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A study of fermion nodes for spin-polarized states of a few-electron ions and molecules with s , p ,d one-
particle orbitals is presented. We find exact nodes for some cases of two-electron atomic and molecular states
and also the first exact node for the three-electron atomic system in 4S�p3� state using appropriate coordinate
maps and wave function symmetries. We analyze the cases of nodes for larger number of electrons in the
Hartree-Fock approximation and for some cases we find transformations for projecting the high-dimensional
node manifolds into three-dimensional space. The node topologies and other properties are studied using these
projections. We also propose a general coordinate transformation as an extension of Feynman-Cohen backflow
coordinates to both simplify the nodal description and as a new variational freedom for quantum Monte Carlo
trial wave functions.
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I. INTRODUCTION

The problem of fermion nodes is one of the most intrigu-
ing challenges in quantum simulations of fermionic systems
by stochastic methods such as quantum Monte Carlo
�QMC�.1,2 In QMC, the many-fermion wave function is rep-
resented by an ensemble of sampling points �walkers� in the
space of fermion coordinates. The walkers are propagated
according to the matrix elements of the projector exp�−�H�
where � is a real parameter and H is a Hamiltonian. It is
straightforward to show that the propagated wave function
solves the time-dependent Schrödinger equation in imagi-
nary time �= it and converges to the ground state for �→�.
Unfortunately, for fermions such a straightforward sampling
process runs into difficulties and the projection becomes very
inefficient. The ensembles of walkers which initially sample
negative and positive parts of the wave function are indepen-
dent and asymptotically converge to the same �bosonic� dis-
tribution with an exponential growth of error bars for fermi-
onic observables. In electronic-structure QMC calculations3

this well-known fermion sign problem is circumvented by
the fixed-node approximation which restricts the negative
and positive walkers into separate regions of space defined
by an approximate fermion node �zero boundary� of the best
available trial and/or variational wave function. That guaran-
tees stability of the statistical error bars at the price of a
fixed-node bias. The fixed-node bias is proportional to the
square of the nodal displacement error and, therefore, in typi-
cal electronic-structure calculations the resulting bias is
rather small. Even for hundreds of electrons, Hartree-
Fock�HF� or multi reference Hartree-Fock nodes lead to im-
pressive accuracy when used within QMC. The fixed-node
QMC calculations typically provide about 95% of the corre-
lation energy in real systems3 such as molecules, clusters,
solids, etc.

At a more fundamental level, knowledge of the exact
node enables one to eliminate the fixed-node bias com-
pletely, and the exact energy can be calculated in time, which

scales as a low-order polynomial in the number of particles.
Therefore, elimination of the fixed-node error remains one of
the intriguing possibilities for employing QMC to attack a
number of important many-body problems which require ac-
curacy beyond the few-determinant Hartree-Fock nodes.

Let us assume a system of spin-polarized electrons de-
scribed by a real wave function ��R� where R denotes the
electron spatial coordinates. The exchange of an electron pair
with labels i , j, denoted as Pij, gives ��R�=−��PijR�. Con-
sequently, the antisymmetry implies that there exists a subset
of electron configurations, called a fermion node, for which
the wave function is zero. Let us eliminate the regions in
which the wave function vanishes because of other reasons
�e.g., external potential�; then, the fermion node is given by
an implicit equation ��R�=0. In general, the fermion node is
a �ND−1�-dimensional manifold �hypersurface� assuming
that we have N fermions in a D-dimensional space. The fer-
mion nodes of small systems, mostly atoms, were investi-
gated in several previously published papers.4–9 The general
properties of fermion nodes were analyzed in an extensive
study by Ceperley,10 which included a proof of the tiling
property and generalizations of the fermion nodes to density
matrices. We mention two of the results which will be used
later.

�i� Tiling property for the nondegenerate ground state: Let
us define a nodal cell ��R0� as a subset of configurations
which can be reached from the point R0 by a continuous path
without crossing the node. The tiling property says that by
applying all possible particle permutations to an arbitrary
nodal cell of a ground-state wave function, one covers the
complete configuration space. Note that this does not specify
how many nodal cells are there. Furthermore, symmetry of
the state is also symmetry of the node and tiling property is
valid for any nondegenerate ground state within the given
discrete symmetry.

