for such a quantum coherent conductor and
the transition from coherent transport to classical transport.

First, we discuss the probability distribution for a fully
coherent Mach-Zehnder interferometer. At zero temperature
the distribution of transfered charge is binomial like in a two
terminal conductor, but with a flux-dependent transmission
probability. At finite temperature, the fact that we deal with a
multiterminal conductor leads to a different distribution
which becomes classical due to flux-independent two-
particle processes.

In the presence of a fluctuating potential, assuming that it
is Gaussian, we obtain the first three cumulants as a function
of the Aharonov-Bohm flux and a dephasing parameter. The
classical fluctuating potential modulates the conductance. As
a consequence the noise contains a term proportional to volt-
age squared. The same effect results in a term cubic in volt-
age in the third cumulant. In the third cumulant the conduc-
tance modulation is correlated as well with the shot noise.
The cumulant of the kth order shows oscillations in the flux
up to cos k
. As one expects the high-order harmonics of the
Aharonov-Bohm oscillations are suppressed much stronger
with increasing dephasing than the low order oscillations.

For the limiting case of high voltage we find the generat-
ing function. This permits, like in the coherent case, the cal-
culation of the distribution function of the transfered charge.
Therefore, in this limiting case, we are able to follow the
suppression of the AB oscillations in the distribution func-
tion.

For the tails of the distribution function we find that they
consist of two parts, a purely classical part, independent of
dephasing, which determines the dependence on transferred
charge and a quantum part which governs the flux depen-
dence.

The analysis of the conceptually simple case of a Mach-
Zehnder interferometer will hopefully provide a useful point
of reference for future theoretical investigations of counting
statistics in the presence of quantum fluctuations. However,
the Mach-Zehnder interferometer is not only of theoretical

interest, but recently has been realized experimentally.35 The
questions addressed here are thus also of interest for future
experiments.
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APPENDIX: CALCULATION OF SINGLE CUMULANTS

Successive derivatives in � of the logarithm of the gener-
ating function, see Eq. �11�, yield the cumulants. Using the
expression �8� each cumulant is expressed in terms of deriva-
tives of the matrix A, introduced in Sec. IV. Derivatives of A
of kth order can be written in terms of a matrix K=S†PS and
the matrix n, defined in Sec. IV. P is a projection matrix with
only one nonvanishing element, P33=1. Note that K has non-
vanishing elements only in the upper diagonal 2�2 block.
Because backscattering is excluded in the MZI, the product
PK vanishes and we obtain the simple form

�dkA

d�k�
�=0

= ikn�K + �− 1�kP	 . �A1�

The matrix K is separated into constant matrices 
K� and L,
and time-dependent scalar functions as follows: K= 
K�
+L�ei��t�−z�+L†�e−i��t�−z�. Here z is the decoherence param-
eter z= 
e±i��t��U, introduced in Sec. V. The average is calcu-
lated by replacing the generating function in Eq. �9� by the
phase factor; at this point we explicitly assume a Gaussian
fluctuating potential U�t�, and use �RC��.

The average of the matrix K is denoted by 
K�, it is de-
termined only by the parameters R, 
, and z. The averaging
of the cumulants only affects the time-dependent functions
�e±i��t�−z�. Depending on the order k of the cumulants one
obtains products of the functions �e±i��t�−z� at k different
times. The averaging then defines correlation functions of
different order.

In the noise we get two correlation functions, depending
on one time variable and determined by the parameter z,

g±�t� =
1

z2 
�ei��t� − z��e±i��0� − z��U

= �z±2�1−��t�/��	 − 1���� − �t�� . �A2�

The procedure of the average is similar to the calculation of
the parameter z.

For the third cumulant four correlations functions h+±±
depending on two time variables are possible, for example,

h+−+�t,t�� =
1

z3 
�ei��t� − z��e−i��t�� − z��ei��0� − z�� . �A3�

The functions h�t , t�� can be expressed in terms of g± given
by Eq. �A2�.

