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Motivated by the recent angle-resolved photoemission spectroscopy �ARPES� measurements on one-
dimensional Mott insulators, SrCuO2 and Na0.96V2O5, we examine the single-particle spectral weight of the
one-dimensional �1D� Hubbard model at half filling. We are particularly interested in the temperature depen-
dence of the spinon and holon excitations. For this reason, we have performed the dynamical density matrix
renormalization group and determinantal quantum Monte Carlo �QMC� calculations for the single-particle
spectral weight of the 1D Hubbard model. In the QMC data, the spinon and holon branches become observable
at temperatures where the short-range antiferromagnetic correlations develop. At these temperatures, the spinon
branch grows rapidly. In the light of the numerical results, we discuss the spinon and holon branches observed
by the ARPES experiments on SrCuO2. These numerical results are also in agreement with the temperature
dependence of the ARPES results on Na0.96V2O5.
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I. INTRODUCTION

One of the central issues in one-dimensional �1D� corre-
lated electron systems is the spin-charge separation.1 In these
systems, the spin and charge degrees of freedom of electrons
are decoupled into their collective excitations “spinon” and
“holon.”2 Since the single-particle excitations are not quasi-
particles, it is expected that these excitations give rise to
completely nontrivial physical properties.

Experimentally, angle-resolved photoemission spectros-
copy �ARPES� gives direct information on the single-particle
excitation spectra. High-quality ARPES measurements under
various physical conditions enable us to understand the col-
lective excitations in 1D compounds. Recently, such ARPES
measurements have been performed on a 1D Mott insulator
SrCuO2, where the spinon and holon branches have been
unambiguously observed.3 In this work, the spectral weight
from the main valence band with O 2p character is sup-
pressed due to cross section effects, and thus the two
branches become observable in the low binding-energy re-
gion. The band dispersions of the spinon and holon branches
are in good agreement with those predicted in a spin-charge
separated model.4 Furthermore, careful line-shape analysis
reveals that the peak height of the holon branch is smaller
than that of the spinon branch, and the full widths at half
maximum of the spinon and holon branches are estimated to
be �0.7 and �0.5 eV, respectively.

Temperature dependent ARPES studies are also impor-
tant, because finite-temperature effects on the single-particle
excitation spectra of 1D Mott insulators are not due to simple
thermal broadening. Since the single-particle excitation spec-
tra are given by the convolution of the spinon and holon
Green’s functions, the finite-temperature effects reflect their
collective nature, not the normal Fermi distribution of the
quasiparticles. A temperature dependent ARPES study was
carried out on Na0.96V2O5.5 In this work, the spectral weight
redistribution from higher to lower binding-energy region
was observed when the temperature was decreased from
300 to 120 K. The redistribution occured on the scale of

1 eV, which was 100 times larger than the temperature
change. The ARPES data were consistent with the finite-
temperature exact-diagonalization calculations for the 1D
t-J model at half filling, and it was shown that the spin-
charge separation picture is valid for Na0.96V2O5.

In the high-energy ARPES measurements on SrCuO2,3 it
is quite significant to detect the spinon and holon branches
directly in the ARPES spectrum, because the ARPES data
enable us to examine the spectral weights and the lifetimes
of the spinon and holon in the compound. The temperature
dependent ARPES measurement on Na0.96V2O5 tells us how
the spectral weights of the spinon and holon are redistributed
with changing temperature, though the spinon and holon
branches are not resolved in this experiment. The finite-
temperature effect may also appear in the room-temperature
ARPES data for SrCuO2.

Motivated by these ARPES measurements, we examine
the single-particle excitation spectra in the 1D Hubbard
model at half filling. We are particularly interested in the
temperature dependence of the spinon and holon excitations
at temperatures of the order of the magnetic exchange J
�4t2 /U, where t is the hopping matrix element and U is the
onsite Coulomb repulsion. In the large-U limit, the single-
particle spectral weight was obtained in Refs. 6–12. How-
ever, in the limit, the spinon excitations are not expected to
exhibit temperature dependence. Therefore, such a simplified
picture of the large-U limit is not relevant for our discussion.

