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Quantum interference between one- and two-photon absorption pathways allows coherent control of inter-
band transitions in unbiased bulk semiconductors; carrier population, carrier spin polarization, photocurrent
injection, and spin-current injection can all be controlled. We extend the theory of these processes to include
the electron-hole interaction. Our focus is on photon energies that excite carriers above the band edge, but close
enough to it so that transition amplitudes based on low-order expansions in k are applicable; both allowed-
allowed and allowed-forbidden two-photon transition amplitudes are included. Analytic solutions are obtained
using the effective-mass theory of Wannier excitons; degenerate bands are accounted for, but envelope-hole
coupling is neglected. We find a Coulomb enhancement of each two-color coherent control process and relate
it to the Coulomb enhancements of one- and two-photon absorption. In addition, we find a frequency-
dependent phase shift in the dependence of photocurrent and spin current on the optical phases. The phase shift
decreases monotonically from � /2 at the band edge to zero over an energy range governed by the exciton
binding energy. The phase shift is the difference between the partial-wave phase shifts of the electron-hole
envelope function reached by one- and two-photon pathways.

DOI: 10.1103/PhysRevB.72.075205 PACS number�s�: 71.35.�y, 42.65.�k, 72.40.�w, 72.25.Fe

I. INTRODUCTION

The phenomenon of quantum interference can be used to
control physical and chemical processes. One approach, the
“n+m” scheme, uses a two-color light field to interfere n-
and m-photon transitions.1–3 Interference between one- and
two-photon transitions, for example, allows controllable po-
lar asymmetry of photoelectrons in atomic ionization,4,5 con-
trollable dissociation of HD+,6 and controllable photocurrent
injection in unbiased solids due to free-carrier absorption,7

impurity-band transitions,8 and quantum well bound-
continuum intersubband transitions.9 In biased asymmetric
semiconductor double wells, “1+2” interference allows con-
trol of carrier population and THz emission.10 Interband
“1+2” interference in unbiased semiconductors, which is our
interest here, allows independent control of electrical-current
injection11,12 and spin-current injection.13–18 Furthermore, in
noncentrosymmetric semiconductors, it allows independent
control of carrier populations �i.e., absorption�19,20 and car-
rier spin polarization.21,22 In each experiment, the interfer-
ence can be controlled by adjusting the phases of the two
light fields.

The controllable optical phases are not the only source of
phase between the transition amplitudes. In general, there is
also a material-dependent intrinsic phase.23 Phenomenologi-
cally, the intrinsic phase appears as a phase shift in the de-
pendence of the process on a relative phase parameter of the
optical fields. Additionally, selectivity between two processes
is possible when their intrinsic phases differ;24 for example,
“1+3” experiments on diatomic molecules have controlled
the branching ratio of ionization and dissociation channels.25

The intrinsic phase can be strongly frequency-dependent
near resonances,25 and the hope that it might serve as a new
spectroscopic observable26,27 has led to efforts to understand
its physical origin.

Whereas a resonance is necessary for a phase shift to a
“1+3” process,26 it is not necessary for a phase shift to a

“1+2” process. For example, an intrinsic phase in the
“1+2” photoionization of atoms is predicted from the simple
model of a �-function potential.28,29

Nevertheless, microscopic theories for the interband
“1+2” processes in bulk semiconductors have predicted
trivial intrinsic phases.11,13,19,21 The photocurrent, for ex-
ample, was predicted to be proportional to the sine of the
relative phase parameter for all final energies.11 Each of these
theories uses the independent-particle approximation, in
which the Coulomb attraction between the injected electron
and hole is neglected. That approximation is expected to be
good for final energies well above the band gap, since in this
case the electron and hole travel quickly away from each
other. However, close to the band gap, one generally expects
to see deviations from the independent-particle approxima-
tion. In the one-photon absorption spectrum, for instance, it
is well known that the electron-hole attraction is responsible
for exciton lines below the band gap, and for an enhance-
ment of the absorption above the gap known as Sommerfeld
or Coulomb enhancement.30

The effect of the electron-hole attraction on one-photon
absorption has been studied with various degrees of sophis-
tication. On the one hand, modern ab initio calculations that
include Coulomb effects have recently given very good
quantitative agreement with experimental spectra,31–35 al-
though at the cost of significant computational overhead. On
the other hand, simple models of Wannier excitons can de-
scribe Coulomb effects near the band edge of many direct-
gap semiconductors. These excitonic effects have long been
understood qualitatively on the basis of a simple two-band
model in the effective mass approximation,36 which is even
quantitatively accurate for typical semiconductors.34

Excitonic effects on nonlinear optical properties of bulk
semiconductors have also been studied in the effective mass,
Wannier exciton approximation,37–50 and only recently with
ab initio methods.51 The two-photon absorption spectrum
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shows a different set of exciton lines and a Coulomb en-
hancement that is weaker than its one-photon counterpart.

One- and two-photon absorption spectra have been mea-
sured sufficiently often that excitonic effects on them are
well established. In contrast, semiconductor “1+2” interfer-
ence experiments have been done typically at only a single
energy and typically many exciton binding energies above
the band gap. Moreover, these initial experiments lacked an
absolute calibration of the relative optical phase, and thus
were insensitive to the intrinsic phase. Such a calibration is
possible,52 and could be used to verify the predictions we
present here. A nontrivial intrinsic phase would have impli-
cations for the use of “1+2” current injection as an absolute
measurement of the carrier-envelope phase of an ultrashort
optical pulse.53–55

In the present work, we extend the theory of “1+2” co-
herent control of bulk semiconductor interband transitions
beyond the independent-particle approximation, employing a
set of approximations that are valid close to the � point of a
direct-gap bulk semiconductor. Our investigation is limited
to a perturbative treatment in the fields. In this limit of low
photoinjected carrier density, the only interparticle interac-
tion of importance is that between a single electron and hole.
We show that, due to the electron-hole attraction, a nontrivial
phase shift does in fact occur in the control of current and
spin current, but not in the control of carrier population or
spin polarization. The intrinsic phase can be understood in
terms of partial-wave phase shifts due to the Coulomb po-
tential between electron and hole. In addition, we find an
enhancement of each process, and relate it to the Coulomb
enhancements of one- and two-photon absorption.

In the next section, we establish notation necessary to
describe the “1+2” processes in terms of one- and two-
photon transition amplitudes. In Sec. III, we present the mi-
croscopic model. The transition amplitudes are worked out in
Sec. IV. The final expressions for the “1+2” effects are given
in Sec. V, and numerical results for GaAs are presented. In
Sec. VI, further understanding of the enhancement and in-
trinsic phase is discussed, and we examine the ratios often
used as figures of merit for “1+2” effects. Intermediate-state
Coulomb enhancement is examined in Appendix A. For ref-
erence, the current-injection tensor is worked out for para-
bolic bands in Appendix B.

