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The ladder method for solving the linearized Boltzmann equation is developed to deal with a nonparabolic
conduction band. This is applied to find the low field Hall mobility of electrons in bulk GaNxAs1−x using the
band-anticrossing model, which predicts highly nonparabolic energy dispersion relations. Polar optical, acous-
tic phonon, piezoelectric, ionized impurity, neutral impurity, and nitrogen scattering are incorporated. In find-
ing an exact solution to the linearized Boltzmann equation, we avoid the unrealistic assumption of a relaxation
time for inelastic scattering via polar optical phonons. Nitrogen scattering is found to limit the electron
mobility to values of the order 1000 cm2 V−1 s−1, in accordance with relaxation time approximation calcula-
tions but still an order of magnitude higher than measured values for dilute nitrides. We conclude that the
nonparabolicity of the conduction band alone cannot account for these low mobilities.
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I. INTRODUCTION

In recent years, there has been growing interest in the use
of dilute nitrides for optoelectronic applications. Since the
early 1990s, fabrication techniques have been developed1–3

that allow the incorporation of nitrogen in dilute concentra-
tions into III-V semiconductors. This leads to a large reduc-
tion of the energy gap with N content,4 making the dilute
nitrides attractive candidate materials for long wavelength
vertical cavity surface emitting lasers �VCSELS� for
telecommunications5 and efficient solar cells operating in the
infrared.6

Although considerable attention has been given to theo-
retical models of the band-structure in dilute nitrides,7–10 un-
til recently there has been very little development in the
theory of carrier transport.11,12 Studies that have been carried
out11 suggest that there may be intrinsic limits on electron
mobility, which will be an important consideration for device
applications. These calculations, however, have only ad-
dressed nitrogen scattering in isolation, based on a relaxation
time approximation for the mobility. The effect of the high
degree of nonparabolicity in the energy dispersion relations
predicted by the band-anticrossing �BAC� model10 has not
been addressed. Furthermore, the incorporation of polar op-
tical scattering, which limits the room temperature mobility
in most semiconductors, cannot be treated using a relaxation
time approximation due to the highly inelastic nature of the
interaction. Hence we have developed the ladder method13,14

for solving the Boltzmann equation to deal with a nonpara-
bolic, spherical conduction band. Using the BAC model to
calculate the modified effective mass and density of states,
we have calculated the low field Hall mobilities for bulk
GaNxAs1−x.

II. THE LADDER METHOD

In the absence of any temperature gradient, the steady
state Boltzmann equation governing the dynamics of the
electron distribution function f�k� for a driving force F is15

F

q
· �kf�k� = � �f�k�

�t
�

scat
. �1�

The right-hand side of Eq. �1� is the temporal rate of change
of f�k� due to scattering and can be written

� �f�k�
�t

�
scat

=� s�k�,k�f�k���1 − f�k��

− s�k,k��f�k��1 − f�k���d3k�, �2�

where s�k� ,k� and s�k ,k�� are the intrinsic scattering rates
from k� to k and vice versa. If Eqs. �1� and �2� can be solved
for f�k� when F includes the magnetic field, then the Hall
mobility can be calculated from the components of the con-
ductivity tensor �ij found from

�E =
e

4�3 � v�k�f�k�d3k , �3�

where E is the electric field, e is the electronic charge, and v
is the electron group velocity.

To find an exact solution of the Boltzmann equation, we
must linearize the problem. Here, we follow the lead of
Fletcher and Butcher.14 Assuming a vanishingly small elec-
tric field E, we expand f�k� to first order about the equilib-
rium distribution f0�E� �E is energy�, putting

f�k� = f0�E� + f1�E� = f0�E� −
�f0�E�

�E
��E� · E , �4�

where the vector ��E� is given by

��E� = − e��1�E�vt + �2�E��ẑ � vt� + �3�E�vz	 �5�

vt= �vx ,vy ,0�, vz= �0,0 ,vz�, and the �i�E� are effective relax-
ation times. The nonparabolicity of the energy bands is in-
corporated by defining the dispersion relations in terms of an
as unyet specified function ��E�
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��E� 

q 2�k�2

2m* �6�

so that the group velocity is now given by

v =
dE

d�

qk

m* �7�

and the density of �single spin� states is

N�E� 

�2m*�3/2�1/2�E�

4�2q3

d��E�
dE

. �8�

Taking the driving force F to be given by

F = − e�E + v � B� �9�

with the magnetic field B taken to be in the z direction, we
arrive, after some algebraic manipulation, at the set of equa-
tions

