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We treat the question of the low-temperature behavior of the dephasing rate of the electrons in the presence
of elastic spin disorder scattering and interactions. In the frame of a self-consistent diagrammatic treatment, we
obtain saturation of the dephasing rate in the limit of low-temperature for magnetic scattering, in agreement
with the noninteracting case. The magnitude of the dephasing rate is set by the strength of the magnetic
scattering rate. We discuss the agreement of our results with relevant experiments.
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An important quantity in disordered electronic systems is
the dephasing rate ��

−1. It provides a measure of the loss of
coherence of the carriers, but in the two-particle channel, see
Eq. �1� below. Decoherence arises from Coulombic interac-
tions, scattering by phonons, magnetic fluctuations etc. The
saturation of the dephasing rate at low temperature T seen in
numerous experiments1–13 has attracted a vigorous interest,
especially given the long-standing theoretical prediction for a
vanishing ��

−1 as the temperature T→0.14–21

Previous theoretical studies14–25 have focused on the cal-
culation of ��

−1 in the absence of spin-scattering disorder. The
majority of these studies predict, correctly, a vanishing
��

−1�T→0�. Here we determine and calculate the factors
which contribute to dephasing in the presence of spin-
scattering disorder. The saturation obtained allows for the
consistent elucidation of this puzzle.

In the presence of spin-less disorder, the cooperon
�particle-particle diffusion correlator, see Fig. 1� is given by

C0�q,�� =
1

2�NF�2

1

Dq2 − i� + ��
−1 . �1�

D is the diffusion coefficient, NF is the density of states at the
Fermi level, and �−1 the total impurity scattering rate. We
work in the diffusive regime �F��1�	=1�, �F being the
Fermi energy.

With spin-disorder present, the cooperon becomes spin
dependent. The relevant terms Ci are shown in Fig. 1. We
start by giving the explicit form of these C0,1,2

o without a
dephasing rate. C0

o acquires a finite spin-dependent term in
the denominator, which is crucial for the determination of the
dephasing rate, see below.

For the case �S
−1�0, �SO

−1 =0—with �S
−1 the magnetic im-

purity scattering rate and �SO
−1 the spin-orbit impurity scatter-

ing rate—the Cooperons are given by �see Refs. 26 and 27
and Appendix A�

C0
o�q,�� =

1

2�NF�2

1

Dq2 − i� + 2/�3�S�
,

C1,2
o �q,�� = b1,2� 1

Dq2 − i� + 2/�3�S�
−

1

Dq2 − i� + 2/�S
� ,

�2�

with b1= �3�S / �2��−2� / �2u�, b2=1/u, u=4�NF�2. Based on
Eqs. �2�, we expect a saturation of the dephasing rate. The
simple diffusion pole is “cutoff” by the constant terms pro-
portional to �S

−1. On symmetry grounds, the spin-conserving
Coulomb interaction cannot eliminate these terms. We em-
phasize that the impurity scattering considered is elastic,
bulk type. Interfacial impurity scattering, though similar to
bulk type, is expected to differ in detail.

To calculate the dephasing rate, we write down and solve
the appropriate coupled equations for all three renormalized
Cooperons Ci�q ,��, i=0,1 ,2. We note that usually the terms
containing the factors di and hi below are completely omit-
ted. The equations are shown schematically in Fig. 2:

C0 = C0
o + C0

oY0C0, �3�

C1 = C1
o + C1

oWa + C2
oWb, �4�

C2 = C2
o + C1

oWb + C2
oWa, �5�

with

Wa = YnC1 + YrC2, Wb = YnC2 + YrC1 �6�

and

Y0 = �1 + h0�
0 + d0
1, Yn = �1 + h1�
1 + d1
0,

Yr = �1 + h2�
2 + d2
0. �7�

In Fig. 3 we show explicitly the components of the self-
energy terms Y, see the figure legend for further details.
Here, h0=h1=h2=−2/ ���F��, d0=d1= �1/ ��F��+4����SO