In order to study the temperature dependence, we calcu-
late the single-particle spectral weight of the 1D half-filled
Hubbard model by using the determinantal quantum Monte
Carlo �QMC� and the maximum-entropy analytical continu-
ation methods. For a complementary study to the QMC and a
check of validity of our analytical continuation results, we
also perform dynamical density matrix renormalization
group �DDMRG� calculations for the spectral weight at zero
temperature.13–17 It is noted that the single-particle spectrum
of the 1D Hubbard model has been previously studied by
using the QMC and the maximum-entropy techniques.18–20

In Ref. 18, the single-particle spectrum and density of states
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were calculated for U=4t and T=0.0625t at half filling and
at 1 /6 doping. In addition, the velocities for the spin and
charge excitations were obtained from the frequency and mo-
mentum dependences of the spin and charge susceptibilities.
In Ref. 20, the general features of the single-particle spec-
trum were discussed for U=7.5t and T=0.08t at half filling.
In these QMC data, however, the spinon and holon branches
on the single-particle excitation spectrum were not resolved.

The organization of this paper is as follows. In the next
section, we show the U dependence of the spectral weight at
zero temperature which was obtained by using the DDMRG
method. In Sec. III, the temperature dependence of the
spinon and holon excitations is discussed by combining the
DDMRG and QMC results. The main purpose of this section
is to resolve the spinon and holon excitations in the single-
particle excitation spectrum of the 1D Hubbard model at half
filling using the QMC and the maximum-entropy techniques.
The discussion and summary are given in Sec. IV.

II. ZERO-TEMPERATURE DYNAMICS

The Hubbard Hamiltonian is given by

H = − t�
i,�

�ci,�
† ci+1,� + H.c.� + U�

i

ni,↑ni,↓, �1�

where ci,��ci,�
† � annihilates �creates� an electron with spin �

at lattice site i, ni=ni,↑+ni,↓, ni,�=ci,�
† ci,�, t is the hopping

integral along the chain axis, and U is the on-site Coulomb
repulsion. We consider the half-filled case.

In this section, we show the U depencence of the spectral
weights of the spinon and holon branches at zero tempera-
ture. The results will be helpful for understanding the U de-
pendence of the temperature evolution of the spinon and ho-
lon branches in the next section. The single-particle spectral
weight is defined by

A�k,�� = −
1

�
Im�0�ck,↑

† 1

E0 − � − H + i�
ck,↑�0� , �2�

where ck,↑ is the momentum representation of the electron
operator with spin ↑, �0	 and E0 are the ground state and the
eigenenergy, respectively, and � is a small positive number.

In the DDMRG method, the superblock is set to be 64
sites, and we use the open boundary condition.13 This is be-
cause the standard DMRG method gives the most precise
numerical results when the open boundary condition is ap-
plied. However, there is a boundary effect, which makes a
photohole localized at the ends of the 1D chain. For the
single-particle spectral weight, it is not so easy to remove the
boundary effect by increasing the system size. Thus, we add
a potential of −tni to the ends in order to remove the bound-
ary effect. It is noted that the spinon branch is almost un-
changed by the potential, while the holon branch is shifted to
a higher binding-energy region by the order of 0.1t. The
momentum representation of the electron operator ck,↑ in the
open boundary system is defined by

ck,↑ =
 2

L + 1�
l=1

L

sin�kl�cl,↑, �3�

in terms of an expansion in particle-in-a-box eigenstates,
where k=n� / �L+1� with n=1,2 , . . . ,L, and L is the system
size. In the infinite-chain limit L→�, this transformation
becomes equivalent to the standard Fourier transformation. It
may be technically useful to note how to count the fermion
sign when the state ck,↑�0	 is generated, because the number
of electrons at each site is neither 1 nor 0 in the DDMRG
bases of �0	. Instead of cl,↑, we use an annihilation operator,
c̃l,↑, which includes the fermion sign caused by the hopping
from the lth site to one end of the system �environment�
block.21 The density matrix we introduce is composed of
four target states, i.e., the ground state ��=1= �0	, the final
state after annihilation of an electron ��=2=ck,↑�0	, and two
correction vectors ��=3= �E0−�a−H+ i��−1ck,↑�0	 and ��=4