L„�1�E�… = 1 +
dE

d�

eB

m*�2�E� ,

L„�2�E�… = −
dE

d�

eB

m*�1�E� ,

L„�3�E�… = 1, �10�

where

L„�i�E�… =� s�k�,k�
f0�E��
f0�E�

��i�E� − �i�E��
v�

v
cos ��d3k�

�11�

and � is the angle between v and v�. For elastic processes,
the �i emerge from Eq. �11� as simple momentum relaxation
times. The situation changes for the inelastic process of scat-
tering by optical phonons. We consider, for simplicity, the
case where there is just one optical mode with energy ��.
We can put

s�k�,k� = sA	�E� − E − q �� + sE	�E� − E + q �� , �12�

where sA and sE are the intrinsic scattering rates for absorp-
tion and emission, respectively. When Eq. �12� is inserted
into Eq. �11�, the effect of the delta functions is to introduce
values of the �i at energies E−��, E, and E+��, which can
then be taken outside the integrals. The result is an expres-
sion of the form

L„�i�E�… = A�E��i�E − q �� + B�E��i�E� + C�E��i�E + q ��
�13�

where

A�E� = − 
�E − q �� � sE
fo�E��
f0�E�

v�

v
cos �	�E� − E

+ q ��d3k�,

B�E� =� sA
fo�E��
f0�E�

	�E� − E − q ��d3k�

+ 
�E − q �� � sE
fo�E��
f0�E�

	�E� − E + q ��d3k�

C�E� = −� sA
fo�E��
f0�E�

v�

v
cos �	�E� − E − q ��d3k�.

�14�

Here, we have introduced the step function


�E� = �0, E � 0

1, E � 0
 �15�

since there can be no phonon emission when the electron
energy E��. We can start to see here how the scattering
rate at any particular energy E is correlated with the rates at
E±��. This suggests the picture of a phonon energy “lad-
der” with rungs �� apart. We can make this more explicit by
writing the energy as �, where 0����, and rewriting Eq.
�10� as a system of linear equations in terms of E=�+n��.

To find �i at a particular level E, we need to solve for all
the values of �i separated by integral multiples of ��. In
practice, we may only solve for a finite number of rungs,
which we may do by using a matrix inversion technique. In
order to minimize any truncation error incurred from only
solving for a finite number of rungs, it is assumed that as
n→�, �i�E+n���→�i�E+ �n+1����. Hence for the last
rung N, we put

B�E + N q �� → B�E + N q �� + C�E + N q �� . �16�

It remains to solve the integrals in Eq. �14� when the forms
of the scattering rates for sA and sE are inserted. The exact
expressions can be found in, for instance, Ridley �Ref. 15�.
Our principle concern here is that these expressions intro-
duce a factor 1 /q2, where q= �k−k�� is the magnitude of the
phonon wave vector. To deal with this, we expand 1/q2 in
terms of Legendre polynomials Pn

1

q2 =
1

2k�k
�
n=0

�

�2n + 1�Qn�K�Pn�cos �� ,

K =
k�2 + k2

2k�k
, �17�

where the Qn are Legendre functions of the second kind.
After performing the angular integrations, we can turn the
remaining integration over k into an integration over E using
Eqs. �6� and �8�. The final result gives us

A�E� = − 
�E − q ��I2�k�,k�W0�q��1/2n���

�
f0�E − q ��

f0�E�
d��E�

dE

�1/2�E − q ��
��E�

�� ��E − q �� + ��E�
2�1/2�E − q ���1/2�E�

tanh−1���E − q ��
��E�

�1/2

−
1

2
 ,
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B�E� = I2�k�,k�W0� q�

��E�
�1/2�
�E − q ��n���

f0�E − q ��
f0�E�

�tanh−1���E − q ��
��E�

�1/2d��E − q ��
dE

+ �n��� + 1	

�
f0�E + q ��

f0�E�
coth−1���E + q ��

��E�
�1/2d��E + q ��

dE
� ,

�18�

C�E� = − I2�k�,k�W0�q��1/2�n��� + 1	

�
f0�E + q ��

f0�E�
d��E�

dE

�1/2�E + q ��
��E�

� � ��E + q �� + ��E�
2�1/2�E + q ���1/2�E�

�coth−1���E + q ��
��E�

�1/2

−
1

2
 ,

where

W0 =
e2

4� q �0
�2m*�

q
�1/2� 1

��

−
1

�0
� , �19�

�0 is the permittivity of free space and �� and �0 are the high
and low frequency dielectric constants, respectively. The fac-
tor I2�k� ,k� represents the overlap integral of the wave func-
tions of the initial and scattered states over the unit cell and
is of order unity.