−1

−�S
−1� / �2�2�F�, and d2=−2�1+2��F����SO

−1 −�S
−1� / ���F�. The

terms containing the factors di—with a spin impurity line
either looping around the Cooperon or crossing it—provide
the coupling between the spin-independent and the spin-
dependent Cooperons, as they produce spin flipping—see the
spin configuration of C2 in Fig. 1 and the figure legend. Also,
note the minus relative sign between �SO

−1 and �S
−1 in di, com-

ing from the respective spin flipping disorder vertices.26 This
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has the peculiar effect that for �SO=�S the spin disorder sig-
nature disappears in ��o—see Eq. �11� below.

In the spirit of Ref. 15 we obtain for the basic components

i of the self-energy


i 	 
i�q = 0,� = 0�


 − co�
q
�

−�

�

d��
Ci�q,�� + i0�Im V�q,�� + i0�

sinh���/T�
, �8�

where

V�q,�� =
vq

1 + vq��q,��
, ��q,�� =

NFDq2

Dq2 − i�
. �9�

Here vq is the bare Coulomb interaction and co=8NF
2�4.

In the foregoing we make the approximation15

�
−�

�

d�
F���

sinh��/T�

 T�

−T

T

d�
F���

�
. �10�

The bosonic modes with energy greater than T manifestly do
not contribute to the self-energy and the dephasing process,
as also emphasized in Refs. 17 and 21. The saturation ob-
tained in Refs. 22 and 23 was due to an infinite upper limit
for �, which is incorrect.17,21 We further discuss the approxi-
mation of Ref. 15 for the self-energy in the paragraph pre-
ceding Eq. �34� below.

In the limit �F�
1, we can decouple a 2�2 system of
equations involving only C1,2, to facilitate the solution of
Eqs. �3�–�5�. Then Eq. �3� yields directly for the dephasing
rate ��o

−1—note the index o—in the denominator of C0

��o
−1�T� = −


0 + d0
1

2�NF�2 . �11�

This equation means that the dephasing in the spin-
dependent Cooperon channels also contributes to the dephas-
ing rate in the spin-independent channel. We note that in the
limit �F�
1 the factor d0 in Eq. �11� is the only one remain-
ing among the d0,1,2 and h0,1,2 appearing in Eqs. �3�–�5�. But
as shown below, the factor d0
1 is too small in comparison
to the factors �S

−1, �SO
−1 in the denominator of C0.

We look in detail at the case of pure magnetic scattering,
i.e., �S

−1�0 and �SO
−1 =0. In Appendix C we discuss the case of

pure spin-orbit scattering. Diagonalizing the system formed

by Eqs. �4� and �5� yields for the Cooperons C1,2

C1,2�q,�� = S1,2� 1

Dq2 − i� + R−
−

1

Dq2 − i� + R+
� .

�12�

Here M1= �b1m1m2+ �b2
2−b1

2�m0
1� /m, M2= �b2m1m2− �b2
2

−b1
2�m0
2� /m, R±= �m1m2±m0�b2�b1��
1�
2�� /m, X

=2�b2
1+b1
2�, m1=2/ �3�S�, m2=2/�S, m0=m2−m1, m
=m1+m2. The derivation of Eqs. �12� can be found in Ap-
pendix B. We note that it is important to keep the term
bj�Dq2− i�� in Sj, to arrive at the correct solution. Further,
Eqs. �12� are valid in any dimension.

In two dimensions 2D, vq=2�e2 /q and, following Refs.
15 and 18, we take V�q ,��= �2�e2 /q���Dq2− i�� / �D�q
− i��� with �=4�NFe2.