�ii� If two nodal surfaces cross each other they are or-
thogonal at the crossing. If n nodal surfaces cross each other,
the crossing angles are all equal to � /n.
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In addition, it was numerically shown10 that the nodal
cells for a number of finite free particle systems are maximal,
i.e., all rgions with the same sign of wave function are inter-
connected. The fermion nodes for degenerate and excited
states were further studied by Foulkes and co-workers.11 Re-
cent interesting work by Bressanini, Reynolds, and Ceperley
revealed differences in the nodal surface topology between
Hartree-Fock and correlated wave functions for the Be atom
explaining the large impact of the 2s ,2p near degeneracy on
the fixed-node QMC energy.12

The remainder of this paper is organized as follows: in
Sec. II we discover exact fermion nodes for two-electron and
three-electron spin-polarized systems. In Sec. III we catego-
rize the nodal surfaces for the several half-filled subshells
relevant for atomic and molecular states. In Sec. IV we sug-
gest a general particle position transformation, both as a tool
to simplify the description of the nodes and also as a possible
new variational freedom for trial wave functions. Finally, in
the last section we present our conclusions and suggestions
for future work.

II. EXACT NODAL SURFACES

We assume the usual electron-ion Hamiltonian and we
first investigate the few-electron ions focusing on fermion
nodes for subshells of one-particle states with s , p ,d , f…
symmetries using variable transformations, symmetry opera-
tions, and explicit expressions for the nodes.

A. Three-electron quartet 4S„p3
… state

Let us first analyze a special case with r1=r2 and r23
=r31. It is then easy to see that the inversion around the
origin with subsequent rotations is equivalent to the ex-
change of two particles, say, 1 and 2 �Fig. 1�. Therefore, for
this particular configuration of particles the combination of
parity and rotations is closely related to the exchange sym-
metry. The illustration also shows that the six distances do
not specify the relative positions of the three electrons un-

ambiguously. For a given set of the distances there are two
distinct positions, say, of electron 3, relative to the fixed
positions of electrons 1 and 2 �see Fig. 1� and compare po-
sitions 3 and 3” of the third electron.

In order to analyze the wave function in an unambiguous
manner it is convenient to define new coordinates. Let us
denote r12

+ =r1+r2 ,r12
+ = �r12

+ �, together with the customary
r12=r1−r2 ,r12= �r12�. We can now introduce the following
map of the Cartesian coordinates:

�r1,r2,r3� → �r12
+ ,r12,r3,cos �,cos �,�,�� �1�

with definitions: cos �=r3 · �r1	r2� / �r3�r1	r2�� , cos �=r12
+

·r12/ �r12
+ r12�, and � being an azimuthal angle of r3 in the

relative coordinate system with unit vectors ex=r12
+ /r12

+ ,ez
=r1	r2 / �r1	r2� ,ey =ez	ex. For completeness, � denotes
three Euler angles which fix the orientation the three-particle
system in the original coordinates �e.g., two spherical angles
of r1	r2 and an azimuthal angle of r12

+ �. Since the angles
� are irrelevant in S symmetry, the first six variables
fully specify the relative positions of the three particles
and the wave function dependence simplifies to
��r12

+ ,r12,r3 ,cos � , cos � ,��. Consider now two symmetry
operations which change the sign of the wave function and
keep the distances unchanged: parity PI and exchange P12
between particles 1 and 2. The exchange flips the sign of all
three cos � , cos � ,� while the parity changes only the sign
of cos �. The action of PIP12 on � leads to

��…,cos �,− cos �,− �� = ��…,cos �,cos �,�� , �2�

showing that the wave function is even in the simultaneous
sign flip �cos � ,��→ �−cos � ,−��. Applying the exchange
operator P12 to the wave function and taking advantage of
the previous property gives us

��…,− cos �,cos �,�� = − ��…,cos �,cos �,�� , �3�

suggesting that there is a node determined by the condition
cos �=0. It is also clear that the same arguments can be
repeated with exchanged particle labels 2↔3 and 3↔1 and
we end up with the the same nodal condition: r3 · �r1	r2�
=0. This shows that the node is encountered when all three
electrons lie on a plane passing through the origin. Now we
need to prove that this is the only node since there might
possibly be other nodal surfaces not revealed by the param-
etrization above. The node given above clearly fulfills the
tiling property and all symmetries of the state. Furthermore,
the state is the lowest quartet of S symmetry and odd parity
�lower quartets such as 1s2s3s , 1s2s2p, and 1s2p2 have ei-
ther different parity or symmetry�, and for the ground state
we expect that the number of nodal cells will be minimal.
This is indeed true since the node above specifies only two
nodal cells �one positive, one negative�: an electron is either
on one or the other side of the nodal plane passing through
the remaining two electrons. Futhermore, any distortion of
the node from the plane necessarily leads to additional nodal
cells �see Fig. 2� which can only increase energy by impos-
ing higher curvature �kinetic energy� on the wave function.
This is basically the Feynman’s argument from the proof
demonstrating that the energy of fermionic ground state is