III. THE BAC MODEL

The ladder method can now be applied to calculate Hall
mobilities in GaNAs. According to the BAC model, the pres-
ence of localized nitrogen impurity levels strongly affects
both the effective mass and the density of states. These rela-
tions can be found from the secular equation describing the
splitting of the conduction band10

�E − EM �x1/2

�x1/2 E − EN
� = 0, �20�

where EM and EN are the energies of the unperturbed matrix
semiconductor states and the nitrogen impurities and x is the
nitrogen concentration. Assuming EM is parabolic in the
electron wave vector k, we can put

EM = Ec +
q2k2

2mM
* , �21�

where Ec and mM
* are the conduction band edge and effec-

tive mass of the matrix semiconductor, respectively. Ec is
also taken to have an x dependence16

Ec = Ec0 − �x �22�

and a temperature dependence given by the Varshni relation

Ec0 = E0 −
aT2

�b + T�
. �23�

Using Eqs. �20� and �21� we can put

q2k2

2mM
* =

�2x

EN − E
+ E − Ec 
 ��E� �24�

and hence obtain for the density of states N�E�17

N�E�dE =
�2mM

* �3/2

4�2q3 �1/2�E�
d��E�

dE
dE

=
�2mM

* �3/2

4�2q3 � �2x

EN − E
+ E − Ec�1/2� �2x

�EN − E�2 + 1� .

�25�

Note that it is more usual to give ��E� in terms of the energy
relative to the conduction band edge ECBE�x�. Putting E�
=E−ECBE�x�, we can rewrite Eq. �24� as

��E�� 

�Ec�x�
�EN�x�

E�

1 − E�/�EN
+ E�, �26�

where �Ec is the shift in the conduction band edge
Ec−ECBE�x� and �EN=EN−ECBE�x�.

For a spherical energy band, the effective mass in the
perturbed energy bands is given by

1

m±
* =

1

mM
* �dE±

d�
+ 2��E±�

d2E±

d�2 �
=

1

2mM
* �1 ± �EN − EM�G�E�� ±

��E�
mM

*

���EN − EM�2G2�E� − 1�G�E� , �27�

where

G�E� 
 ��EN − EM�2 + 4�2x	−1/2. �28�

Note that the second term in Eq. �27� is actually proportional

to 1/mM
*2

, since ��E� contains a factor of 1 /mM
*. Close to

k=0, Eq. �27� reduces to18

1

m±
* =

1

2mM
* �1 ± �EN − EM�G�E�� �29�

or

m±
* = mM

* d��E±�
dE±

�30�

IV. ELASTIC SCATTERING PROCESSES

Polar optical scattering has already been incorporated into
the ladder method via Eqs. �18�. Under the assumption that
the different scattering processes are independent, it is
straightforward to extend the method to deal with additional
elastic processes by simply adding the rates to B�E� in Eq.
�13�. Here, we further include acoustic phonon, piezoelectric,
ionized impurity, neutral impurity, and nitrogen scattering.
The following formulas for the scattering rates have been
derived quite generally, although a possible ambiguity arises
in the case of dilute nitrides since we have been discussing
two effective masses: that of the unperturbed matrix semi-
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conductor m*
M and the mass associated with the perturbed

energy bands m*
±. Using the definition of ��E� in Eq. �24�,

the effective masses given below should be taken to be those
of the matrix semiconductor m*

M.
The rates for acoustic phonon and piezoelectric scattering

are derived from the intrinsic scattering rates given in
Ridley;15 the rate for ionized impurity scattering is based on
the Brooks-Herring approach;19 neutral impurity scattering
on the Erginsoy formula,20 and nitrogen scattering on the
scattering matrix due to Fahy.11