II. PRELIMINARIES

The rate of photocurrent injection into an unbiased
bulk semiconductor by a two-color light field E�t�
=E� exp�−i�t�+E2� exp�−i2�t�+c.c. can be written

dJi

dt
= ��I�

ijklE�
*jE�

*kE2�
l + c.c., �1�

where superscripts denote Cartesian components and re-
peated indices are to be summed over.11 The fourth-rank ten-
sor ��I�, called the current-injection tensor, describes the ma-
terial response. It is purely imaginary in the independent-
particle approximation,11 but can be complex in general. We
define the intrinsic phase �ijkl of the component ��I�

ijkl as

�ijkl = arctan�Re���I�
ijkl�

Im���I�
ijkl�� , �2�

so that it is zero or � in the independent-particle approxima-
tion. When the electron-hole interaction is included in the set
of approximations used here, all the components of ��I� have
the same phase. That is,

��I�
ijkl = iei����I�

ijkl� . �3�

The intrinsic phase � appears as a phase shift in the depen-
dence of the current injection on the phase of the optical
fields. For colinearly polarized fields �E�=E� exp�i���x̂ and
E2�=E2� exp�i�2��x̂�, for example, the current injection is

dJ

dt
= 2E�

2 E2����I�
xxxx�sin�2�� − �2� − ��x̂ .

We are ignoring scattering processes through which the cur-
rent would relax to a steady-state value under continuous
illumination, or would decay to zero following pulsed exci-
tation. The current injection discussed here can be used as a
source term in hydrodynamic equations that treat the scatter-
ing phenomenologically11,56,57 or in microscopic transport
equations.58 Coulomb effects other than the excitonic effects
we consider here play a role in scattering, especially at high
densities of excited carriers. Such Coulomb effects are out-
side the scope of this paper.

The current-injection tensor can be written in terms of
one- and two-photon transition amplitudes. We take as the
initial state a clean, cold semiconductor. In a Fermi’s golden
rule calculation for the ballistic current, light produces tran-
sitions to final states �n� with velocity vnn, probability ampli-
tude cn, and energy 	�n above the ground state. The final
states will be specified in detail in the next section; here the
label n represents the set of quantum numbers for either an
interacting or independent electron-hole pair. Thus,

d

dt
J =

e

L3	
n

vnn
d

dt
�cn�2

=
2�e

L3 	
n

vnn�
n
�1� + 
n

�2��2��2� − �n�

=
2�e

L3 	
n

vnn
�
n
�1��2 + �
n

�2��2 + �
n
�1�
n

�2�*
+ c.c.��

���2� − �n� , �4�

where e is the electron charge �negative�, L3 is a normaliza-
tion volume, and 
n

�i� is the amplitude for an i-photon tran-
sition. The 
n

�i� take the form


n
�1� = E2� · Dn

�1� �5�


n
�2� = E�E�:Dn

�2�, �6�

where the vector Dn
�1� and second-rank tensor Dn

�2� depend
only on properties of the material. We consider them in detail
in Sec. IV.
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In the last equation of �4�, the first term describes one-
photon—one-color current injection, the second term de-
scribes two-photon—one-color current injection, while the
interference term describes the “1+2” current. Because of
their different dependencies on the electric-field amplitudes,
these three terms can in principle be separated experimen-
tally. But the first two terms vanish for centrosymmetric
crystals, and the first vanishes even for zinc-blende crystals;
we neglect them here. Excitonic effects on the first term were
studied by Shelest and Éntin.59,60 The third term survives in
all materials. Comparing its expression with the phenomeno-
logical form �1�, we have

��I�
ijkl =

2�e

L3 	
n

vnn
i �Dn

�2�*
� jk�Dn

�1��l��2� − �n� . �7�

Even if scattering from impurities and phonons is ne-
glected, the injection current described by �4� does not cap-
ture the full current density; there are also optical rectifica-
tion and “shift” contributions to the current.61 The one-color
varieties of these have been studied in some detail,60,62–64 but
the “1+2” varieties have not. However, the different time
dependencies of the three current contributions allows for
their separate examination experimentally, at least in prin-
ciple, and rough order-of-magnitude estimates indicate that
typically the injection current will be the largest; it is the
only contribution to the current we treat here.

As in �4�, the carrier injection rate can be written as

d

dt
n =

1

L3	
n

d

dt
�cn�2

=
2�

L3 	
n


�
n
�1��2 + �
n

�2��2 + �
n
�1�
n

�2�*
+ c.c.����2� − �n� ,

�8�

where n is the number density of injected electron-hole pairs.
The first two terms in �8� are the usual one- and two-photon
absorption rates, which we denote by ṅ2� and ṅ� respec-
tively. In terms of one- and two-photon coefficients ��1�

ij and
��2�

ijkl that depend only on the properties of the material, they
can be written as ṅ2�=��1�

ij E2�
i E2�

*j and ṅ�=��2�
ijklE�

i E�
j E�

*kE�
*l.11

From �8�,

��1�
ij =

2�

L3 	
n

�Dn
�1�*

�i�Dn
�1�� j��2� − �n� , �9�

��2�
ijkl =

2�

L3 	
n

�Dn
�2�*

�ij�Dn
�2��kl��2� − �n� . �10�

The third term in �8�, denoted ṅI, allows population control
as discussed and observed by Fraser et al.19,20 It can be writ-
ten in terms of a third-rank tensor ��I�

ijk as19

ṅI = ��I�
ijkE�

*iE�
*jE2�

k + c.c., �11�

where

��I�
ijk =

2�

L3 	
n

�Dn
�2�*

�ij�Dn
�1��k��2� − �n� . �12�

It is purely real in the independent-particle
approximation.19,20

Expressions such as �4� and �8� can also be written for
carrier spin polarization and spin current.22 The interference
terms of these describe “1+2” spin control21 and “1+2”
spin-current injection,13 which can be written in terms of
material response pseudotensors �I�

ijkl �Ref. 21� and ��I�
ijklm

�Ref. 17�, respectively. In the independent-particle approxi-
mation, �I�

ijkl is purely imaginary,21 while ��I�
ijklm is purely

real.17

The phases of the material response tensors ��I�, ��I�, ��I�,
and �I� are related to the phases of the one- and two-photon
matrix elements, Dn

�1� and Dn
�2�. The one- and two-photon

matrix elements also appear, respectively, in the one- and
two-photon absorption coefficients, as can be seen from �9�
and �10�. There have been many theoretical investigations of
one- and two-photon absorption near the direct gap of bulk
semiconductors that include excitonic effects.65,66 However,
since one- and two-photon absorptions are insensitive to the
phases of the transition amplitudes, those calculations took
no care to get the phases of the transition amplitudes correct.
In the next two sections we find the transition amplitudes
with the correct phases, including excitonic effects.

III. MODEL

We first review the two-band effective-mass model of
Wannier excitons; the two bands are nondegenerate conduc-
tion and valence bands that are parabolic and isotropic with a
direct gap Ecv

g at k=0 �the � point�.67,68 This model has been
used to study excitonic effects on one-photon absorption,36

two-photon absorption,38 and other nonlinear optical
processes.44–50 We subsequently describe a generalization
that accounts for degeneracy and multiple bands. It has been
used for two-photon absorption,40 and has been implied
whenever two-band results have been applied to actual semi-
conductors.