To calculate the self-energies, we first evaluate the inte-
gral in Eq. �10�

Ij�q� = �
−T

T

d�
bj�Dq2 − i�� + Mj

�D�q�2 + �2 � 1

Dq2 − i� + R−

−
1

Dq2 − i� + R+
� . �13�

Since we are interested in the low-T limit, we take

Dq2 � T , �14�

obtaining

Ij�q� 
 2T
bjDq2 + Mj

�D�q�2 � 1

Dq2 + R−
−

1

Dq2 + R+
� . �15�

Subsequently, we evaluate

�

T/D


z/D

Ij�q��� − q�qdq , �16�

with

z = max Dq2 = �−1. �17�

Finally we obtain the following equations for the self-
energies:

FIG. 1. The three Cooperons C0, C1, C2. Note the spin indices.
The Cooperons Ci

o do not contain a dephasing rate. The dashed line
with the cross stands for impurity �disorder� scattering. The bare
disorder vertices flipping spin, corresponding to the spin configura-
tion of C2, yield a coupling of all three Cooperons.

FIG. 2. Schematic form of the Eqs. �3�–�5� involving the Coop-
erons and the self-energies Y.

GEORGE KASTRINAKIS PHYSICAL REVIEW B 72, 075137 �2005�

075137-2




 j =
T2a2D

X
�Mj − bjR+

R+
�� ln� R+ + z

R+ + T
�

− 2
R+

D
�arctan
 z

R+
− arctan
 T

R+
��

−
Mj − bjR−

R−
�� ln� R− + z

R− + T
� − 2
R−

D
�arctan
 z

R−

− arctan
 T

R−
�� + �Mj� 1

R−
−

1

R+
�ln� z

T
�� , �18�

with j=1,2 and a2D=2coe2 / �D�2�.
The solution is


 j = sjT
2,

sj = bja2D�S�
 2

D�S
arctan 
2z�S − � ln�1 + 2z�S�� ,

�19�

which is valid for


 j � 1/�2�S� . �20�

This condition accompanies the solutions for 
 j in 1D and
3D as well.

We consider the so-called weak localization contribution
to the conductivity, given by the sum of26

��o = −
e2Du

�
�

q

�C0�q,0� + C2�q,0�� , �21�

which in a magnetic field H perpendicular to the 2D system
becomes

��o = −
e2Du

�

eH

�
�
n=0

NH

�� 1

2�NF�2

1

4DeH�n + 1/2� + 2/�3�S� + ��o
−1

+
4b2eDH�n + 1/2� + M2

X

�� 1

4DeH�n + 1/2� + R−
−

1

4DeH�n + 1/2� + R+
�� ,

�22�

with NH=1/ �4De�H�.
If this formula were fit to the 2D formula without mag-

netic �or spin-orbit� scattering

��o = −
2e3DH

�2 �
n=0

NH 1

4DeH�n + 1/2� + ��
−1 , �23�

saturation of the dephasing is obtained due �mostly� to the
factor 2 / �3�S� in the denominator of C0. The factors R± in
Eq. �22� satisfy R±=1/ �2�S�+O�T2�. As a result, the contri-
bution of the C2 term is small, because R+−R−=O�T2�. The
same applies to 1D and 3D, with the power law being T3/2 in
1D, as shown below.

In 1D, vq=2e2 ln�qm /q�, qm being the inverse of the larg-
est transverse dimension �width� of the system. Here,

Im V�q,�� =
− 4e4NF�Dq2 ln2�qm/q�

�2 + �Dq2�2�1 + 2e2NF ln�qm/q��2 .