= �E0−�b−H+ i��−1ck,↑�0	 being �b=�a+2�. The method is
the so-called two correction vector method.15 In the present
work, the correction vectors are calculated by using the
modified conjugate gradient method. By using these four tar-
get states, the density matrix 	 for each � is defined by

	ii���� = �
�

p���
j

��,ij
* ��,i�j��

i,j
��,ij

* ��,ij
 , �4�

where the indices i and j run over all bases of the system and
environment blocks, respectively, ��p�=1, and p� is set to
be 0.25 for each �. We have checked that the results are
almost unchanged for other sets of �p��. The DDMRG bases
are truncated from the eigenstates of this density matrix. Our
method is equivalent to the variational principle for the
mixed states.13 Since 	 depends on �, the truncated bases are
optimized independently for each �. This is the reason why
the renormalization works well for dynamical quantities. The
truncation number which is sufficient for convergence de-
pends also on �. Here, the DDMRG bases are truncated up
to m=400. After convergence of the finite-system DMRG
algorithm, we obtain A�k ,�a�=−Im��2 ��3	 /� and A�k ,�b�
=−Im��2 ��4	 /�. At the same time, the spectral weights at an
energy interval �a
�
�b are calculated by using the same
E0 and H. The broadening factor is set to be �=0.1t, which is
less than temperatures treated in the next section. It is noted
that the two-correction vector method is efficient, but we
need a higher truncation number than that in the standard
DDMRG with a single correction vector. Then, we check the
convergency for some � points by using three target states
with the single correction vector and by taking the truncation
number up to m=480.

In Fig. 1, we show the U dependence of the spectral
weight at k=� /65, which is the smallest momentum in the
open boundary system. In finite-U cases, we find two peaks
at the band edges. The peaks at low and high binding-energy
sides correspond to the spinon and holon excitations, respec-
tively, because both peak positions are equal to those pre-
dicted by the Bethe-Ansätze solutions. In this figure, these
peaks do no show clear branch cuts due to the finite broad-
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ening factor of �=0.1t. However, we have checked that the
edge singularities at the peak positions become observable
with smaller values of �.

In the case of U / t�8�U / t�8�, the peak height of the
spinon �holon� branch is larger than that of the holon
�spinon� branch. In the finite-U cases, the spectral shape of
the holon branch is almost unchanged, while the weight of
the spinon branch rapidly decreases with decreasing tem-
perature.

III. SPECTRAL WEIGHT AT FINITE TEMPERATURES

Here, we discuss the temperature dependence of A�k ,��
of the 1D Hubbard model. For this purpose, we present data
obtained by using the determinantal QMC technique.22 With
this method, we have calculated the single-particle Green’s
function

G�k,
� = − �
�

e−ikr��T
ci+�,��
�ci,�
† �0�	 , �5�

where �¯	 denotes thermal averaging, ci��
�=eH
ci�e−H
,
and T
 is the Matsubara time-ordering operator. For tempera-
ture T �inverse temperature ��, the integral equation

G�k,
� = �
−�

+�

d�
e−
�

1 + e−��A�k,�� �6�

expresses G�k ,
� in terms of the single-particle spectral
weight

A�k,�� = −
1

�
Im G�k,i�n → � + i�� , �7�

where

G�k,i�n� = �
0

�

d
ei�n
G�k,
� �8�

and �n= �2n+1��T is the fermion Matsubara frequency. We
have obtained A�k ,�� from the QMC data on G�k ,
� by

solving Eq. �6� with the maximum-entropy analytical con-
tinuation method.

We also present results on the static magnetic susceptibil-
ity at zero frequency ��q�, which is defined by

��q� = �
0

�

d
�
�

e−iq��mi+�
z �
�mi

z�0�	 , �9�

where mi
z=ni↑−ni↓ and mi

z�
�=eH
mi
ze−H
.

The determinantal QMC technique does not have the “fer-
mion sign problem”23 at half filling or in the 1D case. How-
ever, the QMC algorithm which proceeds by using local up-
dates of the Hubbard-Stratonovich spins produces results
with long autocorrelation times at low temperatures and for
large values of U / t.24 It has been noted that this is because
the determinantal QMC algorithm with single-spin-flip
moves does not explore the phase space in an ergodic man-
ner for large values of U / t. In order to remove this problem,
global Monte Carlo moves have been introduced, and this
way the antiferromagnetic structure factor for the 4�4 Hub-
bard lattice was calculated for U up to 16t.24 However, the
effects of global moves on dynamical quantities have not
been explored. Because of these reasons, we have restricted
our QMC calculations, which use single-spin-flip moves, to
parameter regimes where we did not observe ergodicity
problems. In the following, we present QMC data on A�k ,��
for U=4t at 0.25t�T�1.0t and for U=8t at 0.33t�T
�1.0t, and make comparisons with the DDMRG data ob-
tained at T=0.