FIG. 1. Inversion and two subsequent rotations of three par-
ticles: �a� Original and inverted �primed� positions. �b� Positions
after the rotation R1 in the plane given by the particles 1, 2, and the
origin. �c� Positions after the second rotation R2 around the r1+r2

axis. Note that the original positions of the particles 1 and 2 are
exchanged.
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always above the energy of the bosonic ground state �and
also essentially the same argument as used for the proof of
the tiling property10�. In fact, as we show in another paper,
higher excited states of this symmetry have additional nodes,
as expected.13 Given all the arguments above we conclude
the proof that the plane is the exact node. Note that it is
identical to the node of Hartree-Fock wave function of 2p
orbitals given by �HF=det�
�r�x ,
�r�y ,
�r�z�, where 
�r� is
a radial function.

The coordinate transformation above is not the only
one which can be used to analyze this state. The high sym-
metry of the problem enables us to find an alterna-
tive coordinate map with definitions of cos � modi-
fied to cos ��= ��r1	r2�	r12

+ � ·r12/ (��r1	r2�	r12
+ � �r12

+ �)
and � to �� by redefinition of ez to e�z= [��r1	r2�	r12�
	r12

+ ] / ���r1	r2�	r12�	r12
+ � and e�y =e�z ·ex. In the rede-

fined coordinates the search for the node simplifies to an
action of P12 on ��r12

+ ,r12,r3 ,cos � , cos �� ,���

��…,− cos �,cos ��,��� = − ��…,cos �,cos ��,��� ,

�4�

since the distances and cos �� ,�� are invariant to P12. Obvi-
ously, this leads to the same nodal condition as derived
above.

It is quite interesting to compare these two coordinate
maps with � ,� and �� ,��. Although parity and exchange are
independent operators, the analysis above shows that in an
appropriate coordinate system they imply the same nodal
surface. Both these operators cause an identical sign change
of the wave function indicating thus a special symmetry of
the 4S�p3� ground-state node which is higher than would be
expected solely from antisymmetry. Similar observation was
made in a study of fermion node in another case of the two-
electron atomic state.7,14

B. Two-electron triplet 3P„p2
… and 3�g„�

2
… states

Apparently, the exact node of this case was derived in a
different context by Breit in 1930.5,14 Here we offer an inde-
pendent proof which enables us to apply the analysis to some
molecular states with the same symmetries. The exact node

for the 3P�p2� state can be found in a similar way as in the
case of quartet above. The state has even parity, cylindric
symmetry, say, around the z axis, and is odd under rotation
by � around the x and y axes, R��x� ,R��y�. The mapping of
Cartesian coordinates which enables us to analyze the wave
function symmetries is given by

�r1,r2� → �r12
+ ,r12,cos �,cos �,�,��� , �5�

where cos �=z0 · �r1	r2� / �r1	r2� with z0 being the unit
vector in the z direction and �� being the azimuthal angle of
r1	r2; �� can be omitted due to the cylindric symmetry.
Further, � is the azimuthal angle of r12

+ in the relative coor-
dinate system with the x-axis unit vector given by a projec-
tion of z0 into the plane defined by r1 ,r2, i.e., ex
=z0p / �z0p� ,ez= �r1	r2� / �r1	r2�, and ey =ez	ex. Action of
PIP12R��x� reveals that the wave function is invariant in the
simultaneous change �cos � ,��→ �−cos � ,−��. This prop-
erty and action of P12 to the wave function together lead to

��…,− cos �,…� = − ��…,cos �,…� �6�

with the rest of the variables unchanged. The node is there-
fore given by cos �=0 and is encountered when an electron
hits the plane which contains the z axis and the other elec-
tron. As in the previous case, the nodal plane fulfills the
tilling property and manifestly divides the space into two
nodal cells so that we can conclude that this node is exact.
The exact node again agrees with the node of Hartree-Fock
wave function �=det�
�r�x ,
�r�y�.

The fixed-node QMC energies for the 4S�p3� and 3P�p2�
cases derived above were calculated for a nitrogen cation
with valence electrons in these states. The core electrons
were eliminated by pseudopotentials.21 The trial wave func-
tion was of the commonly used form with a single HF deter-
minant times a Jastrow correlation factor.3 Note that the
pseudopotential nonlocal s channel does not couple to either
odd parity S state or even parity P�p2� state so that that the
nonlocal contribution to the energy vanishes exactly.