A. Acoustic phonon scattering

wac�E� = 2�
�d

2kBT

qcL
I2�k�,k�N�E� , �31�

where �d is the deformation potential for pure dilation and
cL is the average elastic constant for longitudinal modes,
given in terms of the components of the elastic stiffness con-
stants cij by

cL = c11 +
2

5
�c12 + 2c44 − c11� . �32�

B. Piezoelectric scattering

wpe =
�e2Kav

2 q kBT

2�m*

N�E�
��E�

I2�k�,k�H�E� , �33�

where

H�E� = 1 −
q2q0

2

4m*��E�
log�8m*��E�

q2q0
2 + 1�

+
1

8m*��E�/q2q0
2 + 1

. �34�

q0 is the reciprocal Debye screening length and �=�0�0. Kav
2

is an average electromechanical coupling coefficient given in
terms of the piezoelectric coefficient e14 and the average lon-
gitudinal and transverse elastic constants cL and cT by

Kav
2 =

e14
2

�
� 12

35cL
+

16

35cT
� �35�

and

cT = c44 −
1

5
�c12 + 2c44 − c11� . �36�

C. Ionized impurity scattering

wii =
�Z2e4NIIq

3

16�2m*2�2�E�
N�E��log�8m*��E�

q2q0
2 + 1�

−
1

1 + q2q0
2/8m*��E� , �37�

where Z is the ionization number �taken to be unity� and NII
is the number density of ionized impurities. From the hydro-

genic impurity model, the donor ionization energy used to
calculate NII is given by

Ed�x� = � d�

dE
�

k=0
Ed�GaAs� �38�

�the acceptor impurities are all assumed to be occupied�.

D. Neutral impurity scattering

wni =
80��q3NNI

e2�m*d�/dE�2 , �39�

where NNI is the number density of neutral impurities.

E. Nitrogen scattering

For nitrogen scattering, we use the form of the scattering
matrix derived by Fahy and O’Reilly11

��0��U��0� =
1

V

dEc

dNI
, �40�

where �U is the perturbing potential, �0 is the exact electron
eigenstate, �0 is the eigenstate in the absence of the impurity,
and Ec is the conduction band edge energy. The scattering
rate is given by

wN = NIV
2�

q
� ���0��U��0��2�1 − cos ��	�E� − E�

V

8�3d3k�

=
�xa0

3

2q
�dEc

dx
�2

N�E� , �41�

where we have used NI=4x /a0
3, for N concentration x and

lattice constant a0. Note that Eq. �41� is only valid for one
type of N environment and would need to be modified to
account for NuN pairs or H passivated sites.12 For the E−
subband in the BAC model we have

dE−

dx
= −

1

2
�� + ���EN − EM� + 2�2�G�E�	 . �42�

V. RESULTS

For the temperature dependent calculations of the Hall
mobility, the Fermi energy at each temperature was first cal-
culated via the charge neutrality condition. Hence for given
donor/acceptor concentrations, the ionized and neutral impu-
rity concentrations were calculated. The parameters used in
the calculations are listed in Table I �E0 and EN are given
relative to the top of the valence band� and the overlap inte-
gral I2�k� ,k� is taken to be unity. We assume n-type com-
pensated GaNAs with a donor concentration of ND
=1017 cm−3 and NA /ND=0.5.

A possible problem emerges here using the modified den-
sity of states in calculating the free carrier concentration.
Due to the 1/ �EN−E�2 term, the integral of Eq. �25� does not
converge near the nitrogen level. To examine the conse-
quences of this, we assumed a Lorentzian broadening of the
nitrogen level, chosen so that the integral of this density of
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states equaled the integral of the parabolic density of states
plus the number of nitrogen states per unit volume. We found
that for the temperature ranges we were considering
�5–500 K�, there was no significant difference in the calcu-
lated Fermi level from that calculated using the parabolic
approximation.

Figure 1 shows the calculated relaxation times at 300 K.
Shown here are the �3�E�, which are independent of the mag-
netic field. The discontinuities at energy separations of the
phonon energy are a characteristic feature of the ladder
method. In general, the scattering rates at an energy E are
correlated to the rates at energies E±��. However, for
E�� there is no possibility of phonon emission, so the rate

changes discontinuously at E=�� with the effect being
propagated further up the ladder. The most obvious effect of
the nonparabolicity is the tendency of the relaxation times
towards zero near the nitrogen energy, where the electron
becomes immobile.