In obtaining A�k ,�� from QMC data on G�k ,
�, we have
used the maximum-entropy analytical continuation proce-
dure described in Ref. 25. As it is well known, the maximum
entropy technique has finite resolution which decreases away
from the Fermi level. Furthermore, at low temperatures and
large values of U / t, the G�k ,
� data exhibit long autocorre-
lation times.24 In order to improve the accuracy of the
maximum-entropy results for A�k ,��, we have obtained
QMC data on G�k ,
� with good statistics. For example, the
covariance matrix of G�k ,
� used in the maximum-entropy
technique always exhibited a continuous eigenvalue spec-
trum, as discussed by Ref. 25. In addition, the Bryan and
classical maximum-entropy algorithms25 produced similar
results for A�k ,��. Furthermore, we have monitored the re-
sults of the maximum-entropy procedure for A�k ,�� as the
statistics of the QMC data on G�k ,
� improved. These pro-
vide information about the reliability of the maximum-
entropy images of A�k ,�� presented in this section.

In the following, we present QMC data for a 32-site chain
with periodic boundary conditions, and make comparisons
with the DDMRG data obtained for a 64-site chain. Here,
A�k ,�� is plotted in units of t−1, and A�k ,��=A��−k ,−�� at
half filling. It is noted that the momenta which we can access
in the DDMRG method are different from those in the QMC
method, because different boundary conditions are taken into
account in these methods in order to keep numerical preci-
sion. Then, the QMC result with momentum k is compared
with the DDMRG one with momentum Lk / �L+1�, and the
QMC result with k=0 is also compared with the DDMRG
one with the smallest momentum � / �L+1�. In order to make

FIG. 1. �Color online� A�k ,�� versus � for various values of
U / t obtained by the DDMRG method. The momentum k is set to be
� /65, which is the smallest value in the DDMRG calculations. The
red line is the quasiparticle peak for U / t=0, obtained for k=0 by
using periodic boundary conditions and a finite broadening of 0.1t.
The origin of frequency is shifted by �s for the finite-U values, so
that all of the peak positions occur at �=−2t. The value of the shift
�s is �0.0, −1.13t, and −2.80t for U=4t, 8t, and 12t, respectively.
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the difference small, we take the system size L as large as
possible in the DDMRG method.

Figure 2 shows the QMC and DDMRG results on A�k ,��
for U=4t at half filling. Here, the QMC results were obtained
at T=0.25t, and the DDMRG data are at T=0. For k=0, the
DDMRG data show that the holon and spinon branches of
A�k ,�� are at ��−3.5t and �−2t, respectively. In addition,
the insulating gap and small amount of spectral weight at
��3.5t are observed. For k=� /2, the peak in the DDMRG
results for A�k ,�� occurs at �−0.7t. Hence, we deduce that
��0.7t for the Mott-Hubbard gap. As we go from k=0 to
� /8, the DDMRG results show that the spinon peak exhibits
weak dispersion, while the holon peak moves rapidly toward
the spinon branch. As k→� /2, the spinon and the holon
branches merge together. At T=0.25t and for k=0, the
maximum-entropy images of A�k ,�� exhibit a peak at ��
−2t and a shoulder centered at �−3.2t, which we attribute to
the spinon and holon excitations, respectively. However, it is
not possible to resolve the holon and spinon branches for k
=� /8 at T=0.25t. We note that, at T=0.25t, as k goes from
3� /8 to � /2, the height of the peak in A�k ,�� decreases.
This behavior is also observed for the DDMRG data at T
=0. For k=� /2, the peak in A�k ,�� at T=0.25t is signifi-
cantly rounded compared to the DDMRG data at T=0, which
includes an artificial broadening of �=0.1t. We attribute the
rounding of the peak in the QMC data for A�k=� /2 ,�� to
finite-temperature effects. For k=3� /8, we also observe that,
at T=0.25t, there are single-particle excitations at ��0 of
which intensity decreases as k goes towards the zone center.