To calculate the self-energies in Eq. �8�, we first evaluate
the integrals

FIG. 3. The various components of the self-energy Y. The wig-
gly line represents the screened Coulomb interaction of Eq. �9�. The
diagrams with the extra spin-disorder impurity line are responsible
for the contribution d0
1 in ��o

−1 �see Eq. �11��. We consider all
possible variations of the diagrams shown here. That is, including
terms in which the positions of the interaction and impurity vertices
are interchanged along the particle lines. For example, in the second
diagram above, suppose we label the Coulomb and disorder vertices
along the upper electron line by the numbers �1,2,3,4�. For this
diagram we also consider the permutations �2,1,3,4�, �1,2,4,3�, and
�2,1,4,3�.
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Lj��� = �
0

z

dx

x�bj�x − i�� + Mj�

B2x2 + �2 � 1

x − i� + R−
−

1

x − i� + R+
� = − 2

�Mj − bjR−�
R− − i� arctan
 z

R− − i�

�B2�R− − i��2 + �2�

+ 2

�Mj − bjR+�
R+ − i� arctan
 z

R+ − i�

�B2�R+ − i��2 + �2�

+

�iMjB + bj��B − 1��arctan
 iBz

�

B3/2
− i�
� 1

iBR− + ��B − 1�
−

1

iBR+ + ��B − 1��
+

�iMjB + bj��B + 1��arctan
− iBz

�

B3/2
i�
� 1

iBR− + ��B + 1�
−

1

iBR+ + ��B + 1�� . �24�

Here x=Dq2, z=max x=�−1 as before, and we approximated
the term ln�qm /q� by its average, taking

B = 1 + e2NF � ln�qm
2 /q2� � � 1. �25�

Then, we consider the low-T limit z
T� ���, obtaining

Lj��� =
Mj�


2�B3� 1

R−
−

1

R+
� + const, �26�

and we evaluate

�
−T

T

Lj���d� . �27�

Thus we obtain the self-energy equations


 j =
T3/2a1DMj

X
� 1

R−
−

1

R+
� , �28�

with j=1, 2, and a1D=
2co�B−1�2 / �NFB3/2�. The solution is


 j = sjT
3/2, sj =


2bj�Sco�B − 1�2

NFB3/2 . �29�

In 3D we take V�q ,��= �4�e2 /q2���Dq2− i�� / �P− i���,
with P=4�e2NFD. To calculate the self-energies of Eq. �8�,
we first evaluate the integrals

Kj�q� = �
−T

T

d�
bj�Dq2 − i�� + Mj

P2 + �2 � 1

Dq2 − i� + R−

−
1

Dq2 − i� + R+
�


 2T
bjDq2 + Mj

P2 � 1

Dq2 + R−
−

1

Dq2 + R+
� . �30�

Then, evaluating

�

T/D


z/D

Kj�q��Dq2 − P�dq , �31�

yields the self-energy equations


 j =
T2a3D

X ��Mj − bjR+��P + R+�

DR+

arctan
 z

R+

−
�Mj − bjR−��P + R−�


DR−

arctan
 z

R−

+ bj�R+ − R−�
 z

D� . �32�

Here a3D=4coe2 / ��P2�. We obtain the solution


 j = sjT
2, sj =

bja3D

2
D
�
z − 
2�S� 1

2�S
+ P�arctan 
2�Sz� .

�33�

From the above we see that ��o
−1�T→0� is much smaller

than both �−1 and �sp
−1=�SO

−1 +�S
−1. Actually, �sp

−1 dominates over
��o

−1�T→0� in the denominator of C0, causing a “saturation”
of this contribution.

Besides the spin-scattering rate terms appearing in the de-
nominator of C0, the dephasing rate probed in experiments is
also set by the terms R±—see Eq. �22�, pure magnetic scat-
tering case. As mentioned in Appendix C, it is expected that
in the presence of the Coulomb interaction the simple diffu-
sion pole in C2—see Eq. �C1�—survives intact, in the pure
spin-orbit scattering case, thus yielding absence of dephasing
saturation.