In order to compare the fixed-node QMC calculations
with an independent method we have carried out also con-
figuration interaction �CI� calculations with ccpV6Z basis22

�with up to three g basis functions� which generates more
than 100 virtual orbitals in total. In the CI method, the wave
function is expanded in excited determinants and we have
included all single, double, and triple excitations. Since the
doubles and triples include two-particle and three-particle
correlations exactly, the accuracy of the CI results is limited
only by the size of the basis set. By comparison with other
two-electron and three-electron CI calculations, we estimate
that the order of magnitude of the basis set CI bias is
�0.01 mH �miliHartree� for two electrons and �0.1 mH and
for three electrons �despite the large number of virtuals the
CI expansion converges relatively slowly20 in the maximum
angular momentum of the basis functions, in our case lmax
=4�. The pseudopotentials we used were identical in both
QMC and CI calculations.

The first two rows of Table I show the total energies of
variational Monte Carlo �VMC� and fixed-node diffusion
Monte Carlo �DMC� calculations with the trial wave func-

FIG. 2. �a� An illustration of an artificial distortion of the planar
ground state node for the quartet state �see text�. �b� The original
and parity transformed distorted node. �c� Finally, a subsequent ro-
tation of the inverted distortion necessarily leads to a new nodal
pocket which is artificial for the ground state. In fact, nodes with
similar topologies are present in excited states �Ref. 13�.
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tions with HF nodes together with results from the CI calcu-
lations. For 3P�p2�, the energies agree within a few hun-
dredths of mH with the CI energy being slightly higher but
within two standard deviations from the fixed-node QMC
result. For 4S�p3� the CI energy is clearly above the fixed-
node DMC by about 0.17 mH as expected due to the limited
basis set size. In order to illustrate the effect of the fixed-
node approximation in the case when the HF node is not
exact, we have also included calculations for four electron
state 5S�sp3�. �For further discussion of this Hartree-Fock
node see Sec. III below.� For this case, we estimate that the
CI energy is above the exact one by �0.3 mH so that the
fixed-node energy is significantly higher than both CI and
exact energies. Using these results, we estimate that the
fixed-node error is �1 mH, i.e., close to 3% of the correla-
tion energy.

Since in the p2 case we have assumed cylindric symmetry,
the derived node equation is applicable to any such potential,
e.g., equidistant homonuclear dimer, trimer, etc., with one-
particle orbitals �x ,�y which couple into the triplet state
3
g��x�y�.

Note that the parametrization given above automatically
provides also one of the very few known exact nodes in
atoms so far,4 i.e., the lowest triplet state of He 3S�1s2s�. The
spherical symmetry makes angles � and � irrelevant and
simplifies the two-electron wave function dependence to dis-
tances r1 ,r2 ,r12 or, alternatively, to r12,r12

+ ,cos �. Applying
P12 to wave function ��r12,r12

+ ,cos �� leads to

− ��r12,r12
+ ,cos �� = ��r12,r12

+ ,− cos �� , �7�

so that the node is given by the condition cos �=0, i.e., r1
−r2=0.

In addition, the presented analysis sheds some light on the
He 3P�1s2p� state node which was investigated before7 as
having higher symmetry than implied by the wave function
symmetries. The symmetry operations reveal that the wave
function depends on �cos �� and that the node is related to the
simultaneous flips such as �cos � ,��→ �−cos � ,−�� or angle
shifts �→�+�. Since, however, two of the variables are
involved, the node has a more complicated shape as the pre-
vious study illustrates.7 In order to test the accuracy of the
HF node, we have carried out a fixed-node diffusion Monte
Carlo calculation of the He 3P�1s2p� state. The resulting
total energy of −2.133 20 �4� a.u. is in excellent agreement

with the estimated exact value of −2.133 168 which shows
that the HF node is very close to the exact one.15

III. APPROXIMATE HARTREE-FOCK NODES

It is quite instructive to investigate the nodes of half-filled
subshells of one-particle states with higher angular momen-
tum.