The total Hamiltonian of the system can be written in the
form H=HB+HC+Hint�t�. Here, H0=HB+HC is the field-free
Hamiltonian made up of the single-particle part HB and the
part due to the Coulomb interaction between carriers HC.
Using the minimal-coupling Hamiltonian, the optical pertur-
bation takes the form Hint�t�=−�e /c�A�t� ·v+e2A2 / �2mc2�,
where A�t� is the vector potential associated with the Max-
well electric field and v is the velocity operator associated
with H0. In the long-wavelength limit, the position depen-
dence of A�t� is neglected, and thus the second term in
Hint�t� may be neglected, since it can be absorbed in an over-
all time-dependent phase of the full system ket and hence
cannot cause any transitions between states of H0. Many ap-
proximate approaches to band-structure calculation, includ-
ing most pseudopotentials, and the truncation to a finite num-
ber of bands, implicitly assume an underlying field-free
Hamiltonian that is nonlocal; there is then a correction to the
interaction Hamiltonian Hint�t� in the velocity gauge.43,69
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However, we neglect such nonlocal corrections, as has been
the practice in previous calculations of coherent control
effects.11,13,19

The initial state is the “vacuum” �0�; it corresponds to
completely filled valence bands and empty conduction
bands. If the Coulomb interaction were neglected in a two-
band model consisting of valence �v� and conduction �c�
bands, the final states would be of the form ack

† avk�0�, where
the operator ank

† creates an electron in an eigenstate of HB, a
Bloch state �n ,k� with band index n and wave vector k. The
photon momentum has been neglected, consistent with the
long-wavelength approximation. The Coulomb interaction
couples states at different k; thus, accounting for HC, the
final states are of the form

�cv�� � 	
k

Acv
� �k�ack

† avk�0� , �13�

where � labels the state; its physical meaning is given below.
In the effective mass Wannier exciton approximation, the
Fourier transform

�cv
� �r� = 	

k
Acv

� �k�eik·r, �14�

which is the wavefunction for the relative coordinate be-
tween electron and hole, is a hydrogenic wave function sat-
isfying

−
	2

2�cv
�2�cv

� �r� − V�r��cv
� �r� = �Ecv��� − Ecv

g ��cv
� �r� ,

�15�

where �cv
−1=mc

−1+mv
−1 is the reduced mass in terms of the

�positive� conduction- and valence-band effective masses,
and V�r� is the Coulomb potential, V�r�=e2 / ��r�, screened
by the static dielectric constant �.30,36,70 The state has energy

Ecv��� =
	2�2

2�cv
+ Ecv

g .

We choose the states to be normalized over the volume L3 by
m ,k �n ,k��=�n,m�k,k� and cv� �cv���=��,��; as a result
�cv

� �r� is unitless, having the normalization

�d3r��cv
� �r��*�cv

���r�=L3��,��.
Our focus in this paper is on the unbound solutions to

�15�; bound-exciton states lack relative velocity between the
electron and hole, and hence do not contribute to the ballistic
current or spin current. For a Fermi’s golden rule calculation
of the current or spin current, the unbound state must behave
asymptotically like an outgoing plane wave in the relative
coordinate between electron and hole; � is the wave vector
of the outgoing plane wave. Specifically, we must use “ion-
ization states” rather than scattering states,71 as was done for
atomic “1+2” ionization.28 They are related by ��cv

� �r��ion

= 
��cv
−��r��scatt�*.72 Calculations of one- or two-photon ab-

sorption are insensitive to an error in this choice of boundary
condition, but the present calculation is not, since it is sen-
sitive to the relative phase of the transition amplitudes.

The ionization state wave functions that solve �15� can be
expressed as a sum over partial waves,

�cv
� �r� = e�/2acv�	

l=0

� ��l + 1 +
i

acv�
�

�2l�!
�2i�r�le−i�rPl� r · �

r�
�

�1F1�l + 1 +
i

acv�
;2l + 2;2i�r� , �16�

where acv=�	2 / ��cve2� is the exciton Bohr radius, and � and
r mean ��� and �r�.73 The Pl are Legendre polynomials, 1F1 is
a confluent hypergeometric function, and � is the Gamma
function.

Such a two-band model of Wannier excitons is useful for
the description of many optical properties. However, near the
band gap at the � point of a typical zinc-blende semiconduc-
tor there are, counting spin, eight bands: two each of con-
duction �c�, heavy hole �hh�, light hole �lh� and split-off hole
�so�. Other bands, especially the next-higher conduction
bands, can also be important for some processes, especially
for population and spin control.

The existence of multiple bands and band degeneracy
modifies the exciton Hamiltonian, i.e., the operator acting on
�cv

� �r� in the left side of �15�. In the effective-mass approxi-
mation, using a basis of �-point states, the kinetic part of the
Wannier exciton Hamiltonian has a matrix structure.75,76

Even though this approximation neglects band warping, non-
parabolicity, and inversion asymmetry, the Hamiltonian lacks
analytic eigenstates.76 This is essentially due to the degen-
eracy of the hh and lh bands at the � point. As a result of the
difference between mhh and mlh there is “envelope-hole
coupling,”77 which is a spin-orbit-like coupling between the
orbital angular momentum of the exciton envelope function
and the total angular momentum of the valence band � point
Bloch functions.78 Baldereschi and Lipari split the effective-
mass Hamiltonian into a sum of terms based on symmetry,
and showed that in a spherical approximation the envelope-
hole coupling could be treated as a perturbation to the diag-
onal part, which has analytic, hydrogenic eigenstates.70,79 In
order to extract the main physics, while preserving the sim-
plicity of the two-band model, we neglect envelope-hole
coupling entirely. In this approximation, �15� remains valid
for each conduction-valence band pair, however one must
use “average” effective masses for degenerate bands. Spe-
cifically, the effective mass of the valence bands hh, lh, and
so is m /�1L, where m is the free-electron mass, and �1L is
one of the Luttinger parameters.70 The upper conduction
bands have a different average effective mass. Note that
�cv

� �r� is independent of c and v within the set of bands

c ,hh , lh ,so�. The effect of envelope-hole coupling has been
studied for bound-exciton states,42,70,79 but not for optical
processes involving unbound excitons in the continuum.

Even within this model, the presence of multiple bands
provides two types of terms in the sum over intermediate
states in the two-photon amplitude: two-band terms, in which
the intermediate and final states are in the same exciton se-
ries �i.e., two states of the form �13� with the same c and v�,
and three-band terms, in which the intermediate and final
states are in different series. Three-band terms are important
for some processes but not for others. For current control,
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three-band terms are important for cross-linearly polarized
fields,80 and for spin-current control, they are important for
the spin current due to colinearly polarized fields.13 Three-
band terms are essential for population and spin control.22,80

The velocity matrix elements involving the state �cv�� are

cv��v�0� = 	
k

�Acv
� �k��*vcv�k� , �17�

cv��v�c�v���� = 	
k

�Acv
� �k��*Ac�v�

�� �k�

��vcc��k��v,v� − vv�v�k��c,c�� , �18�

where vnm�k��n ,k�v�m ,k� is the velocity matrix element
between Bloch states.