We note that the idea that magnetic scattering may cause
saturation has been recently suggested in Ref. 13. The situa-
tion here is to be contrasted with the absence of spin disor-
der, where it has been shown that ��

−1�T→0�→0, e.g., in 2D
��

−1�T→0��T→0.14–21 Moreover, we should point out that

GEORGE KASTRINAKIS PHYSICAL REVIEW B 72, 075137 �2005�

075137-4



other self-energy processes, which are first order in the inter-
action V�q ,��, e.g., with V crossing diagonally the
Cooperon—see e.g., Ref. 17, are not expected to modify
qualitatively these results. However, Ref. 15 found that in 2D
��

−1�T→0��T ln�1/T�. It turned out that the ln�T� factor was
superfluous, and due to the ommission of other self-energy
processes, which are shown in Ref. 17.

Now, the total correction to the conductivity can be writ-
ten as

��tot = ��o + ��I, �34�

where the first term is the Cooperon contribution of Eq. �21�
and the second term due to interactions, involving additional
and more complicated terms—e.g., see Refs. 28 and 29. If
��I�T→0� contains nonsaturating terms, then the picture so
far presented should change.

The majority of experiments show saturation of ��
−1 in the

low-temperature limit. The samples in which saturation is
observed probably contain magnetic impurities, even in
minute quantities. The dimensionality of the samples is not a
decisive factor for the appearance of saturation. We believe
that the observed saturation can be understood in the frame
of our results above, and should be due to magnetic scatter-
ing. Including the apparent lack of saturation in certain
samples—e.g., Refs. 6 and 13. In such cases it is difficult to
say whether sufficiently low temperatures have been reached
for saturation to be observable. The relevant T, below which
saturation can be observed, is proportional to the strength of
the magnetic scattering rate, and lack of saturation was ob-
served in the cleaner samples—e.g., Ref. 13.

In summary, we have demonstrated that, within the frame
of our approach, dephasing saturation arises from magnetic
disorder and interactions, with the role of the former being
decisive. Already, without considering interactions,26 the
Cooperon C0 has a finite correction of the simple diffusion
pole—see Eqs. �2�—which is equivalent to a “saturating”
dephasing rate, but not for the pure spin-orbit scattering
case—see Eqs. �C1�. We treat the effects of interactions both
on the spin-independent C0 and on the spin-dependent C1,2.
Based on symmetry, a lack of saturation is expected for pure
spin-orbit scattering. The magnitude of the “dephasing rate”
at T→0 is set by the magnetic scattering rate. It appears that
our results are in agreement with relevant experiments.

The author has enjoyed useful discussions/
correspondence with N. Birge, J. Bird, D.K. Ferry, D.E. Kh-
melnitskii, P. Kopietz, J.J. Lin, P. Mohanty, D. Natelson, P.
Schwab, and J. von Delft.

APPENDIX A

We give a derivation of the spin-dependent Cooperons C1
o,

C2
o—without Coulomb interactions—as presented in Ref. 26.

C1, C2 obey the equations �see Fig. 1�

C1
o = �1 + �1PC1

o + �2PC2
o, �A1�

C2
o = �2 + �2PC1

o + �1PC2
o, �A2�

where �1= ��o
−1+�SO

−1 /3−�S
−1 /3� / �2�NF� and �2= ��S

−1

−�SO
−1� / �3�NF�. �o

−1 is the spin-independent impurity scatter-

ing rate, so that �−1=�o
−1+�SO

−1 +�S
−1. Also P�q ,��=�kGR�k

+q ,�+��GA�k ,��=2�NF��1+ i��−Dq2�. Then

Cj
o =

� j

�
, �A3�

with �= �1−�1P�2− ��2P�2. Now, taking the case
�S

−1=0—pure spin-orbit case—we obtain �=B�B+a�, with
a=4� / �3�SO� and B=Dq2− i�. Then

Cj
o =

� j

a
� 1

B
−

1

B + a
� . �A4�

These are Eqs. �C1� in Appendix C. Equations �2� for pure
magnetic scattering follow likewise.