A. Approximate Hartree-Fock node of 6S„d5
… state

The HF-determinant wave function for 6S�d5� is given by

�HF = �i=1
5 
�ri�det�2z2 − x2 − y2,x2 − y2,xz,yz,xy� , �8�

where 
�ri� is the radial part of the d orbital and we assume
that all the orbitals are from the same l=2 subshell, e.g., 3d
subshell. Since all radial functions are the same, they factor
out from the determinant and for the purpose of finding the
node they can be omitted. The S symmetry allows us to
rotate the system so that, say, electron 1 is on the z axis, and
then the corresponding column in the Slater matrix becomes
�2z1

2, 0, 0, 0, 0�. Assuming that z1�0, we can then write the
nodal condition as

det�x2 − y2,xz,yz,xy� = 0. �9�

Using one of the electrons as a probe �i.e., looking at the
node from the perspective of one of the electrons�, we can
find the projection of the node to three-dimensional �3D�
space. By denoting the probe electron coordinates simply as
�x ,y ,z� and by expanding the determinant we get

�x2 − y2�m1 + xzm2 + yzm3 + xym4 = 0, �10�

where mi are the corresponding cofactors. We divide out the
first cofactor assuming that it is nonzero �not a crucial as-
sumption as clarified below�. We get

�x2 − y2� + axz + byz + cxy = 0, �11�

where a=m2 /m1 , b=m3 /m1 , c=m4 /m1. By completing the
square this can be further rearranged to

�x − k1y��x − k2y� + z�ax + by� = 0 �12�

with k1,2= �−c±	c2+4� /2. Let us define rotated and rescaled
coordinates

u* = − �ak2 − b��x − k1y�/�k1 − k2� , �13�

v* = �ak1 − b��x − k2y�/�k1 − k2� , �14�

w* = z��ak1 − b��ak2 − b��/�k1 − k2�2, �15�

so we can write the Eq. �11� as

u*v* + w*u* + w*v* = 0. �16�

Note that this equation has a form which is identical to Eq.
�10� with m1=0 so this representation is correct for general
m1. After some effort one finds that Eq. �16� is a cone equa-
tion �i.e., dz2 orbital� as can be easily verified by using the
following identity:

TABLE I. Total energies �a.u.� of N+, N++, and N+++ ions with
core electrons eliminated by pseudopotentials. The energies are cal-
culated by variational �VMC� and fixed-node diffusion �DMC�
quantum Monte Carlo and configuration interaction �CI� methods.
The HF energies are given as a reference for estimation of the
correlation energies.

State HF CI VMC DMC

3P�p2� −5.585 28 −5.594 91 −5.594 91�2� −5.594 96�3�
4S�p3� −7.247 16 −7.275 66 −7.275 77�1� −7.275 83�2�
5S�sp3� −8.985 70 −9.020 27 −9.018 19�4� −9.019 62�5�
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�2u2 − v2 − w2�/8 = u*v* + w*u* + w*v*, �17�

where u=u*+v*+2w* , v= �−u*+v*+2w*� , w= �u*−v*

+2w*�. The 3D projected node is, therefore, a rotated and
rescaled �elliptic� cone.

At this point it is useful to clarify how the derived node
projection cone is related to the complete 14-dimensional
node. Remarkably, the 3D projection enables us to under-
stand some of the properties of the 14-dimensional manifold.
First, the cone orientation and elliptic radii �i.e., rescaling of
the two axes with respect to the third one� are determined by
the position of the four electrons in 3D space: with the ex-
ception of special lower dimensional cases explained below
there always exists a unique cone given by the Eq. �16�
which “fits” the positions of the four electrons. Besides the
special cases �below� we can, therefore, define a projection
of a single point in 4	3=12-dimensional space of four elec-
trons onto a cone. That also implies that the complete 12-
dimensional space describes a set �or family� of cones which
are 3D projections of the nodal manifold. Similar projection
strategies are often used in algebraic geometry to classify or
analyze surfaces with complicated topologies and/or high di-
mensionalities.

Since the cone orientation and two radii are uniquely de-
fined by the point in 12 dimensions, and the cone itself is a
two-dimensional �2D� surface in 3D space of the probe elec-
tron, the complete node then has 12+2=14 dimensions.
Therefore, the d5 HF node is a set of cone surfaces specified
by the positions of the electrons. This particular form is sim-
ply a property of the d5 Hartree-Fock determinant. From the
derivation above it is clear that after factoring out the radial
parts one obtains a homogeneous second-order polynomial in
three variables with coefficients determined by the positions
of the four electrons. In fact, from the theory of quadratic
surfaces,16 one finds that a general elliptic cone can possibly
fit up to five 3D points and/or electrons; however, in our
case, the cone has an additional constraint. Our system was
reoriented so that one of the electrons lies on the z axis; that
implies that the z axis lies on the cone. Therefore, the cone
always cuts the xy �i.e., z=0� plane in two lines which are
orthogonal to each other. The orthogonality can be verified
by imposing z=0 in Eq. �12� and checking that k1k2=−1. In
addition, one can find “degenerate” configurations with two
pairs of two electrons lying on orthogonal planes �Fig. 3�.
This corresponds to the “opening” of the cone with one of
the elliptic radii becoming infinite and the resulting node
having a form of two orthogonal planes �Fig. 3�. Since in this
case there is an additional condition on the particle positions,
the two-plane node has lower dimension and is a zero mea-
sure subnode of the general 14-dimensional node. The con-
dition is equivalent to A44=b2−a2−abc=0, where A44 is one
of the quadratic invariants.16 There are more special cases of
lower dimensional nodes: �i� when two electrons lie on a
straight line going through the origin; �ii� when three elec-
trons lie on a plane going through the origin; �iii� when four
electrons lie in a single plane.