IV. TRANSITION AMPLITUDES

In the independent-particle approximation, the transition
amplitudes are


cv�
�1-free� = i

e

2	�
E2� · vcv��� , �19�

and 
cv�
�2-free�=	c�,v�
cc�vv��

�2-free� , where


cc�vv��
�2-free� � � e

	�
�2

�

E� · �vcc�����v,v� − �c,c�vv�v������E� ·vc�v�����

Ec�v����/	 − �
.

�20�

With excitonic effects included, using the perturbation
Hint�t� to second order gives the transition amplitudes


cv�
�1� =

ie

2	�
E2� · cv��v�0� , �21�

and


cv�
�2� = � e

	�
�2

� 	
c�v���

�E� · cv��v�c�v������E� · c�v����v�0��
Ec�v�����/	 − �

,

�22�

where the sum over intermediate states is over both bound
and free excitons. The two-photon transition amplitude is
more difficult to deal with due to the sum over intermediate
states; however, in our set of approximations it has been
done exactly.38–40

In order to proceed analytically, it is common to use �17�
and �18�, and then make an expansion in k of the velocity
matrix elements vnm�k� about the � point.30,36–40 However,
due to the degeneracy at the � point, the coefficients of such
an expansion can depend on the direction of k.81 To proceed,
we note that Wannier excitons have large spatial extent and
hence only a small region of wave vectors is important for

them, i.e., Acv
� �k� is peaked in the region of k near �.68 This

is especially true for final states with energies above the band
gap. Thus, we expand vnm�k� about the � point, approached
in the direction �̂,

vnm
i �k� = vnm

i ��̂� + k · �kvnm
i ��̂� + ¯ , �23�

where vnm
i ��̂�� lim�→0n ,��v�m ,��� and �kvnm

i ��̂�
� lim�→0��n ,��v�m ,���.

Optical transitions due to the first term in �23� are called
“allowed,” while those due to the second term are called
“forbidden.” We restrict ourselves to materials for which the
allowed valence to conduction band transition does not van-
ish. Keeping only the allowed term in �17�,36

cv��v�0� = vcv��̂���cv
� �r = 0��*. �24�

For the intravalence and intraconduction band transitions, the
first two terms of �23� in �18� give39

cv��v�c�v����

= ��v,v�vcc���̂� − �c,c�vv�v��̂�� � d3r

L3 ��cv
� �r��*�c�v�

�� �r�

− ��v,v��kvcc�
i ��̂� − �c,c��kvv�v

i ��̂��

�i� d3r

L3 ��cv
� �r��* � �c�v�

�� �r� . �25�

In particular,39,82

cv��v�cv�� = 	
k

�Acv
� �k��*Acv

� �k�
	

�cv
k

= − i
	

�cv
� d3r

L3 ��cv
� �r��*�r�cv

� �r� = 	�/�cv.

�26�

For Ge and for simple models of zinc-blende semiconduc-
tors that neglect lack of inversion symmetry, the first term in
�25� always vanishes. This means that there are only
allowed-forbidden two-photon transitions �the interband
transition is allowed, while the intraband transition is forbid-
den�. When the first term is nonvanishing, there are allowed-
allowed two-photon transitions. In principle, for materials
that lack a center of inversion, there is also a small contribu-
tion to the allowed-forbidden two-photon transition from the
first term in �25� and the term in cv��v�0� that comes from
the second term in �23�; we neglect it in what follows, but
note that when compared to the dominant allowed-forbidden
contribution that we consider here, it has a different Cou-
lomb enhancement but the same intrinsic phase �see Eq. 2.32
of Rustagi et al.�.39

We write 
cv�
�2� =
cv�

�2:a-f�+
cv�
�2:a-a�, and discuss the allowed-

forbidden and allowed-allowed transitions separately.
Using �16�, �24�, and �21�, the one-photon transition am-

plitude is36
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cv�
�1� = 
cv�

�1-free�exp� �

2acv�
���1 −

i

acv�
� , �27�

where only the allowed term is kept in 
cv�
�1-free�. The transi-

tion is to an s wave. The one-photon absorption coefficient is
proportional to the norm of 
cv�

�1� �see �8� and �9��.36

For allowed-forbidden two-photon transitions, substitut-
ing �24� and the second term of �25� into �22�,


cv�
�2:a-f� =

e2

�2	
	
c�v�

�E� · vc�v���̂��E�
i ��v,v��kvcc�

i ��̂�

− �c,c��kvv�v
i ��̂�� · Mcc�vv���� , �28�

where

Mcc�vv���� � − i� d3r��cv
� �r��* � Gc�v��r,0;	� − Ec�v�

g � ,

�29�

and we have used the Coulomb Green function,

Gcv�r,r�;
� =
1

L3	
�

�cv
� �r���cv

� �r���*

Ecv��� − Ecv
g − 


,

which is known analytically.38 In particular,

Gcv�r,0;	� − Ecv
g � =

�cv

2�r	2��1 − �cv�W�cv,1/2� 2r

acv�cv
� ,

�30�

where we define

�cv �� Bcv

Ecv
g − 	�

,

Bcv=	2 / �2�cvacv
2 � is the exciton binding energy, and

W�,1/2�z� is a Whittaker function with the integral represen-
tation

W�,1/2�z� =
ze−z/2

��1 − ���0

�

dt�1 + t

t
��

e−zt. �31�

Since the Green function depends only on the magnitude of
r, only the p wave of the final state survives the integral in
Eq. �29� over the angles of r, �d
P1�r̂ · �̂�r̂=4��̂ /3. The
integral over r can be done using38

�
0

�

r�−1e−pr
1F1��;�;�r�dr = ����

p�−�

�p − ��� . �32�

The final result is


cv�
�2:a-f� = exp� �

2acv�
���2 −

i

acv�
�	

c�v�

Ncc�vv�
�a-f� ���
cc�vv��

�2-free� ,

�33�

where only the allowed-forbidden term is kept in 

cc�vv��

�2-free� ,
and

Ncc�vv�
�a-f� ��� � �1 + ac�v�

2 �2�c�v�
2 �2�

0

1 S�1 + S

1 − S
��c�v�

exp�−
2

acv�
arctan�ac�v���c�v�S��

�1 + ac�v�
2 �2�c�v�

2 S2�2
dS . �34�

For allowed-allowed two-photon transitions, substituting
�24� and the first term of �25� into �22�,


cv�
�2:a-a� = � e

	�
�2

	
c�v�

E� · ��vv�vcc�
i ��̂�

− �c,c�vv�v
i ��̂��E� · vc�v���̂�

� 	� d3r��cv
� �r��*Gc�v��r,0;	� − Ec�v�

g � .