Figure 3 shows the evolution of the maximum-entropy
images of A�k ,�� as the statistics of G�k ,
� improve for U
=4t and T=0.25t. This is useful in order to have an estimate
of the resolution of the maximum-entropy method. We note
that the dependence of the maximum-entropy results for

A�k ,�� on the statistics of the QMC data was also investi-
gated in Ref. 19 for the 12-site Hubbard chain with U=4t
and T=0.05t. In Fig. 3, A�k ,�� versus � is plotted for k
=� /2, � /4, and 0, as the number of runs increases from 350
to 5000. Here, each run corresponds to one independent
QMC simulation with 4�105 updates of the Hubbard-
Stratonovich fields. We find that, for k=� /2, the maximum-
entropy results on A�k ,�� converge rapidly. However, for k
=0, the resolution worsens, in particular, for structures in
A�k ,�� away from the Fermi level. Hence, it is necessary to
have QMC data with good statistics in order to reliably re-
solve the features away from the Fermi level. Here, we ob-
serve that the maximum-entropy images of A�k=0,�� for
2100 and 5000 runs are similar. The QMC results on A�k ,��
were obtained by performing approximately 5000 runs.

In Fig. 4, we show results on the T dependence of A�k ,��
for U=4t at half filling for wave-vectors k=0, � /4, and � /2.
At T=1.0t��, A�k=� /2 ,�� exhibits a broad peak centered
at �=0, while at T=0.5t�� the insulating gap starts to de-
velop. For k=0, the T dependence is more involved. Here, at
T=1.0t��, a significant amount of the spectral weight is
observed at ��−3.5t, which corresponds to the location of
the holon peak at T=0. Furthermore, an additional peak at
��0 and also spectral weight at ��0 are observed. At T
=1.0t��, there is a pseudogap at ��−2t, which is the lo-
cation of the quasiparticle peak for the noninteracting sys-
tem. As T decreases from 1.0t to 0, we observe that spectral
weight from ��−3.5t and from ��0 are transferred to �
�−2t to form the spinon peak. We think that the pseudogap
at ��−2t is due to the onsite Coulomb repulsion and, for
T�U, the peak in A�k=0,�� occurs at �=−2t. However, we
also observe that, for k=0, there is a significant amount of
spectral weight at the frequency of the holon excitations al-
ready for T�U, while the spinon branch develops for T

FIG. 2. �Color online� Single-particle spectral weight A�k ,�� for
the 1D Hubbard model at half-filling for U=4t. The blue curves
denote the QMC data at T=0.25t for wave vectors 0�k�� /2 for a
32-site chain with periodic boundary conditions. The red curves
denote the DDMRG data at T=0 for wave-vectors k=0, � /8, � /4,
3� /8, and � /2 for a 64-site chain with open boundary conditions.
For a definition of k in the DDMRG data, see the text.

FIG. 3. �Color online� Evolution of the maximum-entropy im-
ages for A�k ,�� as the statistics of the QMC data on G�k ,
� im-
proves. Here, A�k ,�� is plotted as the number of runs used for
obtaining G�k ,
� increases from 350 to 5000, where one run corre-
sponds to one independent QMC simulation with 4�105 Monte
Carlo sweeps. These results are shown for wave-vectors k=� /2,
� /4, and 0.
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�1.0t�J. The temperature evolution for k=� /4 is similar
to that for k=0. However, the spinon and holon peaks are
located closer, and it is not possible to resolve them at T
=0.25t.

In Fig. 5, we show results on the T dependence of A�k ,��
for U=8t at half filling. For k=� /2, we observe that the
Mott-Hubbard gap is approximately 2.4t. In this case, we
have the magnetic exchange J�0.5t, and we observe that
A�k ,�� exhibits strong T dependence. In particular, at T
=0.33t�J and for k=0, the maximum-entropy image of
A�k ,�� shows a double peak structure of almost the same
peak heights. The peak positions are nearly equal to those at

T=0, and thus the peaks at T=0.33t are attributed to the
spinon and holon branches. The spinon branch becomes ob-
servable at T=0.33t.