Remarkably, the analysis above enables us to find the
number of nodal cells. From Fig. 3, one can infer that by
appropriate repositioning of the four electrons the cone sur-

face smoothly “unwraps” the domains inside the cone, forms
two crossing planes, and then “wraps” around the cone do-
mains of the opposite sign. That implies that an electron
inside one of the cone regions can get to the region outside
of the cone �with the same wave function sign� without any
node crossing, using only appropriate concerted reposition-
ing of the remaining four electrons. That enables us to un-
derstand that a point in the 15-dimensional space �positions
of five electrons� can continuously scan the plus �or minus�
domain of the wave function: there are only two maximal
nodal cells.

B. Approximate Hartree-Fock nodes of the 8S„f7
… ion

We will use a similar strategy as in the preceding case.
After rotating one of the electrons to the z axis, we expand
the determinant in the probe electron column and eliminate
the radial orbitals which form an overall prefactor of the
Slater determinant since we assume that all seven f states are
from the same l=3 subshell �e.g., 4f�. We get

�m1x + m2y��4z2 − x2 − y2� + m3z�x2 − y2� + m4xyz

+ m5x�x2 − 3y2� + m6y�y2 − 3x2� = 0. �18�

Note that the node contains the z-axis and there are two
possible values of z for any x ,y since the form is quadratic in
z. This restricts the node shapes significantly and by further
analysis, one can find that the nodal surface projection into
3D has two topologies �Fig. 4�. The first one is a cone times
a planar surface �topologically equivalent to the Y40 spherical
harmonic�. Note that, in general, the planar surface is de-
formed from a straight plane since it passes through the ori-
gin and, in addition, it fits three of the electrons. The second
topology is a fused cone and planar surface which results in
a general single-sheet cubic surface. The node transforms
smoothly between these two topologies depending on how
the six electrons move in space. These two topologies define
the projection of the node into the probe 3D space and, there-
fore, enable us to capture the many-dimensional node for this
particular Hartree-Fock state. This again enables us to de-
scribe the complete node using a theorem from algebraic
geometry which states that any cubic surface is determined

FIG. 3. �Color online� The 3D projected Hartree-Fock node of
6S�d5� state which is an elliptic cone �left and right pictures�. The
middle picture illustrates a case when two pairs of two electrons lie
on orthogonal planes which pass through the origin. This two-plane
node is of lower dimension because of the additional condition on
positions of the electrons. It appears as a crossover between the
cones with different orientation �left and right pictures�. The small
spheres show the positions of the four electrons while the line de-
notes the z axis.
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by an appropriate mapping of six points in a projective
plane.17–19 To use it we first need to realize the following
property of the 3D projected node: The node equation above
contains only a homogeneous polynomial in x ,y ,z, which
implies that in spherical coordinates the radius can be elimi-
nated and the node is dependent only on angular variables.
Hence, any line defined by an arbitrary point on the node and
the origin �i.e., a ray� lies on the node. In other words, we see
that the surface is ruled, i.e., it can be created by continuous
sweep�s� of ray�s� passing through the origin. This enables us
to project the positions of the six electrons on an arbitrary
plane, which does not contain the origin, and the node will
cut such a plane in a cubic curve. As we mentioned above, a
theorem from the algebraic geometry of cubic surfaces and
curves says that any cubic surface is fully described by six
points in a projective plane �see Refs. 17–19�. For ruled sur-
faces any plane not passing through the origin is a projective
plane; therefore, we can specify a one-to-one correspondence
between the 6	3=18-dimensional space and our cubic sur-
face in 3D. Obviously, there will be a number of lower-
dimensional nodes which will correspond to positions of
electrons with additional constraints such as when they lie on
curve with the degree lower than cubic; i.e., a conic.