Since Gc�v� depends only on the magnitude of r �Eq. �30��,
only the s part of the final state will survive the integration
over angles of r. Again we use �31� for the Whittaker func-
tion. The integral over the magnitude of r can be done using
an identity obtained by taking a derivative with respect to p
of both sides of �32�. Finally,


cv�
�2:a-a� = exp� �

2acv�
���1 −

i

acv�
�	

c�v�


cc�vv��
�2-free� Ncc�vv�

�a-a� ��� ,

�35�

where only the allowed-allowed term is kept in 

cc�vv��

�2-free� , and

Ncc�vv�
�a-a� ��� � �1 + �ac�v���c�v��

2�2

��
0

1

S�1 − S
ac�v��c�v�

acv
��1 + S

1 − S
��c�v�

�

exp�−
2

acv�
arctan�ac�v���c�v�S��

�1 + �ac�v���c�v�S�2�2 dS .

�36�
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This agrees with Eq. 2.28 of Rustagi,39 but note that we have
defined N

cc�vv�
�a-a� ���= �1+ �ac�v���c�v��

2�Is,k���, where Is,k��� is
given, with a typographical error, in Eq. 2.25 of that paper.

The factors N
cc�vv�
�a-f� and N

cc�vv�
�a-a� , which appear in �34� and

�36� are the enhancements due to the Coulomb interaction in
the intermediate states; they are discussed further in Appen-
dix A.

V. RESULTS

The one- and two-photon transition amplitudes were pre-
sented in the preceding section on the basis of an expansion
in k of the Bloch-state velocity matrix elements. The allowed
one-photon transition amplitude 
�1� is in �27�, the allowed-
forbidden two-photon transition amplitude is in �33�, and the
allowed-allowed two-photon transition amplitude is in �35�.
From them, Dcv�

�1� and Dcv�
�2� may be extracted by comparison

with the definitions in �5� and �6�.

A. Current injection

The “1+2” current injection is dominated by interference
of allowed one-photon transitions and allowed-forbidden
two-photon transitions.80 Substituting these into �7�, and us-
ing the identities ��x+1�=x��x� and

��1 − ix���1 + ix� =
�x

sinh��x�
, �37�

yields our final result for the current-injection tensor

��I�
ijkl = 	

c,v
�1 +

i

acv�cv
���acv�cv� 	

c�,v�

Ncc�vv�
�a-f� ��cv��cc�vv�

ijkl ,

�38�

where

�cv �
1

acv
�2	� − Ecv

g

Bcv
, �39�

��x� �
��/x�exp��/x�

sinh��/x�
=

2�

x
�1 − exp�− 2�/x��−1, �40�

and

�cc�vv�
ijkl �

2�e

L3 	
�

�cv
i ����Dcc�vv��

�2-free�*� jk�Dcv�
�1-free��l

���2� − Ecv���/	� , �41�

with �cv�����vcc���−vvv����=	� /�cv and

�Dcc�vv��
�2-free� � jk = � e

	�
�2 
�vcc�����v,v� − �c,c�vv�v����,vc�v����� jk

Ec�v����/	 − �
,

�42�

where 
v1 ,v2�ij ��v1
i v2

j +v1
j v2

i � /2 and

�Dcv�
�1-free��l = i

e

2	�
vcv

l ��� . �43�

Note that only the allowed part of �43� and the allowed-
forbidden part of �42� should be retained for a consistent

solution. We have written �38� to separate the parts due to the
electron-hole interaction. In the independent-particle ap-
proximation, the current-injection tensor ��I-free�

ijkl is11

��I-free�
ijkl = 	

c,c�,v,v�

�cc�vv�
ijkl ; �44�

it is evaluated for parabolic bands in Appendix B.
For GaAs, we present in Fig. 1 the magnitude of ��I�

xxxx,

based on �cc�vv�
xxxx calculated by two methods. The first

method, described in Appendix B, uses isotropic parabolic
bands and includes only two-band terms. It uses effective-
mass ratios for conduction, heavy-hole, light-hole, and split-
off bands of 0.067, 0.51, 0.082, and 0.154, respectively; EP
=27.86 eV; the fundamental band gap Eg is 1.519 eV; and
valence-band spin-orbit splitting is 0.341 eV.83,84 The second
method solves the 8�8 k ·p Hamiltonian, including remote-
band effects, but in a spherical approximation with warping
and spin-splitting neglected by replacing �2 and �3 with �̃
��2�2+3�3� /5;78 the calculation is nonperturbative in k
�hence it includes band nonparabolicity�, and it includes both
two- and three-band terms in the two-photon amplitude.80

The solid and dotted lines in Fig. 1 are calculated with �38�,
and hence include excitonic effects; the Coulomb enhance-
ment part of the calculation uses Bcv=4.2 meV85 and the
band parameters listed above. Note that the solid black line
in Fig. 1 is inconsistent in the sense that the Coulomb en-
hancement is based on an expansion in k, whereas the free-
particle result that it enhances is nonperturbative in k; nev-
ertheless, such an approach has given good agreement with
experiments for one- and two-photon absorption.86,87

The Coulomb enhancement of ��I� can clearly be seen in
Fig. 1. There is a kink in each curve at excess photon energy
341 meV corresponding to the onset of transitions from the
so band. At higher energies, the Coulomb enhancement of so

FIG. 1. Magnitude of the diagonal element of the current-
injection tensor for GaAs with �Eq. �38�� and without �Eq. �44��
excitonic effects. The gray dotted and dashed-dotted lines are based
on a parabolic-band calculation of �cc�vv�

xxxx that only includes two-
band terms; the dotted line includes excitonic effects, while the
dashed-dotted line does not. The black solid and dashed lines are
based on �cc�vv�

xxxx calculated with a nonperturbative solution of the
8�8 k ·p Hamiltonian; the solid line includes excitonic effects,
while the dashed line does not.
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transitions is larger than the Coulomb enhancements of hh
and lh transitions, since the former transitions are to
conduction-band states with lower energy. Hence, the kink in
��I� is enhanced by excitonic effects.

We extract the intrinsic phase of ��I�
xxxx using �2�. The solid

line in Fig. 2 is the intrinsic phase of ��I�
xxxx calculated for

GaAs with the nonperturbative 8�8 k ·p Hamiltonian; the
result for the parabolic-band model is nearly identical. Since
we have used a spherical exciton model, the intrinsic phase is
the same for all components of ��I�

ijkl. The intrinsic phase has
its maximum value of � /2 at the band edge, and goes to zero
as the light frequency increases. The decrease is smooth ex-
cept for a small kink at the onset of transitions from the so
band. In fact, for excess photon energies less than the split-
off energy, the intrinsic phase has the simple analytic form

���� = arctan�� Bcv

2	� − Eg
� . �45�

Equation �45� is plotted as the dotted line in Fig. 2; com-
pared to the solid line, it is identical below the onset of so
transitions, and it makes a good approximation above the the
onset of so transitions. Since �45� only depends on the excess
photon energy scaled by the exciton binding energy, we plot
it as a function of this scaled energy in the inset of Fig. 2; it
is useful for finding the intrinsic phase of materials other
than GaAs.

In ��I� �Eq. �38��, the two- and three-band terms have

different intermediate-state Coulomb enhancement N
cc�vv�
�a-f� .