APPENDIX B

In the limit �F�
1 Eqs. �4� and �5� reduce to

C1 = C1
o + C1�
1C1

o + 
2C2
o� + C2�
1C2

o + 
2C1
o� , �B1�

C2 = C2
o + C1�
2C1

o + 
1C2
o� + C2�
1C1

o + 
2C2
o� . �B2�

Then, setting u1=1− �
1C1
o+
2C2

o� and u2=
2C1
o+
1C2

o,

det = u1
2 − u2

2, D1 = C1
ou1 + C2

ou2, D2 = C2
ou1 + C1

ou2,

�B3�

we have

Cj = Dj/det, j = 1,2. �B4�

Taking

c =
1

B + m1
−

1

B + m2
, B = Dq2 − i�, m1 = 2/�3�S�,

m2 = 2/�S, �B5�

we obtain

Dj = bjc + �− 1� jc2�b1
2 − b2

2�
 j . �B6�

Then

Cj =
dj

N+N−
, �B7�

with dj =bjm0�B+m1��B+m2�+ �−1� jm0
2�b1

2−b2
2�
 j, N±= �B

+m1��B+m2�−m0�b1
1+b2
2�±m0�b2
1+b1
2� and m0

=m2−m1. We should emphasize that so far this algebra is
exact.

In the following, we only keep terms of order B, obtaining

dj = bjm0�m1m2 + B�m1 + m2�� + �− 1� jm0
2�b1

2 − b2
2�
 j ,

�B8�

N+ = m1m2 + B�m1 + m2� + m0�b1 − b2��
2 − 
1� , �B9�

N− = m1m2 + B�m1 + m2� − m0�b1 + b2��
2 + 
1� .

�B10�

Making use of
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1

N+N−
=

1

m0X
� 1

N−
−

1

N+
� , �B11�

we obtain directly Eqs. �12�. The derivation above is equally
straightforward for the case of spin-obit disorder.

APPENDIX C

In this Appendix we discuss the case of finite spin-orbit
impurity scattering, i.e., �SO

−1 �0, �S
−1=0. The Cooperons are

given by26,27

C0
o�q,�� =

1

2�NF�2

1

Dq2 − i� + 4/�3�SO�
,

C1,2
o �q,�� = b1,2� � 1

Dq2 − i�
−

1

Dq2 − i� + 4/�3�SO�� ,

�C1�

with b1�= �3�SO /�−2� / �2u�, b2�=−1/u, u=4�NF�2.
Diagonalizing the system formed by Eqs. �4� and �5�

yields for the Cooperons C1,2

C1,2�q,�� = S1,2� � 1

Dq2 − i� + r−
−

1

Dq2 − i� + r+
� .

�C2�

Here r+= �b1�−b2���
2−
1�, r−=−�b1�+b2���
2+
1�, Sj�
= �bj��Dq2− i��+Mj�� /X� ,X�=2�b1�
2+b2�
1�, M1�= �b2�

2

−b1�
2�
1, M2�=−�b2�

2−b1�
2�
2. The derivation of Eqs. �C2� is

the same as for the magnetic impurity case given in Appen-
dix B.

The diffusion pole in Eqs. �C1� survives, by symmetry, in
the presence of the spin-conserving Coulomb interaction,
which implies r+=0 or r−=0 in Eqs. �C2�. The 2D weak
localization correction to the conductivity is

��o = −
e2Du

�

eH

�

��
n=0

NH � 1

2�NF�2

1

4DeH�n + 1/2� + 4/�3�SO� + ��o
−1

+
4b2�eDH�n + 1/2� + M2�

X

�� 1

4DeH�n + 1/2� + r−
−

1

4DeH�n + 1/2� + r+
�� ,

�C3�

with NH=1/ �4De�H�.
Fitting this expression to Eq. �23� with either r+=0 or

r−=0 yields absence of dephasing saturation. This is the case
for all dimensionalities for pure spin-orbit scattering. As
mentioned in the text, this is not the case for finite magnetic
scattering.
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