C. Approximate Hartree-Fock nodes of the 5S„sp3
… ion

The HF node for this two-shell spin-polarized state can be
investigated in a similar way as in previous cases with a new
feature that the radial parts will be present in the expansion
of the determinant. By expanding the determinant in the col-
umn of the probe electron with position x ,y ,z, the 3D node
projection is simply given by

x + b�y + c�z + d���r� = 0, �19�

where b� ,c� ,d� depend on ratios of cofactors and ��r�
=
s�r� /
p�r� is the ratio of radial parts of s and p orbitals and
r=	x2+y2+z2. The probe electron will see a plane with an
approximately bell-shaped deformation in the area of the
nucleus �see Fig. 5�. The shape of deformation depends on
the ratio of s and p radial parts and the magnitudes and signs
of the cofactors. For certain configurations the deformation is

so large that it gets detached from the surface and forms a
separated ellipsoid-like bubble. The bubble results from the
radial dependence of ��r� which for pseudized core is not a
monotonic function and, therefore, can create new topolo-
gies. Note that despite the fact that the 3D projection shows
a separated region of space �the bubble�, the complete node
has again the minimal number of nodal cells property. To
understand this, suppose that the probe electron is located
inside the bubble and wave function there has a positive sign.
Let us try to imagine how the electron can get to the other
positive region �the other side of the planar surface�. Seem-
ingly, the electron would need to cross the nodal surface
twice �the surface of the bubble and the planar surface�.
However, the complete node is a collective-coordinate object
and by moving the other two electrons in an appropriate way,
the bubble attaches to the surface and then fuses into a single
surface �Fig. 5, left� so that the probe electron can reach the
positive region without node crossing.

In order to see whether the correlation would change the
HF node, we have carried out a limited study of the CI wave
function nodes for this case; we have found some differences
but we have not discovered any dramatic changes to the HF
nodes. To quantify this further we have calculated the CI
energy �with the same basis and level of correlation as in the
previous cases� and the result is in the last row of Table I. We
estimate that the fixed-node bias of the HF node is of the
order of � 0.001 Hartree, which is close to �3% of the
correlation energy. Obviously, the DMC energy is above the
exact one and percentage-wise the amount of missing corre-
lation energy is not insignificant. We conjecture that the HF
node is reasonably close to the exact one although the fine
details of the nodal surface are not captured perfectly.

D. Approximate Hartree-Fock nodes of spin-polarized p3d5

and sp3d5 shells with S symmetry

Let us for a moment assume a model wave function in
which the radial parts of s , p ,d orbitals are identical. Then,
using the arrangements similar to d5 case, we can expand the
determinant of p3d5 in one column and for the 3D node
projection we then get

2u2 − v2 − w2 + �u + �v + �w = 0, �20�

where u ,v ,w are appropriate linear combinations of x ,y ,z.
This can be further rewritten as

FIG. 4. �Color online� Projected Hartree-Fock node of 8S�f7�
state. The node has two topologies: cone times planar surface or a
cone fused with planar surface that forms a single sheet surface.
There is a smooth transition between these two forms depending on
the positions of six electrons which are denoted by the small
spheres. Note that the node contains the z axis which is denoted by
the dashed line.

FIG. 5. �Color online� The 3D projection of the nitrogen cation
5S�sp3� Hartree-Fock node �the core electrons are eliminated by
pseudopotentials�. The projected node exhibits two topologies. It is
either a planar surface deformed by the radial orbital functions at
the nucleus or, in certain configurations, the deformation forms a
small bubble detached form the surface �the picture on the right�.
The small cross is the location of the ion, while the small spheres
denote positions of electrons.

BAJDICH et al. PHYSICAL REVIEW B 72, 075131 �2005�

075131-6



2�u + �/4�2 − �v − �/2�2 − �w − �/2�2 + �0 = 0, �21�

where �0= �−�2 /2+�2+�2� /4. It is clear that the quadratic
surface is offset from the origin �nucleus� by a vector normal
to �u+�v+�w=0 plane. Using the properties of quadratic
surfaces one finds that for ��2 / ��2+�2+�2���2/3 the node
is a single-sheet hyperboloid with the radius 	�0 otherwise it
has a shape of a double-sheet hyperboloid. The double-sheet
hyperboloid forms when there is an electron located close to
the origin. A special case is a cone which corresponds to
��0=0�. The case of sp3d5 is similar, but with different �0

which now has a contribution from the s orbital �see Fig. 6�.
Once we include also the correct radial parts of orbitals in
the s , p ,d channels, the coefficients of the quadratic form
depend on both cofactors and orbital radial functions. The
resulting nodal surface is deformed beyond an ideal quadric
and shows some more complicated structure around the
nucleus �see Fig. 7� as illustrated on HF nodes of the major-
ity spin electrons in Mn++ ion �note that the Ne-core elec-
trons were eliminated by pseudopotentials�.