For many materials, however, N
cc�vv�
�a-f� is approximately equal

for all the terms �cc�vv�
ijkl that contribute significantly to the

total ��I-free�
ijkl , as shown in Appendix A for GaAs. Thus, at

photon energies for which transitions from the heavy- and
light-hole bands dominate ��I�, the Coulomb enhancement
becomes approximately independent of the sum over bands
and we can make the simplification

��I�
ijkl � Fa-f

�I� exp�i����I-free�
ijkl , �46�

where the intrinsic phase is given by �45�, and

Fa-f
�I� ��� � ��acv�cv��1 + �acv�cv�−2Nccvv

�a-f� ��cv� , �47�

The Coulomb enhancement factor Fa-f
�I� ��� is plotted in Fig. 3

with the approximation that Nccvv
�a-f� =1 �see Appendix A�.

B. Carrier population control

The “1+2” carrier population control is dominated by in-
terference of allowed one-photon transitions and allowed-
allowed two-photon transitions.20,22,80 Substituting these into
�12�, and using the Gamma function identity �37�, we find

��I�
ijk = 	

c,v
��acv�cv� 	

c�v�

Ncc�vv�
�a-a� ��cv��cc�vv�

ijk , �48�

where

�cc�vv�
ijk =

2�e

L3 	
�

�Dcc�vv��
�2-free�*� jk�Dcv�

�1-free��l��2� − Ecv���/	� ,

�49�

and D
cc�vv��

�2-free� and Dcv�
�1-free� are given by �42� and �43�. Note

that only the allowed part of �43� and the allowed-allowed
part of �42� should be retained for a consistent solution. In
the independent-particle approximation,

��I-free�
ijk = 	

c�v�

�cc�vv�
ijk . �50�

Thus, population control has a Coulomb enhancement due to
excitonic effects, but no phase shift.

Note that �48� gives the population-control tensor at final
energies above the band edge. There can also be population
control of bound excitons when both one- and two-photon
transitions are to the same excitonic state. This can occur, for
example, at s excitons due to allowed-allowed two-photon
transitions41 interfering with allowed one-photon transitions.

If N
cc�vv�
�a-a� ��cv� is approximately the same for all the terms

that significantly contribute to ��I�, then, at photon energies
for which transitions from the heavy- and light-hole bands
dominate ��I�, the Coulomb enhancement becomes approxi-
mately independent of the sum over bands, and we can make
the simplification,

FIG. 2. Phase shift of the current �intrinsic phase of ��I�
xxxx� in

GaAs due to excitonic effects. The solid line is calculated with Eqs.
�2� and �38�, and the dotted line is calculated with Eq. �45�. The
inset is Eq. �45� plotted in scaled units.

FIG. 3. Approximate Coulomb-enhancement factors. The solid
line, applicable to current and spin-current control, is Fa-f

�I� �Eq. �47��
with Nccvv

�a-f� =1, and the dotted line, applicable to carrier population
and spin control, is Fa-a

�I� �Eq. �52�� with Nccvv
�a-a�=1.
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��I�
ijk � Fa-a

�I� ��I-free�
ijk , �51�

where

Fa-a
�I� ��� � ��acv�cv�Nccvv

�a-a���cv� . �52�

The Coulomb enhancement factor Fa-a
�I� ��� is plotted in Fig. 3

with the approximation that Nccvv
�a-a�=1 �see Appendix A�.

C. Spin-current injection and spin control

The “1+2” spin current is dominated by interference of
allowed one-photon transitions and allowed-forbidden two-
photon transitions, whereas “1+2” spin control is dominated
by interference of allowed one-photon transitions and
allowed-allowed two-photon transitions.80 Under the ap-
proximations that led to �46� and �51�, the spin-current injec-
tion pseudotensor is

��I�
ijklm = Fa-f

�I� exp�i����I-free�
ijklm , �53�

where Fa-f
�I� is given by �47�, � is given by �45�, and ��I-free� is

the spin-current injection pseudotensor in the independent-
particle approximation. Under similar approximations, the
spin-control pseudotensor is

�I�
ijkl = Fa-a

�I� �I-free�
ijkl , �54�

where Fa-a
�I� is given by �52�, and �I-free� is the spin-control

pseudotensor in the independent-particle approximation.
Spin control, like carrier population control, has a Coulomb
enhancement but no phase shift. There can also be spin con-
trol of bound excitons, but it has not been included in �54�.

VI. DISCUSSION

We now examine the relationship between the Coulomb
enhancements of the “1+2” processes and of one- and two-
photon absorption; the latter are denoted by F�1� and F�2� so
that for i� 
1,2�, ṅ�i�= ṅfree

�i� F�i�. The relationship is particu-
larly simple at photon energies for which transitions from the
heavy- and light-hole bands are dominant and intermediate-
state Coulomb enhancement is the same for each significant
term in the sum over intermediate states. The Coulomb en-
hancements for the “1+2” processes are then given by �47�
and �52�. For one-photon absorption, F�1�=��acv�cv�.36 In
noncentrosymmetric semiconductors, two-photon absorption
is dominated by allowed-allowed transitions just above the
band gap, and by allowed-forbidden transitions at higher fi-
nal energies; the crossover point in GaAs is a few meV
above the band gap.88 At photon energies for which allowed-
allowed transitions dominate two-photon absorption, from
�35�,

F�2� = ��acv�cv��Nccvv
�a-a���cv��2, �55�

and thus

Fa-a
�I� = �F�1�F�2� and Fa-f

�I� = C�F�1�F�2�, �56�

where C��Nccvv
�a-f� ��cv� /Nccvv

�a-a���cv���1+ �acv�cv�−2, while at
photon energies for which allowed-forbidden transitions
dominate two-photon absorption, from �33�,

F�2� = ��acv�cv��1 + �acv�cv�−2��Nccvv
�a-f� ��cv��2, �57�

and thus

Fa-a
�I� = �1/C��F�1�F�2� and Fa-f

�I� = �F�1�F�2�. �58�

Note that, based on Appendix A, C��1+Bcv / �2	�−Eg�,
which is the ratio of the two curves in Fig. 3. In centrosym-
metric semiconductors, there are no allowed-allowed transi-
tions, and only �58� applies.

The “1+2” processes are often described by ratios. For
example, a useful quantity to describe the current is the
swarm velocity,56,89 defined as the average velocity per in-
jected electron-hole pair

vswarm �
�dJ/dt�
e�dn/dt�

.

The swarm velocity is a maximum when the relative inten-
sities of the two colors are chosen such that ṅ2�= ṅ�; return-
ing to �4�, if one associates the one- and two-photon ampli-
tudes with the arms of an effective interferometer, this
condition corresponds to balancing that interferometer. For
fields colinearly polarized along x̂, the maximum swarm
speed is

vswarm =
1

e

���I�
xxxx�

���1�
xx ��2�

xxxx
. �59�

A useful quantity to describe pure spin currents is the maxi-
mum spin-separation distance;16 it is proportional to
��I� /���1���2�. As a consequence of �58�, the maximum
swarm speed, and the maximum spin-separation distance, are
unaffected by excitonic effects when allowed-forbidden tran-
sitions dominate two-photon absorption.90 However, close to
the band edge, where allowed-allowed transitions dominate
two-photon absorption, excitonic effects increase these ratios
by a factor C over their value in the independent-particle
approximation. In contrast, as a consequence of �58�, exci-
tonic effects do not affect the maximum control ratio for
population and spin control ���I� /���1���2� and �I� /���1���2�,
respectively�19,21,22 close to the band edge and decrease them
by a factor C at higher photon energies for which allowed-
forbidden transitions dominate two-photon absorption.