In Fig. 2 we show the temperature dependence of the
calculated Hall mobility for various nitrogen concentrations.
At this level of doping, neutral and ionized impurity scatter-
ing tend to be dominant at low temperatures, with the mo-
bility only curving over at high temperature �characteristic of
polar optical limited transport� for low values of x. For
x�0.004, the high temperature mobility becomes limited by
nitrogen scattering.

The contributions of the individual processes are illus-
trated in Fig. 3 for x=0.02. At this nitrogen concentration,
nitrogen scattering pins the high temperature mobility to
around 720 cm−2 V−1 s−1.

In Fig. 4, we show the x dependence of the mobility at
300 K and compare this to the relaxation time approximation
due to Fahy and O’Reilly.11 We see that for nitrogen scatter-
ing alone, there is little difference in the predicted mobility.

TABLE I. Parameters used in Hall mobility calculations.

Parameter Value Units
Source

�Reference�

E0 1.519 eV 25

a 5.405�10−4 eV K−1 25

b 204 K 25

EN 1.65 eV 11

� −1.45 eV 11

� 2.45 eV 11

m*
M /m0 0.067 14

a0 5.65325 Å 25

� 53.7 THz 14

�0 12.53 14

�� 10.82 14

�d 7.0 eV 14

c11 1.188�10−11 Nm−2 14

c12 5.38�10−10 Nm−2 14

c44 5.94�10−10 Nm−2 14

e14 −0.16 Cm−2 14

B 0.5 T

FIG. 1. Relaxation times ��3� for all scattering processes at dif-
ferent nitrogen concentrations. The jagged edges to these curves are
due to the ladder nature of polar optical scattering. Note that the
relaxation times all tend to zero near the nitrogen level. Also shown
for comparison is the relaxation time for GaAs with the same donor
and acceptor doping.

FIG. 2. Hall mobility for GaNxAs1−x for different nitrogen con-
centrations. In each case, the donor concentration is ND

=10−17 cm−3 and the compensation ratio is NA /ND=0.5. The mobil-
ity for GaAs is shown for comparison �dashed line�.

FIG. 3. The components of the mobility due to separate pro-
cesses for a nitrogen concentration of x=0.02. Note that at low
temperature, neutral impurity scattering dominates, while above
about 40 K scattering from nitrogen centers is the dominant mecha-
nism limiting the mobility.
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VI. CONCLUSIONS

Despite the large reduction in mobility compared to
GaAs, these results are still about an order of magnitude
larger than many of the experimental determinations of the
Hall mobility in compensated GaInNAs,21,22 although elec-
tron mobilities of up to 2000 cm2 V−1 s−1 have been
reported.23 Moreover, the results found here are of the same
order of magnitude as the studies based on the relaxation
time approximation for nitrogen scattering. This implies that

the nonparabolicity of the conduction band predicted by the
BAC model cannot on its own explain the very low mobili-
ties observed in dilute nitrides.

It has been pointed out by Fahy and O’Reilly24 that the
scattering term in Eq. �41� �dE− /dx�2 may be inadequate as it
stands to model the affect of nitrogen impurity states since it
only applies to isolated N sites. In reality, there will be other
types of nitrogen environments such as N-N pairs distributed
at random throughout the crystal lattice. These environments
introduce new resonant levels close to the conduction band
edge. Consequently �dE− /dx�2 must be replaced by the sum
of squares of derivatives12 for each N environment, which
will naturally increase the scattering rate.

This, of course, raises questions about the validity of the
BAC model, which is based on a single N state mixing with
the matrix semiconductor conduction band states. Some
modification of the band structure, and hence expressions for
the effective mass and density of states, may be required. As
already pointed out, the density of states given in Eq. �25� is
problematic due to the singularity at E=EN. Essentially,
however, this is an artifact of assuming spherical energy
bands—an approximation that must break down as k ap-
proaches the edge of the Brillouin zone—and in our calcula-
tions has not proved too problematic since the electron popu-
lation is limited to low energies in the � valley.

While these problems must be addressed, it is clear that
the introduction of N into III-V semiconductors has a serious
effect on the mobility. These calculations suggest that for
x�0.001, upper limits of 1000–2000 cm2 V−1 s−1 may be
imposed.
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