Finally, we show the magnetic susceptibility data. Figures
6�a� and 6�b� show QMC results on the temperature depen-
dence of the magnetic susceptibility ��q� for U=4t and 8t,
respectively. In these figures, ��q� versus q is plotted for the
same temperatures as those used in Figs. 4 and 5. For these
U values, ��q→�� increases rapidly as T decreases. Figure 7
shows QMC results on the temperature dependence of the
uniform susceptibility ��q→0� for U=4t and 8t. By deter-
mining the maximum of ��q→0�, we estimate the tempera-
ture where the antiferromagnetic correlations develop. The
temperature is estimated to be T�0.5t for U=4t and T
�0.33t for U=8t. For U=8t, the value 0.33t is close to J
�0.5t, while, for U=4t, the value 0.5t is far below J�1.0t.

FIG. 4. �Color online� Temperature dependence of A�k ,�� ver-
sus � for U=4t and half-filling for wave vectors k=� /2, � /4, and
0. Here, the finite-temperature results are from maximum-entropy
analytical continuation of QMC data for a 32-site chain with peri-
odic boundary conditions, and the T=0 results were obtained by
DDMRG for a 64-site chain with open boundary conditions.

FIG. 5. �Color online� Temperature dependence of A�k ,�� ver-
sus � for U=8t and half-filling, plotted in the same way as in Fig.
4.

FIG. 6. Magnetic susceptibility of the 1D Hubbard model at
zero frequency ��q� versus q for �a� U=4t and �b� U=8t. Here,
results are shown at half-filling for various temperatures.

FIG. 7. Temperature dependence of the uniform magnetic sus-
ceptibility ��q→0� for U=4t and 8t at half-filling.
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IV. SUMMARY AND DISCUSSION

Here, we summarize the numerical results obtained in the
previous two sections, and discuss recent experiments in the
light of them. In Sec. II, the U dependence of A�k�0,��
was calculated by the DDMRG method at T=0. For the val-
ues of U presented in Fig. 1 �4t�U�12t�, the spinon and
holon branches are clearly resolved for k�0. We have also
checked that the spin-charge separation is observable for U
down to 1.0t, though we do not show these data. In Fig. 1,
the line shape of the holon branch is almost unchanged for
4t�U�12t, while the peak height of the spinon branch rap-
idly increases as U decreases from 12t to 4t.

In Sec. III, the T dependence of A�k ,�� was presented at
half filling in the QMC method. A�k→0,�� clearly shows
the double peak structure at T=0.25t and 0.33t for U=4t and
8t, respectively. At these temperatures, the uniform magnetic
susceptibility has a maximum as a function of T, and the
short-range antiferromagnetic correlations develop.

Let us first compare the numerical results with the ARPES
data for Na0.96V2O5.5 The value of U of this compound is
calculated to be U�12t in the finite-temperature exact-
diagonalization calculations for the 1D t-J model.5 There-
fore, the results for U=8t may be applicable for compari-
sions at a qualitative level. The DDMRG �QMC� results are
obtained at T=0�0.33t�, whereas the temperature region
where the ARPES measurements were carried out is esti-
mated to be between 0 and 0.33t. In the numerical results on
A�k ,�� for k=0, � /4, and � /2 shown in Fig. 5, the peak
height of the spinon branch increases as T decreases from
0.33t to 0. In this temperature region, the threshold at the low
energy side is almost unchanged. For k=0, the width of the
lower Hubbard band becomes narrower with decreasing T,
while for k=� /2, the width is almost independent of T for

T�0.5t. These results are consistent with the ARPES data on
Na0.96V2O5.

Next, we compare the results for U=8t with the ARPES
data for SrCuO2,3 since the appropriate value of U for this
compound is estimated to be U�10t. In the ARPES data
obtained at room temperature, the spinon and holon branches
are resolved near k=0. As k goes from 0 to � /2, the spinon
and holon branches merge into a single peak. The band
widths of the spinon and holon branches are consistent with
the numerical results shown in Fig. 5. The peak height of the
holon branch is smaller than that of the spinon. On the other
hand, in the numerical results for A�k→0,�� at T=0 and
0.33t shown in Fig. 5, the spinon and holon branches have
almost equal spectral weights. The discrepancy between the
theory and the experiment may be attributed to the electron-
phonon interaction. Within this context, it has been shown
that the electron-phonon interaction broadens the holon
branch more than the spinon branch.26 The detailed origin of
this remains to be clarified.
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