In the terminology of Seideman,26 the excitonic phase
shift of the “1+2” current and spin current is a direct phase
shift. This phase shift is due to the complex nature of the
final state as it appears in the transition amplitudes. Thus it
can be understood in terms of the partial-wave phase shifts of
the final state caused by the Coulomb potential between elec-
tron and hole. The Coulomb interaction is rather unique due
to its long-range nature, so we first suppose that the potential
between the electron and hole falls off more rapidly than 1/r.
In that simpler problem, the final-state wave function is writ-
ten as

���r� = 	
l=0

�

ile−i�l����2l + 1�
u�,l�r�

r
Pl� r · �

r�
� ,

where the u�,l�r� are real.72 If the potential between the par-
ticles is ignored, then the partial-wave phase shifts, �l��� are
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zero. The allowed one-photon pathway reaches an s wave,
while the allowed-forbidden two-photon pathway reaches a p
wave. Substituting this form for the wave function into the
one- and two-photon transition amplitudes yields 
�

�1�

=
�
�1-free�ei�0���f0��� for the one-photon rate, where f0��� is

real and depends on u�,0�r�, and 
�
�2:a-f�=
�

�2-free�ei�1���f1���
for the two-photon rate, where f1��� is real and depends on
u�,0�r� and u�,1�r�. Here 
�

�i-free� is the i-photon transition
amplitude when the potential between the particles is ig-
nored. It is then straightforward to see from �7� that the rela-
tive shift of the partial waves is responsible for the phase
shift of the current and spin current. That is,

� = �0 − �1. �60�

The use of ionization states as opposed to scattering states
was important to get the correct sign of the intrinsic phase.
With scattering states, one would find �=�1−�0. In contrast,
the allowed-allowed two-photon pathway reaches an s wave
and thus there is no phase shift for population control or spin
control.

Due to the long-range nature of the Coulomb potential,
the partial-wave phase shifts have a logarithmic r dependent
part, but it is the same for all partial waves and thus does not
appear in the relative phase. The part of the Coulomb partial-
wave phase shift �l��� that does not depend on r is arg
��l
+1+ i / �acv����;72,82 when inserted into �60�, this reproduces
�45�.

The expression �60� for the intrinsic phase in terms of the
scattering phases is particularly simple, since each pathway
connects to only a single parity. This contrasts with “1+2”
ionization from an atomic s state, for which the one-photon
transition is to a p wave and the two-photon transition is to
both s and d waves; the intrinsic phase is thus a weighting of
the p-s and p-d partial-wave shifts.28 Materials for which the
first term in �23� is forbidden �Cu2O is an example� have
these same selection rules;36,38,39 hence, they will have an
intrinsic phase with a similar weighting.

The absence of a phase shift in population control can be
connected to a symmetry of the second-order nonlinear op-
tical susceptibility. From considerations of energy transfer
and macroscopic electrodynamics, ��I� is related to the non-
linear susceptibility ��2� by

��I�
ijk = �i�0/	����2�kij�2�;− �,− �� − ��2�jki�− �;2�,− ��� .

�61�

In the independent-particle approximation,63

��2�ijk�2�;− �,− �� = ���2�jik�− �;2�,− ���*, �62�

which is a generalization of overall permutation symmetry to
resonant absorption. As a result of �62�, Fraser et al. showed
that ��I� is proportional to Im��2�, and is thus purely real.19

Our result that ��I� remains real when excitonic effects are
included suggests that �62� holds more generally. In fact, it
can be shown that �62� holds for any Hamiltonian symmetric
under time-reversal so long as 	� is not resonant.

VII. SUMMARY AND OUTLOOK

We have extended the theory of interband “1+2” pro-
cesses in bulk semiconductors to include the electron-hole
interaction. Following previous theories,11,13,17,19,21 we have
used a framework based on �i� a separation of the initial
carrier photoinjection and the subsequent carrier scattering,
and �ii� a perturbative expansion in the optical-field ampli-
tudes, with injection rates obtained in a Fermi’s golden rule
limit for the bichromatic field. The injection rates for carrier
population control, spin control, current injection, and spin-
current injection have been described phenomenologically
by tensors ��I�, �I�, ��I�, and ��I�, respectively.11,17,19,21,22 Like
previous theories, we have used the long-wavelength limit,
and neglected nonlocal corrections to the interaction Hamil-
tonian. But whereas previous theories of “1+2” photoinjec-
tion used the independent-particle approximation, we have
included excitonic effects. We have shown that excitonic ef-
fects cause �i� an enhancement of each “1+2” process, and
�ii� a phase shift for current injection and spin-current injec-
tion. Our main results, the modifications of the aforemen-
tioned tensors relative to the independent-particle approxi-
mation are given in �46�, �51�, �53�, and �54�. These
particularly simple results are valid at photon energies for
which transitions from the heavy- and light-hole bands are
dominant; more general results are given for ��I� and ��I� in
�38� and �48�.

Our results are based on the effective-mass model of Wan-
nier excitons; degenerate bands are included, but we use a
spherical approximation to the exciton Hamiltonian, and we
neglect envelope-hole coupling. This is a good approxima-
tion for many typical semiconductors, including GaAs, since
the electron-hole envelope function extends over many unit
cells due to the screening of the Coulomb interaction by the
static dielectric constant.42,70,77–79 As a consequence of mak-
ing the spherical approximation, the phase shifts and Cou-
lomb enhancements we find in this paper are independent of
crystal orientation.

Also, our results are limited to low excess photon energy
since �i� the Wannier exciton Hamiltonian assumes parabolic
Bloch bands, and �ii� we have truncated the expansion in k
of the Bloch-state velocity matrix elements, which is the ba-
sis of the transition amplitude expansion. By comparing the
black dashed line and gray dashed-dotted line in Fig. 1, one
sees that higher-order terms in k �for both bands and veloci-
ties� are important in GaAs for excess photon energies
greater than about 200 meV. This can then be considered the
limit of validity of our calculation. However, combining the
Coulomb enhancement calculated assuming parabolic bands
with the nonperturbative independent-particle approximation
result �as was done for the solid black line in Fig. 1� likely
gives a good approximation for a few hundred more meV;
this was the case for one- and two-photon absorption.86,87

It is interesting to ask if there are other sources of intrinsic
phases to the current �or spin current� besides the one that we
have identified here, as these may produce spectral features
in the intrinsic phase. One possibility is the coupling be-
tween bound so-c excitons and the unbound hh-c or lh-c
excitons, since it is known that the intrinsic phase can show
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spectral features near a resonance.27 Another possibility is
the envelope-hole coupling between the continua of unbound
hh-c and lh-c excitons that was neglected in our treatment.