IV. GENERALIZED ELECTRON COORDINATES

What we have learned from the previous cases is that for
a small number of electrons the Hartree-Fock wave functions

display nodes which, if transformed in an appropriate way,
lead to rather simple geometries.

In addition, it is instructive to consider how the nodal
surfaces evolve with an increasing number of electrons. Ob-
viously, HF theory leads to low kinetic energies and the re-
sulting mean-field nodes are very smooth. The exact nodes of
the high symmetry P�p2� and S�p3� cases can be interpreted
as reoriented planes which enable us to fit one or two elec-
trons and obviously such rotations do not cause any increase
in the kinetic energy. For more particles, the rotations and
translations are not sufficient to fit the electron positions and
the lowest increase in kinetic energy in atomic systems is
apparently produced by rescaling of the axes.

Finally, for larger numbers of electrons, the node becomes
more deformed and complex with possibilities of new to-
pologies and topological changes. The 3D node projections
we have analyzed above show that often there exist coordi-
nate transformations which can simplify the node description
and enable us to find useful node parametrizations �at least,
for our cases of spin-polarized electronic subshells in ions�.
As we demonstrated on the 3P�p2� state similar spin-
polarized open shells can be studied by analogous techniques
as well.

In the analysis of the nodes we have presented a number
of coordinate transformations and maps which enabled us to
understand particular nodal structures and their topologies. It
is interesting to explore this idea further and think about
possible research directions. In order to illustrate some of the
possibilities, let us define a single-electron coordinate ri
→ri

* transformation as

ri
* = Mi�R�ri + ti�R� , �22�

where Mi�R� is a metric tensor, ti�R� is a spatial offset �trans-
lation�, while R represents coordinates of all electrons. The
dependence of Mi�R� and ti�R� on R can be nonlinear and
even include an explicit dependence on external potential to
describe charge inhomogeneities or required symmetries.
The antisymmetry condition further restricts the dependences
of Mi�R� and ti�R� on R. Obviously the metric tensor has to
be positive-definite but otherwise the transformation is varia-
tionally free. Actually, the usefulness of this transformation
can be twofold. First, as we mentioned, it can be employed
as an efficient way to project the high-dimensional nodal
manifold into a simpler, low-dimensional projection. Second,
it can be useful as a new variational freedom to optimize the
wave function nodes using the following form of a single
determinant or linear combination of determinants:

� = 

k

dk detk���
�k��ri

*�� , �23�

where ���
�k�� are one-particle orbitals and dk are expansion

coefficients. Therefore, besides optimizing the orbitals, one
can also optimize the metric tensor and offset in order to get
better variational wave functions and fixed-node energies. In
fact, the transformation above can be considered a generali-
zation of the Feynman-Cohen backflow quasiparticle
coordinates.23 By simplifying Mi�R� to the unit matrix times
a scalar function, we can easily recover the backflow wave

FIG. 6. �Color online� The 3D projection of the angular part of
the 10S�sp3d5� state Hartree-Fock node �with radial parts of orbitals
identical for all spd orbitals�. The projection has a topology of a
single- sheet or double-sheet hyperboloid. The small cross shows
the location of the nucleus while the spheres illustrate the electron
positions.

FIG. 7. �Color online� Projected Hartree-Fock node of
10S�sp3d5� of the majority spin valence electrons in Mn+2 ion. The
Ne-core electrons are eliminated by pseudopotentials. Note the de-
formations from the radial parts of orbitals, including a small
bubble detached from the rest of the surface �the right picture�. For
clarity, the positions of electrons have been omitted.
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function which Feynman and Cohen suggested for liquid
helium23 and which was successfully employed in QMC in
several previous studies.24–26 The new feature proposed here
is the metric tensor, which enables us to better describe the
systems with inhomogeneities and/or with rotation symme-
tries.

V. CONCLUSIONS

We have investigated the nodes of atomic and molecular
spin-polarized systems with one-particle states in s , p ,d
channels. We have studied cases with high symmetries which
enabled us to find exact nodes for several states with a few
electrons �p2 , p3 ,�2�. Moreover, the projection of multidi-
mensional manifolds into 3D space enabled us to study and
characterize properties of nodes, in particular, their topolo-

gies for the Hartree-Fock wave functions. This analysis has
provided useful insights and enabled us to formulate a gen-
eral transformation of one-particle coordinates using coordi-
nate translation �backflow� and metric tensor to capture in-
homogeneities and/or rotation symmetries. Such
transformations can be useful for understanding the nodal
properties and topologies and also as a new variational free-
dom for QMC trial wave functions.
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