With Eqs. �11� and �A1� all cumulants take a compact
form. The mean current in lead 3 is
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I3� =
1

it0
�Tr�dA

d�
�

�=0
�

U
=

1

t0
Tr�n
K� − nP� , �A4�

leading to the result presented in Sec. V.
For the noise we express the second cumulant in terms of

derivatives of A, taken at �=0,

� =
1

i2t0
��Tr

dA

d�
− �Tr

dA

d�
�

U
2�

U

+
1

i2t0
�Tr

d2A

d�2 − Tr�dA

d�
2�

U
. �A5�

The first term corresponds to the modulation noise �I and
disappears in the case of no dephasing. The second term is
the two-particle contribution �that separates into �nyq and �ex
as explained in Sec. V�. Introducing the K matrix, Eq. �A5�
simplifies to

� =
1

t0

�Tr�nK − n
K��	2�U +

1

t0

Tr�nK�1 − n�K	�U,

�A6�

since the product K�1−K� vanishes. The final result contains
the Fourier transforms of the functions g± and a frequency
integral, as also found in Ref. 33.

As for the current and the noise, we express the third
cumulant in terms of derivatives of A at �=0,

C3 =
1

i3t0
���Tr

dA

d�
− �Tr

dA

d�
�3�

+ 3��Tr
dA

d�
− �Tr

dA

d�
��Tr

d2A

d�2 − Tr�dA

d�
2�

+ �Tr
d3A

d�3� + 2�Tr�dA

d�
3� − 3�Tr

dA

d�

d2A

d�2�� .

�A7�

The first term corresponds to the modulation contribution CI
3,

the second term to the term CI�
3 , and the remaining part gives

the three-particle contribution C3p
3 . One checks immediately,

that the first two terms vanish in the absence of dephasing.
Using again the compact expressions in K, Eq. �A7� becomes

C3 =
1

t0
�
�Tr�nK − n
K�	�3�

+ 3
�Tr�nK − n
K�	��Tr�nK�1 − n�K	��

+ 
Tr�nK�1 − n�K�1 − 2n�K	�	 . �A8�

The evaluation of Eq. �A8� is quite lengthy. Introducing Fou-
rier transforms of the correlation functions h and g and of the
occupation functions n describing the leads, one is left with
an integral over two frequencies. This integral contains a
convolution of h or g with temperature and voltage depen-
dent kernels. We evaluate the integration numerically.

The limiting cases were introduced in section V. In the
high voltage regime, the accumulated phase varies slowly.
Therefore, we evaluate the correlation functions g± and h
�see Eqs. �A2� and �A3�	 at equal times,

slow: g±�t� � g±�0� ,

h�t,t�� � h�0,0� . �A9�

In this limit the correlation functions are entirely determined
by the parameter z. The frequency integrals in the final ex-
pression of C3p

3 are given by integrands at zero frequency and
thus simplify substantially. As the modulation term CI

3 does
not depend on the phase dynamics, it does not change in this
approximation. The term CI�

3 combines a modulation part
and a two-particle process. Here we use h�t , t���h�0, t��.

The high voltage approximation does not catch contribu-
tions to the third cumulant due to particle-hole excitations
created by the fluctuating potential U�t�. Similar to Ref. 33,
this leads to an unimportant linear offset between the exact
result and the high voltage result. For better comparison, this
offset is subtracted in Fig. 5, which shows a good agreement
of the high voltage approximation with the exact result.

In the opposite case, for low voltage, the phase factors in
formula �A2� and �A3� at different times are uncorrelated
and thus can be averaged independently and vanish. In this
case, we use in C3p

3 the approximation

fast: g±�t� � 0,

h�t,t�� � 0. �A10�

CI
3 is proportional to V3�3 and thus in the low voltage regime

small compared to the terms linear in voltage. For low tem-
perature also the contribution CI�

3 is negligible.
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