Finally, we note that the intrinsic phase and Coulomb en-
hancement may be greater in reduced dimensional systems,
which have greater exciton binding energies. The carrier-
carrier Coulomb interaction was included in the theory for
“1+2” control of electrons in biased asymmetric quantum
wells, although the intrinsic phase was not studied.10
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APPENDIX A: INTERMEDIATE-STATE
COULOMB ENHANCEMENT

Consider the functions N�a-f� and N�a-a�, which appear in
�34� and �36�; we refer to them collectively as N. First, note
that due to the energy-conserving �-function in �7�, � will be
equal to �cv �see Eq. �39��, and thus N is a function only of
�, Ecv

g , Ec�v�
g , �cv, and �c�v�. Second, note that N is defined

so that if the electron-hole attraction is turned off, for ex-
ample by letting �→�, then N→1.91 This allows N to be
identified as part of the Coulomb enhancement. In particular,
N is the enhancement due to the Coulomb interaction in the
intermediate states; if the Coulomb interaction is neglected
for the intermediate states, N=1.41 �Note that Lee and Fan40

did not allow for v��v in N �related to Jj in their notation�.�
Since the integrand is smooth for the parameter range of

interest, numerical integration of N is straightforward; how-
ever, it need not be undertaken. Further simplification is pos-
sible since the parameter � can be considered to be much less
than one. Since most materials have an exciton binding en-
ergy that is much smaller than the band gap, 	� is detuned
from the band edge by many exciton binding energies at
photon energies consistent with the approximations made
here. In GaAs, for example, when 2	� is within 500 meV of
the gap, � is at most 0.09. An expansion of N�a-f� for small �,

N�a-f� = 1 +
2

3
�c�v� + �4

3
ln 2 −

1

3
��c�v�

2

+ �S0 −
2

15
acv

2 �2��c�v�
3 + O��c�v�

4 � ,

where S0�0.5633, shows that N�a-f� is approximately 1 and
nearly constant as a function of �. The same is true of N�a-a�,
which has the expansion

N�a-a� = 1 −
2

acv
�ac�v� − acv�P + O��c�v�

4 � ,

where, with S1�1.645,

P � �c�v� + �2 ln 2 −
ac�v�

acv
��c�v�

2

+ �2ac�v�
2

3acv
2 −

2ac�v�

acv
−

1

3
ac�v�

2 �2 + S1��c�v�
3 .

In fact, when �cv=�c�v�, N�a-a�=1 even to fourth order in
�c�v�. Figure 4 shows a numerical integration of N�a-f� using
the parameters of GaAs.

APPENDIX B: EVALUATION OF THE CURRENT
INJECTION TENSOR

The tensor �cc�vv�
ijkl , defined in �41�, can be used to calcu-

late the current-injection tensor with or without excitonic
effects using �38� or �44�. It can be evaluated analytically in
the approximation of parabolic bands. Part of the result for
the eight-band Kane model has been given before but with-
out the split-off band as an initial or intermediate state.13 We
here give more detail, but only for the two-band terms. We
denote the bands by a double-index n and s, where n is one
of 
c ,hh , lh ,so�, and s runs over the two spin states for each
band. Since the Coulomb corrections to ��I� in �38� do not
depend on the spin index, we can include the sum over spin
indices from �38� in �c,v,v�

ijkl . And, since we are only calculat-
ing two-band terms, we set c�=c and v�=v. Thus

�ccvv
ijkl = i

�e4

	2�3	
s,s�

1

L3	
k

�cv
i


�vcc − vvv�,vcs,vs�
* � jk

Ecv − 	�
vcs,vs�

l

���2� − Ecv�k�/	�

= i
�e4

	3�4

1

8�3 � k2dk
�cv

	kcv
��k − kcv�d


�	
s,s�

	ki

�cv

1

2

	kj

�cv
vvs�,cs

k vcs,vs�
l + �j ↔ k�

= i
e4

	2�4

1

8�2

kcv
3

�cv

1

2
� d
k̂ik̂ j	

s,s�

vvs�,cs
k vcs,vs�

l + �j ↔ k�

where

kcv =�2�cv

	2 �2	� − Ecv
g � .

For v= lh or hh, Ecv
g =Eg, while for v=so, Ecv

g =Eg+�, where
Eg is the fundamental band gap, and � is the spin-orbit split-
ting. The interband velocity matrix elements are approxi-
mated by their value at k=0, but still depend on the direction

of k. In terms of the orthogonal triple of unit vectors k̂, l̂, and
m̂,

k̂ = sin � cos �x̂ + sin � sin �ŷ + cos �ẑ ,

l̂ = cos � cos �x̂ + cos � sin �ŷ − sin �ẑ ,

m̂ = − sin �x̂ + cos �ŷ ,

these matrix elements are:
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vc,s;hh,s� =
1

2
�EP

m
�l̂I + im̂�z�s,s�,

vc,s;lh,s� = −
1

2
�EP

3m
�2k̂I + il̂�y − im̂�x�s,s�,

vc,s;so,s� =�EP

6m
�k̂I − il̂�y + im̂�x�s,s�,

where EP is the Kane energy.92 Here, I is the 2�2 identity
matrix and �i are the Pauli spin matrices. Of course, for
parabolic bands, the intraband matrix elements are

n ,s ,k�v�n ,s� ,k�=�s,s�k̂	k /mn, where mn is the effective
mass of band n. �In the proper Kane model, the effective
masses are given in terms of the parameters Eg, �, and EP,
but we treat them as additional parameters, which is equiva-
lent to including remote-band effects on the effective
masses.� The sums over spin then yield

	
s,s�

vhh,s�;c,s
k vc,s;hh,s�

l =
EP

2m
��k,l − k̂kk̂l� ,

	
s,s�

vlh,s�;c,s
k vc,s;lh,s�

l =
EP

2m
�k̂kk̂l +

1

3
�k,l� ,

	
s,s�

vso,s�;c,s
k vc,s;so,s�

l =
EP

3m
�k,l.

The remaining angular integrals can be done using

� d
k̂ik̂ j =
4�

3
�i,j ,

� d
k̂ik̂ jk̂kk̂l =
4�

15
��i,j�k,l + �i,k� j,l + �i,l� j,k� .

The result for ��I-free� is

��I-free�
ijkl = i

�2

9�

e4EP

�4	5�m
��2	� − Eg�3/2�Thh

ijkl + Tlh
ijkl�

+ �2	� − Eg − ��3/2Tso
ijkl� , �B1�

where the tensor properties are

Thh
ijkl =��c,hh

m
� 9

20
�i,j�k,l +

9

20
�i,k� j,l −

3

10
�i,l� j,k� ,

Tlh
ijkl =��c,lh

m
�11

20
�i,j�k,l +

11

20
�i,k� j,l +

3

10
�i,l� j,k� ,

Tso
ijkl =

1

2
��c,so

m
��i,j�k,l + �i,k� j,l� ,

and the term involving Tso
ijkl should not be included if 2	�

�Eg+�. The free-particle current-injection tensor has also
been investigated for parabolic bands, but with a simple
three-band model.93 That model does not have the matrix
elements vc↑,lh↓ and vc↓,lh↑, and thus differs from our result
for Tlh
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